
Coordinated Dataflow Protection for Ultra-High Bandwidth
Science Networks

Vasudevan Nagendra
Stony Brook University

vnagendra@cs.stonybrook.edu

Vinod Yegneswaran
SRI International
vinod@csl.sri.com

Phillip Porras
SRI International
porras@csl.sri.com

Samir R Das
Stony Brook University

samir@cs.stonybrook.edu

Abstract
The Science DMZ (SDMZ) is a special purpose network architec-
ture proposed by ESnet (Energy Sciences Network) to facilitate dis-
tributed science experimentation on terabyte- (or petabyte-) scale
data, exchanged over ultra-high bandwidthWAN links. Critical se-
curity challenges faced by these networks include: (i) networkmoni-
toring at high bandwidths, (ii) reconciling site-specific policies with
project-level policies for conflict-free policy enforcement, (iii) deal-
ing with geographically-distributed datasets with varying levels of
sensitivity, and (iv) dynamically enforcing appropriate security rules.

To address these challenges, we develop a fine-grained dataflow-
based security enforcement system, called CoordiNetZ (CNZ),
that provides coordinated situational awareness, i.e., the use of
context-aware tagging for policy enforcement using the dynamic
contextual information derived from hosts and network elements.
We also developed tag and IP-based security microservices that
incur minimal overheads in enforcing security to data flows
exchanged across geographically-distributed SDMZ sites. We
evaluate our prototype implementation across two geographically
distributed SDMZ sites with SDN-based case studies, and present
performance measurements that respectively highlight the utility
of our framework and demonstrate efficient implementation of
security policies across distributed SDMZ networks.

1 Introduction
The need for computation over petabyte-scale datasets introduces
complexities with respect to: (i) cost-effective provisioning of
compute and storage resources, and (ii) secure transport of high-
throughput experimental data across geographically-distributed
datacenters. Tomitigate these concerns, a new network architecture
has been proposed called the Science DMZ (SDMZ) [9], in which an
enterprise subnet is isolated from stateful deep-packet inspection
(DPI) middleboxes (e.g., firewalls, intrusion prevention systems
(IPSs)) for optimized performance. Geographically-distributed
SDMZ sites are inter-connected through high-performance network
backbones, such as the ESNet (Energy Sciences Network) [11],
which connects more than 40 U.S. Department of Energy (DoE)
research sites and 150+ campus networks that collectively exchange
more than 50 petabytes of data each month [11, 12]. Today, there
are more than 100 such national research and educational networks
present across the globe connecting thousands of research institutes
using dedicated ultra high bandwidthWAN links [29].

���
�����

���	������

���
�
����

���	���� �

1��:�����1� ���
���	����������()��)��������2�����������

�������

1��:�����1� ��
���	��������� ��	�)�)������()��)����

����������������������������

Figure 1: SDMZ backbone (ESNet) with international connectivity,
Illustrating two project collaborations acrossmultiple SDMZ sites.

However, implementing security policy for effectively managing
such ultra-high-volume data transfers without sacrificing under-
lying transport performance and throughput remains a formidable
challenge. Our paper is motivated by the observation that security
mechanisms currently implemented in SDMZ networks fall short
along multiple dimensions.
(1) Coarse-grained Enforcement: Deployed security mechanisms are

too coarse-grained (IP, port-level ACLs) using router-based ac-
cess control lists (ACLs) and aggressive filtering for handling
high-performance science applications that exchange potentially
sensitive, proprietary, or personal-private information across in-
terconnected multi-institutional networks [9, 40].

(2) Context Awareness: Humongous volumes of data exchanged
across SDMZs prevents the network-monitoring plane of SDMZ
(e.g., a network intrusion detection system (NIDS)) from effec-
tively deriving dynamic and fine-grained filtering decisions for
enforcing security policies based on dynamic operational con-
text (i.e.,who,what,where,when and how the data resources are
accessed or requested). The lack of application awareness, DPI
capabilities, and contextual information leaves wide gaps in the
SDMZ security architecture [39].

(3) Intuitive Policy Specification: SDMZ project users (e.g., re-
searchers, professors, and students) have no method to directly
capture their policy intents and enforce them onto the network
without conflictingwith other user’s policy intents or site-specific
policies.

(4) Security as a Service: Finally, current tier-2 SDMZ networks lack
infrastructure support to effectively utilize dynamic security and
data analysis services provided by tier-0/1 SDMZcompute centers
(e.g., DDoS protection and data analysis) [6, 24].

1

We seek to address these limitations by introducing a new frame-
work, called CoordiNetZ, which provides a graph-based dataflow
policy management framework that enables users to express antici-
pated experimental interactions and automatically arbitrate conflicts
with respect to project- and site-specific policies. This high-level
abstraction is important, as science project policies must be flexibly
specified by researchers rather than by administrators. CoordiNetZ
addresses the lack of application- and context-awareness through
a novel context-aware policy-based tagging mechanism (cTags),
which allows dataflows to be associated with tags enabling
fine-grained control on cross-site dataflow filtering. Necessary
optimizations are proposed to effectivelyutilize the limited tag-space
(20 bits Flow Label packet header of IPv6) that is available for using
it across sites, while optimizing the number of rules required to en-
force the policies. CoordiNetZ integrates host-specific application
context to network nodes and monitoring plane, enabling them to
filter traffic by routing through light-weight security functions built
asmicroservices for fine-grained policy enforcement.
The notable contributions of this paper are as follows:
• Identification of several key SDMZ security requirements (§2)
that motivate the design and prototype implementation of a
distributed SDN-based policy enforcement framework (§3).
• We present novel conflict detection and resolution mechanisms
that allow policies specified by various SDMZ users using
graph-based abstractions belonging to different sites and projects
to be effectively reconciled (§4).
• We develop context-aware policy-based tagging that allows
dataflows to be associatedwith tags enabling fine-grained control
of project- and experiment-specific cross-site dataflows (§5).
• We present key security use-cases that demonstrate the benefits
of CoordiNetZ framework in Appendix §A.2 and comprehensive
performance evaluation of the CoordiNetZ prototype (§6).

2 SDMZBackground
The SDMZ network architecture has proven to be a vital platform
for storing and transporting petabytes of scientific data (per month)
across geographically-distributed research testbeds and data
repositories in US and Europe (shown in Figure 1) [11, 12]. As shown
in Figure 2, noteworthy elements of the SDMZ architecture that
are optimized for performance include the following:
1. DTNs and applications customized to support data transfers at

10–100 Gbps [1].
2. SDMZ network perimeter architecture that bypasses stateful

firewalls and DPI devices for high-throughput data transfers of
elephant flows [39].

3. A dedicated SDMZ core network with capacity to carry more
than 100 Gbps of science dataflow rates without loss.1

The SDMZ network differs from enterprise networks in how it
manages the data flows (i.e., elephant dataflows) across geograph-
ically distributed locations. Specifically, SDMZs employ specialized
applications (e.g., Grid FTP) to transmit parallel (multi-port) data
streams across SDMZ sites. These host DTNs and their applications

1Considering the growing bandwidth requirements of SDMZ applications, the SDMZ
core network is soon expected to get upgraded to 400 Gbps [38]

Site1 SDMZ
Network	

Policy
Framework	

Site2 SDMZ
Network	

SDMZ
Core	

Project-specific
Abstractions	

Project-specific
Enforcement rules	

Lack of Isolated Abstractions and 	
Unified Policy Specification among Projects within and across Sites	

Lack of Isolation in Policy Enforcement among Projects
within the Shared Infrastructure	

Project1: ALLOW DTN1 -> Internet	
Project2: DENY DTN1 -> Internet	

Project1: Host & Network specifics 	
Project2: Host & Network specifics 	

Site 1 LAN	

LAN Edge
Firewall	 Site 2 LAN	

LAN Edge
Firewall	

Elephant Flows	
Firewall Bypass Architecture	

Figure 2: Lack of isolation among projects in policy abstraction,
specification and enforcement. Dotted lines represent SDMZ
network isolated from enterprise network’s firewalls.

are customized to handle high-performance TCP, and are limited
to running a few “trusted” data-transfer applications.

The SDMZnetwork is also distinguished fromother cross-domain
networks such as software-defined WANs (SD-WANs) [16, 18],
software-defined data centers (SDDCs) and multi-tenant cloud
networks [3, 25] in that the SDMZ network is multi-tenant network
that shares experimental data across multiple sites that are geo-
graphically distributed, spanning multiple administrative domains.
In addition, the day-to-day policy requirements in these network
infrastructures are specific to the experiments and associated data
outcomes and the rules for sharing of data across collaborators are
required to be specified by non-admin SDMZ users (e.g., researchers,
students). However, existing policy frameworks including the
new SDN-based frameworks are not designed to handle dynamic
dataflow-based policy requirements of these multi-administrative
cross-domain science networks [2, 21, 36, 42, 46].

2.1 SDMZ Security Requirements
Today, SDMZ security is provided primarily through offline pro-
tection, such as from clustered IDS (e.g., BroIDS [5]), router/switch
ACLs and selective fastpath of high-bandwidth flows (e.g., Sci-
Pass [40]). However, SDMZs currently offer no way to capture and
reconcile the unified policy intents of different administrators of
SDMZ sites. SDMZs have no fine-grained flow management, i.e.,
filtering, steering or revoking of flows according to dynamic project
requirements or security states of the SDMZ network. In addition,
SDMZs do not offer the necessary context to enable an association
between flows, projects, and data. Below, we identify four key
requirements for an SDMZ security framework.

2.1.1 Fine-grained Dataflow Security Policies: SDMZ policy
requirements differ from that of typical enterprise networks. Below,
we summarize three broad classes of policies that are germane to
the SDMZ network infrastructure:
Policy 1. Dataflow Policies: The nature of SDMZ experiments in-
volve the transport and computation of project datasets with diverse
sensitivities. Ideally, they should be data centric rather than IP flow

2

centric. For example, a single experiment may include both public
data and data involving personal information. Policies should have
the ability to express fine-grained controls over where data can be
transmitted or received based on the type and sensitivities of the data.
Examples: (Ex. 1) - Sensitive data derived from experiments of
project P1 in site S1 is to be only shared among nodes running P1.
If projects P1 and P2 are co-resident in an SDMZ node, P2 users
or applications may not exfiltrate P1 data to other nodes. (Ex. 2)
- Application binaries that are not white-listed are not allowed to
access sensitive files or send packets of size greater than X bytes
using protocols such asDNS andNTP. (Ex. 3) - Sensitive data derived
from project P1{experiment2} in Site1 (e.g., D2) is not to be shared
with Site2, Site3, their collaborators and blacklisted countries,
including the transformed output data (i.e., derivatives D2/*). Also,
not allowed to be accessed by any application or user which/who
collaborates with Site2 and Site3 i.e., S1{D2/*} !→ {S2,S3}).
Policy 2. Temporal and Spatial Policies.As the SDMZ is a federation
of shared and independently managed resources, the operator
should be capable of defining resource utilization policies based on
time, network address space, or geography.
Examples: (Ex. 1) Sensitive and confidential science data produced
by project P1 is not allowed to be accessed or transmitted before
9 AM and after 6 PM, i.e., in the absence of data administrators, to
prevent malicious data access. (Ex. 2) Export-controlled scientific
data derived from project P2 is not to be transmitted to any
ITAR-restricted countries.
Policy 3.Network Security Policies. Policies should be adaptable to
address the dynamic security state of the network.
Example: Notify admin and quarantine hosts to prevent any
sensitive data transfers outside DTNs if there is evidence of a
successful brute-force attack.

2.1.2 Infrastructure Abstraction & Policy Specification: As illus-
trated in Figure 2, existing policy frameworks [2, 19, 36] do not
provide the required isolation between project users and site
administrators. The infrastructure details, abstracted for specifying
the policies, need to be effectively isolated for protecting the network
infrastructure details from getting exposed to other unintended
SDMZ users. The SDMZ network infrastructure involves users (i.e.,
researchers who are non-administrative users) who should identify
the necessary network resources and security services required for
enforcing the data-specific policies of their projects. These policy
rules are manually inserted (and often statically configured) into
routers and monitoring devices.

2.1.3 Conflict-free Policy Enforcement: Furthermore, the policies
must provide necessary project-level isolation while enforcing the
policies on sites where: (i) each project spans across multiple sites,
and (ii) multiple projects share the same host DTN and network
infrastructure. Conflicting access control policies ‘or’QoS policies (i.e.,
to share the network resources) involvingmulti-project traffic froma
sharedDTN should be effectively de-conflicted before insertion onto
enforcement devices. While traditional enforcement mechanisms
require dedicated DTNs and network infrastructure elements per
project, this restriction is inefficientand impedes theability todynam-
ically manage SDMZ networks. Consider for example following two
policies from two different projects Project 1 and 2 as shown below:

�!�F ����
�16��!H�

�D)H��2)
�!H��

/�� /�� /�2

�F7:!H!DC7#�DF��2
�7)�:�0D7:��7#7C��F

�D)H��2)
�!H��

-7#)��2��7H!,�
�07�"�D���DCH�LH�HD�
/���DF�:�H��H!DC�D��2�H-DF"�D���

2�H-DF"���7C)���FIH� �DF���7C:�
7H7�,L�!#HF7H!DC�7HH7�")

	��"EE) 	��"EE)����"EE)

�1EE)

1I#H! ED!CH��1I#H!)HF�7B�
�#�E 7CH��#D-)�D,�F�:MC7B!�7##M�

��C�F7H�:�-���HF7C)EDFH�EDFH)�

��������	�	��/	�������2�
��
��2��2���
�� �����2��/���	�	

Figure 3: Lack of context in detecting missed network and
application-level attacks with clustered IDS.
Project 1: HostDTN[1-10]: GridFTP→ALLOW→ Internet.
Project 2: HostDTN[3-7]: GridFTP→DENY→ Internet.

From above two policies specified in Site1, the first policy from
Project 1 allows FTP application data to be sent to the Internet from
hosts 1 – 10, while the same type of traffic from a subset of hosts
are DENIED as part of Project 2.

2.1.4 Contextual Awareness: Consider the case of SDMZ data-
transfer applications [10] (e.g., GridFTP, bbftp, bbcp), which are
multi-point, and multi-stream applications where a single dataflow
can be transferred in parallel as multiple data streams on to multiple
data nodes. Consolidatingor correlating the distributed, parallel TCP
streams (i.e., either clear or opaque traffic) is difficult as the TCP port
numbers used in the data transfer is dynamically negotiated using
GridFTP’s secure control messages. As shown in Figure 3, various
attacks such as network- or application-level DDoS, data exfiltration
andbrute-forceattacks couldgoundetectedwithaclustered IDSsolu-
tion. To dynamically allow experimental data fromvarious sites to be
properly filtered and steered according to security conditions, each
site which originates the data should provide additional contextual
information.When tier0/1DoE siteswith advanced security services
detect security vulnerabilities they should share these details with
the site that originates the data for collaborative protection.

3 The CoordiNetZ System Framework
We introduce a coordinated and context-aware security framework
(CoordiNetZ) that is designed to address the SDMZ requirements
for enforcing security to dataflows in multi-tenant, multi-project,
and multi-administrative environments. The key elements of the
CoordiNetZ system include:
1) Tree-based Infrastructure Abstraction Engine: employs abstraction-
mappings, which automatically generate isolated tree-based abstrac-
tions (i.e., required to specify policies) of the infrastructure that is spe-
cific to each administrator’s or user’s role and scope of control (§4.1).
2) Graph-based policy specification: allows specification of graph-
based policies with simple drag-and-drop syntax of nodes from
abstraction trees supplied to each administrator (§4.2).
3) Conflict Detection & Resolution: facilitates composition technique
for conflict detection and resolution among policies that are
produced by different project and site administrators (§4.3).
4) Inter-Site & Intra-Site Context-Aware Tagging: associates policies
with context-aware tagging2, which is required for dynamically
2Necessary context required for enforcing security to dataflows is provided by host
DTNs and other protection mechanisms (e.g., IDS) deployed in the SDMZ.

3

�-I..��CM!��II- CH�MI-�"I-�
�IHM!3M��P�-!���AACHA��H ��!�N-CMR�.H"I-�!G!HM

5-ID!�M� 5-ID!�M�

�,!H.M��E 0I-CSIH�-�.B�I�- ���/-�,BC��(��1

I- !-�
�INM!-

I- !-�
�INM!-

�-2:��I-!�
�MC!-��� ��CM!.

-��. �-2:��CM!	 -��.
1-�1-�

��:�
�IHM-I((!-

�-��
�IHM-I((!-

��:�
�IHM-I((!-�

�-��
�IHM-I((!-

�-2:��CM!�

�-��
�IHM-I((!-

�!.!�-�B!-��(C�!�5I(C�R�1HM!HM)�
�B�-!�IH(R� �M��INM�IG!.�"-IG�
!3,!-CG!HM��MI�I��MB�M��-!�HIM�

.!H.CMCO!�I-�,-CO�M!�

�!.!�-�B!-�I��5I(C�R�1HM!HM)
�B�-!��((�MB!� �M��PCMB��(C�!�

.,!�C"C��MI�5-ID!�M�(�PCMB�--I���H �
-�M���H�(RMC�.�"-IG�-I.�MC!-���.CM!�

Figure 4: The CoordiNetZ dataflow policy specification and enforcement architecture with two users specifying policy intents
for securing sensitive data using security services provided by tier 0/1 SDMZ transit sites.

filtering dataflows on the basis of associated security conditions.
We develop technique to allocate tags to policies associated with
each project based on the graph edge coloring approach while
considering the limited tag size supported in IPv6 with 20 bits Flow
Label packet header (§5).

3.1 SystemComponents
Figure 4 illustrates the major components of CoordiNetZ and
their integration points within the SDMZ. Its purpose is to enable
users among a broad range of roles (e.g., project scientists, site
administrators, project data administrators) to express their policies
using a tree-based abstraction, and then enforce these policies on
large data science projects that are hosted across independently
managed SDMZ institutions.
CoordiNetZ integrates following enhancements to SDMZ:
1) CNZ Coordinator: CNZ Coordinator acts as the centralizedmanager
for specifying cross-site project policies frommultiple users, both
through policy files and a graph-based user interface. It implements
the following key capabilities: (a) intent-based framework, (b)
tag-based policy enforcement, (c) manages tag space allocation
mechanism for assigning the range of tags across projects, and (d)
builds abstraction trees based on stats from the CNZ Controller. It
uses Openstack Horizon UI [35] for building graph-based policy
specification. The abstraction engine of CNZ Coordinator built on
Openstack Congress engine [7], with datalog rule generator module
developed to generate infrastructure abstraction trees.
2) CNZ Controller: The CNZ Controller acts as a mediator between
the DTNs and the CNZ Coordinator. It analyzes each host’s DTN
records for malicious data flows and consolidates data-flow records
and DTN state information required for building the abstraction
trees at the CNZ Coordinator. It translates site-specific policies
provided by the CNZ Coordinator into host- and network-specific
rules.Our custombuilt CNZ Controllerhandles the data records from
host DTNs and REST APIs are used for exchanging and triggering
the policies between the CNZ Controller and SDN controllers.
3) SciMon: The SciMon module builds contextual information at
host-process level to tag the flows originating from host DTNs and
enforces host and process-specific data policies in DTNs. It tracks
file’s accesses with each process instantiation and imposes file
access and network data-flow restrictions according to the rules in
process policy table. It continuouslymonitors the host processes, file
system accesses, and network IO events using open-source utilities,
such as psutils [37] and osquery [34]. As shown in Figure 16
(Appendix A.3), the process flow table consists of policy flow rules

that dictate the user’s, application’s, or process’ ability to access
the data and send it over the network.
4) SciFlow: The SciFlowmodule, runs as a daemon to continuously
monitor for flows generated from a specific interface inside the host
and triggers SciMon to gather user and process attributes, file I/O,
and application binary information associated with this network
flow. Flow records gathered by SciMon and SciFlow are sent to the
CNZ Controller for further processing (see Figure 17 in Appendix
A.3). The fields that are extracted from the host and network flows
are customized per CNZ Controller’s policies.
5) Stateless Microservices: Our security-based microservices are
based on the DPDK platform [17]. We implement each security
functional capability as a light-weight stateless microservice
with their states externally stored to shared memory [27]. The
micro-services based functions that we implemented include
tag-based filtering, rate limiting, spoof protection, connection
tracking based on IP tuples and tags.

3.2 Threat Model

We adopt a simple threat model which assumes that: (i) a subset of
SDMZ users and administrators who program the SDMZ ecosystem
could be malicious resulting in embedding rogue policies within
a project, (ii) the applications inside the host DTN such as GridFTP
and other data transfer applications could be compromised. We
attempt to address issues that arise fromflaws in the implementation
of traditional SDMZ policies as well as vulnerabilities introduced
by malicious users.

CoordiNetZ proposes to use a conservative approach by which
administrators can program dataflow policies from specific users
and for specific set of host DTNs such that their capabilities are
givenhigherprecedence compared to security andprivacypolicies of
others. Though the precedence is completely programmable, it solely
dependsonadministrator’s ability to correctly specify it,whichcould
at times mask the conflicts. Hence, precedence operator need to be
used diligently by administrators for auto-resolving the conflicts
that are detected by CoordiNetZ, which could otherwise be safely
resolved by administrators.

Our threat model broadly considers various attacks such as data
exfiltration, spoofing attacks, and DDoS. CoordiNetZ protects the
SDMZ network from such attacks at switch (i.e., at the immediate
first-hop network node) with the help of tags inserted by the SciMon
application and context gathered fromwithin the host and network.
These security use cases are described inmore detail inAppendixA.2.

4

Original
data (D)

D1 D2

Da
1 Db

1 Dx
2 Dy

2

OutEXP2

OutEXP1 OutEXP2
OutEXP2 OutEXP3

OutEXP1

(a) Abstraction tree for exper-
imental data outcome (AM =

data{*}.experiment {Exp1}).

������
����

�������5��
��1
	�����

����
������

����

��1�� ��1� ��1��� ��1��

(b) Abstraction tree for dynamic
host security (AM = security-
state{*}.site {Site1}:hosts{*}).

Figure 5: Infrastructure abstraction trees andmappings.

4 Dataflow-based Policy Framework
CoordiNetZ, provides following key capabilities for addressing
the security policy requirements of SDMZ networks: (i) effec-
tively isolates the policies specified across different administrative-
domains, across sites and projects, using a tree-based abstractions,
(ii) graph-based policy specification mechanism that captures multi-
dimensional policies (e.g., temporal dynamics, security states, spatial
attributes), and (iii) provides efficient policy-conflict detection and
resolution mechanisms across the shared network infrastructure.

4.1 Infrastructure Abstractions
In this section, we present an approach called abstraction mapping
that allows a global site administrator to delegate policy respon-
sibilities of SDMZ infrastructure to SDMZ network administrators
and project users. Abstraction mappings allow users and admin-
istrators to visualize an isolated view of the infrastructure (i.e., as
infrastructure abstraction trees), over which the user may specify
policies. Figure 5 and Figure 13 (Appendix A.1) illustrates examples
of infrastructure abstractions exposed to administrators/users and
abstraction-mappings specific to each abstraction tree is also shown.

Administrators provide abstraction-mappings as input to the
CNZ Coordinator for facilitating the construction of abstraction
trees (see Figure 5). Abstraction mappings enable CoordiNetZ
to stitch together different types of abstractions within the same
tree. For example, in Figure 5b the security states and list of
hosts of Site1 are combined. Here, each level of infrastructure
abstraction-type is separated using the colon operator (‘:’), while
the dot operator (‘.’) denotes the properties of each level of
abstraction-type. Each dot-separated abstraction narrows the list
of host DTNs captured within the abstraction tree. List of few
system-defined abstraction-type-mapping parameters includes
locations{}, buildings{}, networks{}, sites{}, security-states{}, which
captures the spatio-temporal, security and network properties and
their relationwith the hosts,which allows the policies to be naturally
expressed using intuitive heterogeneous types of abstraction trees.
Figure 13d shows few more infrastructure abstractions generally
used in SDMZ network infrastructures for configuring the policies.

4.2 Policy Specification
CoordiNetZ provides a graphical drag-and-drop user interface for
specifying the graph-based dynamic dataflow-based policy intents,
while the existing techniques supports only static policies that are
flow-based[2, 19, 36].Policygraphsconstitutesofnodes fromvarious
infrastructure abstraction trees that are assigned to each administra-
tor (see Figure 6a). An equivalent policy specification syntax for con-
figuring large scale policies bypassing the graphical user interface

7"H!�7"H!�
�F">/�6

�� � �

I1DGHG�6FDA!=H�, I1DGHG�6FDA!=H�,

�!H� � �!H�
�"B!��
��*	6��

��

7H<H!�
=DB'FDB"G

!>
�62

I1DGHG�7"H!�,I1DGHG�7"H!�,

�3��� � 2CH!FC!H9��
��/9

I1DGHG�7"H!�,

(a) Graph-based ACL policy specification (P1 – P3).

�G�:/�",� �D"'N
�IH: 'F��/�2-/�N�G�H�', G�,!/�FI,I��",��N�,H�==":
,LG�/�N�**�.��**��3 ::�%�H�,FH��*�,�H>�, 'F��/1',�H'�,N�G�H�',
G�,!/'�,-FHBIN

�G�:/�",� �D"'N
�IH: 'F��/3�,�N�G�H�', G�,!/�FI,I��",��
*�2-/�N�,H�==": ,LG�/�N�,"D�/6"D��N�I,�,�/:FDGHFD"I��N�**�-�1��*�
,�H>�, 'F��/3�,	N�G�H�', G�,!/�FI,I��",�� *�2-/�N

�G�:/�HFA�:, �D"'N
�IH: 'F��/�",��N�G�H�', G�,!/�FI,I��HFA�:,�N��
,H�==": ,LG�//H"�.6�N���,�/-���N�1�*�,�H>�, 'F��/�",��N�G�H�',
G�,!/�FI,I��HFA�:,�N

(b) Equivalent ACL policy specification syntax for P1 – P3.

Figure 6: Graph-based policy specification & syntax.

(shown in Figure 6b) is also provided. CoordiNetZ’s policy specifica-
tion framework supports three types of static anddynamicpolicies to
accommodate the needs of SDMZ network: (i) temporal-and-spatial
policies, (ii) data-specific policies, and (iii) network-security policies.

Thepolicy specification syntaxused for representing graph-based
policies is shown in Figure 6. In this ACL-based policy specification
syntax, the permissions to allow or deny communication between
source and target nodes are specified using => (i.e., for ALLOW),
!=> (i.e., for DENY), and !X=>(i.e., for QUARANTINE) operators.
Sequential (>>) or parallel (| |) operators specify the sequence of
network functions through which the traffic from specific source
node should traverse. The → operator used in the parent-path
key-value pair is used to define the path of the node (i.e., used in
policy specification) from its root node, which is required to capture
the relation among the nodes of same abstraction tree.
Dataflow-based Policies: The current SDMZ infrastructure does
not provide any capabilities for enforcing cross-site dataflowpolicies
(discussed in § 2.1). While prior work discussed dataflow tracking
within a host and across hosts [23, 28, 32, 48], these frameworks
are heavyweight and do not address the performance requirements
of the SDMZ. Hence, we implement a lightweight forensic tracker
and use the CNZ Coordinator to support two key data-tracking
capabilities: (i) ability to capture all read/write operations carried
out on the data within a host (shown in Figure 5a) and (ii) ability
to effectively capture the dataflow across hosts and associated data
transformation restrictions (shown in Figure 7).

We define the following properties and capabilities to track the
data across SDMZsites: (i) unique data identifier across siteswithin a
project and (ii) mechanism to capture the relation between “original”
and “transformed” data. The unique data identifier is required to
identify multi-site dataflows and capture their transformation in the
future. This also allows SDMZ project users to effectively query the
dataflow and data transformation details over a temporal window.
The relation between the original and the transformed data is
captured at each of the SDMZ project hosts and shared with the CNZ
Coordinator for building data flow graphs. Dataflow tracking helps
to restrict dataflow violations using a high-level policy specification
language (as shown in Figure 7).

5

������3�21��/�/�����!��!��/>	
���2"���2�#�1/�/"��#�
����2"���2�#
���2"���2�#�1/�/"��#�
����2"���2�#
���2"�#�1/�/"����#�$
����2"���2�#
����23/����1:���2�3�:�21����:2���

�3��:/33���/����/���/��!���

��*.
���2�

��*.
���2�

�� �-�

��

�-�
�-�

��
�-�

��*.
���2�

��

�-�

Figure 7: Project-specific graph- and syntax-based policy
specification for data-flow policies.

CoordiNetZ’s abstraction trees and graph-based specification al-
lows the administrators to specify the policies explicitly using the
abstraction trees exposed to each of the IoT users or administra-
tors. This approach of isolating and assigning explicit infrastructure
abstractions to each admin, allows CoordiNetZ to prevent admins
from specifying policies on the infrastructure they do not own i.e.,
preventing rogue policies from being specified. For detecting rogue
policies, the policy composition engine extracts the source and tar-
get nodes from the specified policies and verifies if both the nodes
belongs to the policy abstraction trees owned by that administrator.
Further, these policies are composed together for detecting other
conflicts and violations (as discussed in §4.3.1).

4.3 Policy Composition &Deconfliction
In multi-site environments, where hosts and network entities are
sharedacrossmultipleprojects, conflictsareboundtoarisewhenpoli-
cies are being specified independently by each SDMZ user. Conflicts
might even arise among policies specifiedwithin the same project or
across projects, whenmultiple users are involved in policy specifica-
tion. In SDMZs, the need for project- and site-specific policies further
increase the potential for conflict. Run-timepolicy compositionmust
alsoaddress thedynamicneedsofephemeralprojects, resulting in the
need to perform periodic policy recomposition. Hence, CoordiNetZ
facilitates automatic policy conflict detection and deconfliction in
three steps: (i) automated detection of conflicts among policies (i.e.,
specified by various administrators) within a project, (ii) automatic
conflict resolution, and (iii) decomposition of policies into logical
groups for efficient tag assignment to enable policy enforcement
among multiple projects in shared infrastructure.

4.3.1 Composition Algorithm: The composition engine accepts a
list of policies∀pi and an empty bi-partite graphG as input. Each pol-
icy in the list L is serially composed, producing a final consolidated
graphG . For each policy pi to be composed withG , the composition
engine first checks for existence of any source nodes Sj (G) inG that
has any relationwith policy’s source node s(pi) If s(pi) overlapswith
any source node in Sj (G), then the composition engine evaluates
the edges of source node E(Sj (G)) of G for matching policy edge
conditions bpi (s,t). If any of the edges of Sj (G) has an edge match
condition with pi (i.e., an overlap or subset or exact match relation),
then t(pi) is checked for a target node match associated with Sj (G).

Depending on the overlap relation among source, edge, and the
target nodes, the policy is either declared a conflict, a duplicate or
non-conflicting. Duplicate policies are not added to the graph, but
increment a counter and an entry tomaintain the duplicate-policy as-
sociation. If the composition enginefinds anoverlap relation, it labels
the policy as a conflict. It then checks for matching precedence rules

Algorithm 1: Graph-based Policy Composition
1 L← list of policies for composition;
2 s(p)←source node of policy p ;
3 t (p)← target node of policy p ;
4 a(p)←action of policy p ;
5 bp (s,t)←edge properties for the policy p between nodes (s,t);
6 G←Composed k-partite graph;
7 S (G)←source node of the GraphG ;
8 E(S (G))←edges associated with the node source S on the Graph G;
9 T (E)← target associated with edge;

10 A(E)←action on the Edge;
11 forall Policy p ∈L do
12 foreach source node S(G) ∈G do
13 if s(pi) overlaps Sj (G) then
14 foreach edge E(G) ∈Sj (G) do
15 if bpi (s,t) overlaps with Ek (Sj (G))&a(pi),A(Ek) then
16 if t (pi) overlapsT (Ek) then
17 if no or equal precedences then
18 Alert: Raise Policy Conflict;
19 else
20 Auto Resolution: Approach (§4.3);
21 decompose (p ,G);
22 else
23 Create new t (pi) node in G;
24 else if bpi (s,t) overlaps Ek (Sj (G))&a(pi)==A(Ek) then
25 if t (pi) ⊆T (Ek) then
26 Discard Duplicate Policy: Add track entry;
27 pi .counter←pi . {counter++};
28 else if t (pi)<T (G) then
29 Create new edge for the pi inG ;
30 else
31 Create new edge for the pi inG ;
32 else
33 Create s(pi)& t (pi) hash entries inG ;
34 Create new edge bpi (s,t) inG ;

for the policypi and policies associated with Sj (G). If precedence op-
eration exists for that policy, it proceeds to conflict resolution, while
unresolved policies are declared as conflicts. If no overlaps exist, the
policy is non-conflicting, and hence new nodes and edges are added
to the composed graph. The overall complexity of the composition
Algorithm1 involves the following factors: (a) the number of policies
(L); (b) number of source nodes (S J) in the composed policy graph;
(c) the number of source nodes that have overlap relations resulting
in edge comparisons (Le); and (d) the number of target nodes that
are compared for overlap relations (Lt). The overall worst-case com-
plexity of the algorithm is O(L ∗ S J ∗ Le ∗ Lt), which is quadratic.
The overall composition complexityTc is calculated as follows:

Tc =
L∑
i=1

(S Ji∑
j=Sj ϵG

O (m+n)+
(Lej∑
k=(Si ,Sj)ϵE

Ke ∗O (q+r)

+

(Lt∑
l=(Si ,Sj)ϵE

O (u+v)
))) (1)

We propose incremental policy composition mechanism to
accommodate the dynamic changes to the SDMZ network infras-
tructure and perform policy composition in sub second latency
and reduce the complexity of our composition algorithm through
optimizations (discussed in Appendix A.4).

4.3.2 Precedence & Decomposition : Automated conflict resolution
employs precedence operators to resolve conflicts among competing
policies. CoordiNetZ uses three separate forms of policy precedence
evaluation.Administrator-level precedence enables precedence eval-
uation based on the scope of authority for policies authored by
administrators. For example, in SDMZs the site administrators are

6

Algorithm 2: Tag allocation across sites (Edge Coloring).
1 CT ← List ofT colors with their respective tag space sizes;
2 SN ← Total number of sites involved in policy management;
3 PSi {} ← List of projects in each site;
4 Tpi {} ← Tag size requirement of each project;
5 CSi {} ← List of unique colors assigned to each site;
6 CSAi {} ← List of colors associated with Si ’s adjacent site PSi ;
7 Ctemp {} ← List of colors with tag size > Tpi +Ts lack ;
8 foreach site Si ∈SN do
9 foreach adjacent sites SAi ∈Si do

10 foreach project Pi ∈PSi do
11 if Pi .{color} == NULL then
12 CT emp {} ←CT {} > Tpi +Tslack ;

13 Pi . {color } ←min
(
CT emp&&CT emp <CSAi

)
;

14 Si ← SAi Adjacent site of Si with project tag space unassigned.;

granted precedence over project administrators. Action-level prece-
denceallowsoneaction to takeprecedenceover another. For example,
the Drop action may supersede Allow or Quarantine or redirect.
That is, Drop > Allow > Quarantine > Redirect. Custom precedence
enables policy attributes, such as user or experiment or projects,
to be associatedwith precedence. For example, policies specific to Ex-
perimentXof Project1maybe granted precedence over policies from
Experiment Y of Project2, especially with shared network resources.

When two policies (P1 and P2) conflict (e.g., policies in Figure
6a), the nodes and edges of the policies are decomposed into set of
subset nodes that requires the least number of edges to represent
conflict-free policies. Based on the precedence, the overlapping
nodes that result in conflict are removed. For P1>P2, the edge
specific to the policy with highest precedence (P1) is retained and
the overlapping portion of edge property specific to other policy
(P2) is removed and vice versa. In this case, the total number of edges
required to represent the conflict-free composed graph is N + 1,
where N is approximately total number of different edge properties
that result in conflicts. From the composed graph all the nodes and
edges that are resolved for conflicts specific to a policy are assigned
the same tag. Here, the number of tags required is approximately
equal to the number of conflict-free policies.

5 Context-Aware Tagging
The SDMZ network lacks efficient techniques to differentiate traffic
based on: (i) static project-specific attributes (e.g., project id, project
user, experiment id) that identify the source of the science data
traffic, (ii) dynamic network security attributes, (e.g., malicious,
compromised, DDoS, or exfiltration host) that describe dynamic
security state of the network, and (iii) site-specific attributes that
enable isolation and conflict-free policy enforcement for projects
spanning multiple sites with each site hosting multiple projects. We
present a tag-based policy enforcement mechanism for fine-grained
traffic filtering and inter-site sharing of security services.

1) Intra-Site Tag Assignment: Fine-grained traffic filtering is pro-
vided to SDMZ network using tag-based policy enforcement mecha-
nism supported using IPv6flow label (20 bits). IPv6 is a natural choice
for flow tagging as it affords greater tag space and its use is strongly
urged by the SDMZ community [43]. The tag assignment to policies
happens within each project at the site-level by the CNZ Controller.
The host DTN assigns tags to each flow associated with policies for
logically grouping the flows or forwarding them in accordance with
dynamic network security conditions (§5.1).

2) Inter-Site Tag Space Allocation: While the tag assignment de-
cision happens locally within each site, we use the centralized CNZ

Coordinator for allocating the tag space (i.e., range of tags) for each
project. Our inter-site tag space allocationmechanism, assigns the
tag space to each project registered with the CNZ Coordinator(§5.2).

5.1 Intra-Site Tag Assignment
To extend fine-grained traffic filtering capabilities, beyond contem-
porary IP-based mechanisms, we develop an efficient context-aware
policy-based tagging mechanism, called cTags, that enables:
• Logically group traffic that spans across subnets, hosts or
geographic locations for policy enforcement.
• Dynamically steer, revoke, or forward traffic across different
Network Function Chains (NFC) according to dynamic network
and security conditions.
Although the tag assignment is carried out by the CNZ Controller

of any site, the actual tag is embedded into the flow by host DTNs
for traffic generated from the host applications depending on the
configured policies. The conflict-free policies supplied by the CNZ

Coordinator are reconciled to site-specific policies and further
translated to device-specific rules by the CNZ Controller and SDN
controller before being placed across host DTNs and SDN switches.
The set of rules supplied to each host, which we call as policy-to-tag
mappings captures following details:
• tagID{T1} => policyID{P1}:appID{A1}:userID{U1}:expID{E1}

• policyID{P1} => policySpec{...}

The mappings carry necessary details specific to each policy
and the associated entities for enforcement. The SciMon module
can dynamically change the flow tagID, even in the middle of
flows depending on dynamic network conditions, by updating the
policy-to-tag mapping entry.

Each SDMZ site needs to optimize the number of rules re-
quired to enforce the policies by considering the availability of
high-bandwidth switches and their switch TCAM space. Tagging
facilitates rule space optimization by: (i) allowing large number
of hosts to be grouped into a common logical entity (i.e., beyond
IP-tuple-based filtering) and (ii) efficiently assigning contiguous
tags such that policies having same action attributesmay be grouped
together using bit masking. Each policy is simply associated with
a unique tag after resolving the conflicts among the policies. From
the composed graph all the nodes and edges that are associated with
a policy is assigned the same tag. Here, the number of tags required
is approximately equals the number of conflict-free policies. Further
the optimization proposed to tag space utilization in collaborative
SDMZ network is discussed in next Section 5.2.

5.2 Inter-Site Tag Allocation
In the SDMZ infrastructure, security and data analysis services
provided by higher-tier sites (i.e., tier-0 or tier-1 DoE sites) are
availed by lower-tier sites [6, 24]). For effectively sharing such
services across sites, tags assigned by one site must be honored by
other sites handling the same project.

To avoid conflicts in tag space utilization we propose a unified
tag space allocation mechanism that allocates necessary tag space
to each project (with additional slack tag space for future policies).
Though, the tag space allocation is carried out globally at the CNZ

7

3�"5��1 �:86"!�����
05$9�#������ !�4!87��

1���� 1	���� � �	

1)�

��)

1 	
��1

(�
��

	
��

(

1(� 1-�1���

��������)

1-��� 1��

��	��(���

1 �
��1

�
��

(
��

�

1����

���

1,

��

2� 2�

2	

2(2) 2

2�

3�"5��1 �:86"!���,
05$9�#������ !�4!87���

1,��1-�

��)���

1���1����� C ��

1)�

��)

1	��� 1(

��	���(

2�

2	

2�

2(

1��

���

1�

��	

Figure 8: Tag-space allocation with edge color assignment.
Project IDs and colors are used to annotate each edge.

Coordinator, the tag assignment to each policy is carried out locally
within the site with the help of CNZ Controller. As a design choice,
we use IPv6 flow label bits as tagID. Since 20 bits of flow label header
in IPv6 cannot effectively accommodate the tagging requirement
of thousands of projects handled across hundreds of SDMZ sites
we need a centralized tag-allocation mechanism to effectively reuse
tag bits across projects spanning multiple sites.

We assign a specific color to each project within a site and reuse
the same color among other projects across other sites registered
with CNZ Coordinatorwith following two design considerations: (i)
the tag space should never overlap with the tag space assigned to
its immediate adjacent sites with which the current site has project
association, and (ii) tag size assigned to each project depends on
the number of policies enforced by the project. The key objective
of the tag-space allocation mechanism described in Algorithm 2
is to maximize the efficient reuse of tag space (i.e., colors) among
cross-site projects, while avoiding overlaps.

Algorithm 2 details the tag-space allocation mechanism used by
the CNZ Coordinator to allocate a rangeof tags to eachof its registered
projects. The CNZ Coordinator traverses through the list of all SN
sites associatedwith it in a breadth-first-searchmanner. For any cho-
sen site Si , its adjacent sites are compared before allocating colors.
We observe that for each site Si and its adjacent sites the complete
list of available colors can be used in the assignment procedure.

The colors are assigned between Si and SAi . Each of the adjacent
sites SAi of Si (depending on the the list of projects belonging
to SAi that are associated with Si), are assigned one color per
project (depending on their policy size). Colors are assigned to each
project in SAi , that is associated with Si , such that: (i) it satisfies the
project’s tag space requirement, SAi , (ii) the color with the least size
is considered for assignment and (iii) no other projects in SAi have
the same color already assigned to it. Similar approach is taken for
all projects that are associated with site Si having adjacent node SAi .
This procedure is carried out for all the adjacent sites of Si .When the
list of adjacent sites of Si is exhausted, the CNZ Coordinator picks the
next site from SAi as the new Si , carrying out the aforementioned
procedure until all sites in SN are iterated atleast once. An example
illustration of our algorithmic outcome is shown in Figure 8. The
algorithm is quadratic in the number of sites in the worse-case
for a fully connected graph (i.e., all sites share all projects). As the
number of sites does not change frequently, the overall complexity
grows linearly with the number of projects. To further optimize the
tag space utilization and efficiently reuse the tag space we propose
technique, which is discussed in Appendix A.5.

0.0 5.0K 10.0K 15.0K 20.0K
Policies

0

20

40

A
vg

. C
om

po
si

ti
on

 L
at

en
cy

 (s
ec

)

CoordiNetZ Composition

(a)Average latency inpolicycom-
position with ≈30 abstraction
trees and ≈15% conflicts.

0 10 20 30 40 50 60 70 80 90 100
Abstraction Trees

0

30

60

90

Co
m

po
si

ti
on

 L
at

en
cy

 (s
ec

)

CoordiNetZ Composition
CoordiNetZ Composition (Caching)

(b)Average latency in composing
20k policies (With 10, 30, 50, 70
& 100 # of abstraction trees).

Figure9: Scalabilityofpolicy compositionengine for conflict
detection & resolution.

6 System Evaluation

The CoordiNetZ evaluation platform was composed of Dell
R720 servers with 72GB RAM, 24 cores (2.67GHz) and Ubuntu
4.4.0-97-generic kernel used as DTNs, IDS hosts and CoordiNetZ
controller (i.e., hosting the CNZ Controller and CNZ Coordinator). A
quad-core Intel NUC server as the SDN controller. Dell R710 servers
with 48GB RAM, 16 cores (2.6GHz) Ubuntu 4.4.0-97-generic kernel
integrated with DPDK-based OVS [30] that acts as switch and node
that hosts security microservices. Host DTNs were interfaced inline
with SDN switches via multiple Mellanox ConnectX-4 Lx 40GbE
MT27500 Family 40 Gbps NICs. The server-based DPDK-enabled
OVS switches [30] implemented tag-based forwarding and
lightweight security services (e.g., rate limiting, spoofing protection,
and connection tracking). The SDN controller and CNZ Controller

were interfaced with host DTNs, OVS, and IDS service, via the
management network interface. The CNZ Coordinator and controller
communicated via a separate management network.
Policy and Infrastructure Datasets:We evaluate our prototype
using following three different datasets:

1) PS-1: Policy sets from two different SDMZ network infras-
tructures [33, 45] with ≈150 and ≈400 SDMZ policies (i.e., 5325 and
7987 enforceable rules respectively) to benchmark the framework.
Infrastructure abstraction trees required for these two SDMZ
networks were constructed to drive the PS-1 policy configuration.

2) PS-2: Derived from PS-1, this is a large synthetic policy set
of 20k policies for coordinator-scale experimentation, emulating 40
different SDMZ networks. Infrastructure abstraction trees were con-
structedusinga scaledupPS-1 configuration. Sourceanddestination
nodes for policies were chosen randomly by sampling technique,
and dynamic states and conditions were added as edge properties.

3) DS-1: This dataset emulates collaborative SDMZ network
based on the “High Energy Physics - Theory collaboration network”
dataset [15], which employs ≈9.8k nodes, with ≈25k edges.
Policy Composition: We evaluated the performance of the
policy composition engine using the policy set PS-2. Figure 9a
illustrates the latency incurred by the composition engine during
pre-deployment. From the list of 20k policies, 1k,...20k policy sets
were randomly selected. Their average composition times were
computed over 10 rounds, which took ≈49 sec to compose 20K
policies. To enhance composition performance, we employed a
simple hashing technique to cache policies and policy attributes (see
§4.3). Experiments were run to assess the impact of cachingwhen an

8

Campus
Net 1

Campus
Net 2

Synthesized
Campus Net 1

0

20

40

60

80

100

#
 T

ag
 B

it
s

Bit Segment
Alpaca

Flowtags
CoordiNetZ

(a) Tagging efficiency.

Campus
Net 1

Campus
Net 2

0.0k

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

8.0k

#
 R

ul
es

Synthesized
Campus Net 1

0.0k

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

140.0k

160.0k Original
Bit Seg
Alpaca
FlowTags
CoordiNetZ

(b) Rule space utilization.

Figure 10: Intra-site tagging performance with SDMZ
campus datasets.
increasing number of abstraction trees are produced. We tested the
composition latency for 20k policies built using 10, 30, 50, 70 and 100
abstraction trees (shown in Figure 9b). We find that increasing the
number of abstraction trees count produces more policy source and
target nodes, thereby increasing the cost to create the composition
graph. Caching the relations among the nodes, reduces the com-
position latency by upto ≈2.25× compared to composition with out
caching. Figure 9b illustrates that increasing number of abstraction
trees gradually diminishes the benefits of caching due to reduced
likelihood of overlap in source-node, edge, and target-node pairings.
Tagging Efficiency: To evaluate the tag-based policy enforcement
mechanism from §5.1, we use policy set PS-1 and PS-2. We
examined a policy set PS-1 from 2 SDMZ campus networks
and the tag bit count required to represent these policies. We
compare our approach with traditional tagging mechanisms (i.e.,
bit segmentation and Alpaca [20]). Both the traditional approaches
allocate a bit per network attribute.

Consider SDMZ Campus Net1 with following policy attributes:
6 projects (3 bits), 3000 users (12 bits), 890 hosts (10 bits), 24
application (5 bits), 4 security states (2 bits), 28 services (5 bits), and
19 experiments (5 bits). With naive attribute-based tagging, the total
number of bits required is 42 bits. As we plan to use IPv6 flow-label
bits (20 bits), and considering other dynamic parameters such as data
outcomes and attributes, such approaches can not be directly used.
Tag Optimization: Alpaca effectively prefixes or masks bits,
reducing the number of tags that are required by each network. Its
tags are not dependent on the number of policies, but rather depend
on the number of attributes present in the network [20]. In contrast,
our approach relies on the composed policy graph (i.e., number
of policies) and hence requires fewer bits. Figure 10a shows that
for SDMZ Campus Net 1 and SDMZ Campus Net 2 (i.e., PS-1), our
approach requires ≈4– 5× fewer bits than bit segmentation and ≈3–
4× fewer than Alpaca and FlowTags. Our approach required around
7-11 bits, while the other approaches needed ≈24-42 bits. With
synthetic policy set (PS-2), which is built from policy attributes of
PS-1, the tag bits required linearly increased with the number of
attributes that are used in policy specification, while our approach
required only ≈15 bits. Similarly, FlowTags requires ≈2.2 – 3×more
number of tags when compared to our approach. With the addition
of more dynamic policy attributes the number of tag bits required
with Alpaca and FlowTagswill gradually increase. Our approach
allows us to reuse the tag bits: (i) in case of temporal and dynamic
security policies, and (ii) tags used across different sites (see §5.2).
Rule Optimization: Figure 10b compares the efficiency of our tag-
based rule optimization to Alpaca [20] and to bit segmentation (BS),

0 200 400 600 800 1000
Sites

0

20

40

60

80

Ta
g

A
llo

ca
ti

on
 L

at
en

cy
 (s

ec
)

Avg. Projects/Site = 5

Avg. Projects/Site = 10

Avg. Projects/Site = 15

Avg. Projects/Site = 20

(a) Average tag space alloca-
tion latency with increasing #
adjacent sites.

0 200 400 600 800 1000
Sites

0

5

10

15

20

Ta
g

A
llo

ca
ti

on
 L

at
en

cy
 (s

ec
)

Avg. Projects/site = 5

Avg. Projects/site = 10

Avg. Projects/site = 15

Avg. Projects/site = 20

(b) Average tag space allocation
latency with constant # adjacent
sites per site.

Figure 11: Inter-site tag allocation performance.

using policy sets PS-1 and PS-2. Compared to actual high-level poli-
cies (i.e., as specified for device groups), the set of rules enforced are
ordersofmagnitudes larger.ThepolicysetPS-1 fromtwoSDMZcam-
pus networks having≈150 and≈400 policies required approximately
≈5.3K and ≈7.9K rules respectively, and the 20k synthetic policies
required ≈130k rules. We evaluate the number of rules required
after translating the policies into enforceable rules per approach.

Alpaca, FlowTags and bit segmentation exhibit rule set reduc-
tions, as these approaches group rules using tag-bit masking or
wild-card matching. They achieve an improvement of ≈40 – 47% in
the rule space over the original rule set (for both PS-1 and PS-2). Our
policy specification mechanism allows each policy tag to capture
attributes along multiple dimensions, resulting in higher rule-space
optimization. Compared to Alpaca, FlowTags and BS our approach
achieved a ≈46% – 55% rule-space improvement for SDMZ Campus
Net 1 policy set, and ≈40% – 52% rule-space improvement for the
SDMZ Campus Net 2 policy set. Similarly, for policy set PS-2 (i.e.,
20k policies) our approach achieved ≈49% rule-size improvements
over Alpaca.
Tag-Space Allocation: We examined the inter-site tag space allo-
cation mechanism using DS-1. Using the DS-1 graph, we randomly
chooseonenodeandselect all adjacentnodes inabreadth-first search
approximately until a total of 100 nodes are reached. We then assign
anaverageofup tofiveprojects per site, thenexecuteour edge-graph-
coloring algorithm and plot the latency incurred with tag-space allo-
cation for these 100 sites. We repeat the same procedure 10 times, by
randomly choosing a first site each time. We repeat this procedure
by assigning different number of average projects per site and by in-
creasing the number of sites from 200 to 1000. At times, we randomly
add edges between nodes (i.e., sites) to control the average number
of projects per site to (5, 10, 15 and 20) in each experimental iteration.

Figure 11a illustrates the average tag-space allocation latency
with increasingnumber of sites (n). Each time thenumber of adjacent
sites for each site is maintained proportional to n. For experiments
adjacency size is maintained as n/c , where c = 20. Assigning colors
to projects with 1000 sites, with an average number of projects per
site being 5, 10, 15 and 20, requires ≈1.9, 8.2, 41.9 and 76.8 seconds,
respectively. We observed that the dominant computation cost was
attributable to optimum color selection for each project within a
site (steps 11–13 of Algorithm 2). Next, we maintain the number
of adjacent sites constantly at five for conducting the same above ex-
periments (Figure 11b). For 1000 sites with an average of 20 projects
per site, the total tag space allocation mechanism took less than ≈14
seconds to complete the edge-color assignment. We assert that this

9

128 Bytes 512 Bytes 1024 Bytes 9000 Bytes

30

25

20

15

10

5

0

%
 D

ro
p

in
 T

hr
ou

gh
pu

t

Tag-based Filtering
Exfiltration Protection
Tag-based Rate Limiting
Spoof Protection

Connection Tracking (Flow-tuple)
Connection Tracking (Tag)
ACL-based Filtering (6 Fields)

Figure 12: Flow processing performance for various SDMZ-
specific security modules built as microservices (i.e.,
represented as % drop in their throughput). Note “0” on
y-axis indicates actual line rate.
edge-color assignment cost is reasonable given the infrequency of
this procedure and slack tag space assigned to each project (see §5.2).
Flow-Processing Performance: Figure 12 captures the percent-
age drop in throughput for various security-based microservices
implemented for SDMZ security use cases. We compare the perfor-
mance of our security modules with maximum possible throughput
that is achieved by simply routing the IPv6 elephant flows generated
at line rate (40 Gbps) across two different SDMZ sites. Evaluations
are carried with SDMZ sites that are configured with policy set PS-1
with security modules deployed at the edge of each SDMZ site. We
evaluate following filtering schemes: (i) tag-based filtering, (ii) host-
based data exfiltration protection, (iii) rate limiting, (iv) connection
tracking (i.e., both IP and tag-based), and (v) spoof protection.

Simple tag-based filtering outperforms traditional stateless
IPv6 ACL-based (e.g., source and destination IPs, port, protocol,
traffic class) filtering with ≈8 – 12% difference in throughput: a
difference of ≈4.2 million packets per second (mpps) at 128-bytes
packet size and ≈0.04 mpps throughput difference at the 9000-bytes
packet size. Tag-based filtering achieved 92% of the actual line rate
with 128-byte packets and ≈99% throughput for packets of size
9000-bytes. The overhead of performing data-exfiltration protection
from host DTNs, using the SciMonmodule, is minimal as this does
not require complete on-data-path analysis. Hence, the performance
of exfiltration protection is comparable to tag-based filtering.

As shown in Figure 15 (Appendix A.2), the spoof protection
module built in OVS involves two tag-based lookups: 1) tagID to
input port mapping for spoof protection, and 2) tagID to output port
mapping for tag-based forwarding. These two lookups results in
≈12% drop in throughput compared to line rates, and ≈6.6% drop
in throughput with 9000-byte packet sizes. Next, the flow-based
connection tracking, where we store a 6-tuple (i.e., source and des-
tination IPs and port, transport protocol, and flags) for tracking and
filtering the traffic is compared with tag-based connection tracking.
We find that tag-based connection tracking exhibits a throughput
improvement of ≈2 – 10% over flow-based connection tracking.
Finally, when compared to stateless ACL-based filtering, tag-based
connection tracking shows ≈1.5 – 4.0% improvement in throughput.
7 RelatedWork
Our work is informed by prior research on rule-based and graph-
based policy frameworks. One weakness of existing SDN-based
policy frameworks [2, 19, 21, 26, 36, 42] is that they lack the ability
to directly capture the fine-grained & sensitive dataflow-based

policy intents of network administrators and enforce these
policies in multi-tenant, multi-project and multi-administrative
environments, such as the SDMZ network. This paper focuses on
the development of a unified policy framework that captures and
enforces the conflict-free dataflow policy intents in multi-site and
multi-administrative domains.

As SDMZ networks primarily emphasize performance, they rely
on simple router and switch ACLs, coarse-grained filtering and
limited offline-DPI using clustered NIDS (e.g., BroIDS) for threat
detection [5, 9, 44]. Recent efforts from the community to design
firewall andmonitoring solutions that could handle the traffic at line
rate [27, 47] or selectively bypass the SDMZ flows, offer first-steps
towards realizing the objectives of the SDMZ [40]. Our architecture
extends these efforts along two key dimensions: (i) providing
improved context for offline security enforcement and (ii) inline
microservice-based security network functions that form specific
SDMZ security services for elephant flows. A preliminary vision
of our proposed framework was presented in a workshop paper [4].

Tagging is a widely used technique to steer network traffic (e.g.,
MPLS, VLANs). In the SDN context, tagging has been applied in
prior work such as FlowTags [41], to control flow traversal using
tags generated by middleboxes. FlowTags are not transferable to the
SDMZ network, as it caters to single-site administrative environ-
ments. Secondly, the temporal optimizations suggested in FlowTags
are ill-suited for long-lived elephant flows, which may last for hours.

Similarly, the recent efforts on tag-based policies allow net-
works to optimize the number of flow rules [20, 46] and exploit
commonality between different forwarding equivalence classes
(FEC) [22]. Although such techniques could be implemented at
the SDMZ core, they provide rule-space optimization at the cost
of tag size [22]. Furthermore, such solutions based on group-policy
attributes, are unidimensional, target single-enterprise scenarios,
and do not support joint optimization of tag sizes with rule-space
requirements. CoordiNetZ addresses the multi-dimensional policy
problem (e.g., temporal dynamics, security states, spatial attributes)
by assigning tags to policies, and allowing them to be aggregated
and implemented as multi-site rules.

8 Conclusion

The CoordiNetZ framework facilitates advancements in cross-
domain security enforcement by providing a dataflow-based policy
framework with necessary tools for policy specification, deconflic-
tion, and tag-based enforcement. CoordiNetZ helps bridge a critical
gap between applied security research and science experiments on
real near-production infrastructure at scale, maximizing the benefits
of SDN. This is effectively achieved in CoordiNetZ by extracting the
necessary contextual information from the host systems at the gran-
ularity of process specific details pertaining to its file and network IO
and distributing it to the network through SDN and CNZ Controller

entities for enforcing it as tag-based policies. Our initial step towards
building security-based microservices specific to SDMZ networks,
such as spoof-protection, tag-based filtering, and connection track-
ing modules performed within 92-99% of line-rate throughputs.

This initial foray into SDMZ security has simply scratched the
surface of a deepproblemdomain,with practical andunexplored sub-
problems. While this paper has focused on the SDMZ network, the

10

tools and lessons learned are applicable to other cross-domain infras-
tructures [13, 16, 18].We intend to open source the CoordiNetZ pro-
totype and dataflow policy specification framework to stimulate ad-
ditional research specifically in enhancing the security of the SDMZ
network and more broadly in cross-domain policy enforcement.

References
[1] 100G DTN. 2017. https://fasterdata.es.net/science-dmz/DTN/100g-dtn/
[2] Abhashkumar, Anubhavnidhi and Kang, Joon-Myung and Banerjee, Sujata and

Akella, Aditya and Zhang, Ying andWu,Wenfei. 2017. Supporting Diverse Dy-
namic Intent-based Policies Using Janus. In Proceedings of ACM CoNEXT.

[3] Amazon EC2. 2018. https://aws.amazon.com/ec2/
[4] Anonymized for Double-blind submission. [n. d.].
[5] Berkeley Lab 100G Intrusion Detection System. 2017. https://goo.gl/xc61Zv
[6] Computing Support for ATLAS. 2018. https://www.bnl.gov/atlas/computing.php.
[7] Congress Architecture. 2018. http://congress.readthedocs.io/en/latest/

architecture.html
[8] CVS GridFTP Vulnerability for attackers to gain privileges. 2017. http://www.

cvedetails.com/cve/CVE-2012-3292/
[9] Dart, Eli and Rotman, Lauren and Tierney, Brian and Hester, Mary and Zurawski,

Jason. 2013. In Proceedings of ACM Supercomputing.
[10] Data Transfer Tools. 2017. http://fasterdata.es.net/data-transfer-tools/
[11] EsNet: How the World’s Fastest Science Network Was Built. 2017. https://

esnetupdates.wordpress.com/category/100g/
[12] ESnet’s Science DMZ Breaks Down Barriers, Speeds up Science. 2015. https:

//cs.lbl.gov/news-media/news/2015/esnet-science-dmz/
[13] Experiences building planetlab, Proceedings of USENIX OSDI. 2006. Peterson,

Larry and Bavier, Andy and Fiuczynski, Marc E andMuir, Steve.
[14] Firewall TCP Performance with Science DMZ. 2017. https://fasterdata.es.net/

assets/fasterdata/Firewall-tcptrace.pdf
[15] High Energy Physics - Theory collaboration network. 2018. https://snap.stanford.

edu/data/ca-HepTh.html
[16] Hong, Chi-Yao and Kandula, Srikanth andMahajan, Ratul and Zhang, Ming and

Gill, Vijay and Nanduri, Mohan andWattenhofer, Roger. 2013. Achieving high
utilization with software-drivenWAN, ACM SIGCOMMCCR.

[17] Intel Data Plane Development Kit. 2017. http://dpdk.org/
[18] Jain, Sushant and Kumar, Alok and Mandal, Subhasree and Ong, Joon and

Poutievski, Leon and Singh, Arjun and Venkata, Subbaiah and Wanderer, Jim
and Zhou, Junlan and Zhu, Min and others. 2013. B4: Experience with a globally-
deployed software definedWAN, ACM SIGCOMMCCR.

[19] Joon-Myung Kang, Jeongkeun Lee, Vasudevan Nagendra, and Sujata Banerjee.
[n. d.]. LMS: Label Management Service for intent-driven Cloud Management.
In IFIP/IEEE INM.

[20] Kang, Nanxi and Rottenstreich, Ori and Rao, Sanjay and Rexford, Jennifer.
2015. Alpaca: Compact Network Policies with Attribute-carrying Addresses. In
Proceedings of ACM CoNEXT.

[21] Kim, Hyojoon and Reich, Joshua and Gupta, Arpit and Shahbaz, Muhammad
and Feamster, Nick and Clark, Russ. 2015. Kinetic: Verifiable Dynamic Network
Control. In Proceedings of USENIX NSDI.

[22] MacDavid, Robert and Birkner, Rudiger and Rottenstreich, Ori and Gupta, Arpit
and Feamster, Nick and Rexford, Jennifer. 2017. Concise encoding of flow
attributes in SDN switches, Proceedings of ACM SOSR.

[23] Malik, Tanu and Nistor, Ligia and Gehani, Ashish. 2010. Tracking and Sketching
Distributed Data Provenance. In Proceedings of IEEE e-Science.

[24] Michael DePhillips. 2018. Brookhaven National Laboratories Capabilities For
Advanced Analyses Of Cyber Threats. https://www.bnl.gov/isd/documents/
86283.pdf

[25] Microsoft Azure. 2018. https://azure.microsoft.com/en-us/
[26] Monsanto, Christopher and Reich, Joshua and Foster, Nate and Rexford, Jennifer

andWalker, David. 2013. Composing Software-defined Networks. In Proceedings
of USENIX NSDI.

[27] Murad Kablan and Azzam Alsudais and Eric Keller and Franck Le. 2017. Stateless
Network Functions: Breaking the Tight Coupling of State and Processing, 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
17).

[28] Muthukumaran, Divya and O’Keeffe, Dan and Priebe, Christian and Eyers, David
and Shand, Brian and Pietzuch, Peter. 2015. FlowWatcher: Defending Against
Data Disclosure Vulnerabilities inWeb Applications. In Proceedings of ACM CCS.

[29] National research and education network. 2018. https://en.wikipedia.org/wiki/
National_research_and_education_network

[30] Open vSwitch with DPDK Overview. 2017. https://software.intel.com/en-
us/articles/open-vswitch-with-dpdk-overview

[31] OVS: Open Virtual Switch. 2017. https://www.openvswitch.org/
[32] Pappas, Vasilis and Kemerlis, Vasileios P. and Zavou, Angeliki and Polychronakis,

Michalis and Keromytis, Angelos D. 2013. CloudFence: Data Flow Tracking As

a Cloud Service. In Proceedings of RAID.
[33] Penn state Minimum Security Baseline. 2017. http://www.rn.psu.edu/wp-

content/uploads/sites/4349/2016/01/Minimum-Security-Baseline-v004.pdf
[34] Performant Endpoint Visibility. 2017. https://osquery.io/docs/tables/
[35] Policy Canvas: Draw your policies for OpenStack service. 2018. https:

//www.openstack.org/assets/presentation-media/20160428-PolicyCanvas-
OpenStackSummitAustin-print.pdf

[36] Prakash, Chaithan and Lee, Jeongkeun and Turner, Yoshio and Kang, Joon-
Myung and Akella, Aditya and Banerjee, Sujata and Clark, Charles and Ma,
Yadi and Sharma, Puneet and Zhang, Ying. 2015. PGA: Using Graphs to
Express and Automatically Reconcile Network Policies. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication.
http://doi.acm.org/10.1145/2785956.2787506

[37] PSUtils 5.2.2. 2017. https://pypi.python.org/pypi/psutil/
[38] Science DMZ ECAR -WG Technology Spotlight. 2017. https://library.educause.

edu/~/media/files/library/2015/11/erb1511.pdf
[39] Science DMZ Security - Firewalls vs. Router ACLs. 2017. https:

//fasterdata.es.net/science-dmz/science-dmz-security/
[40] SciPass: IDS Load Balancer & Science DMZ. 2017. https://globalnoc.iu.edu/sdn/

scipass.html
[41] Seyed Kaveh Fayazbakhsh and Luis Chiang and Vyas Sekar and Minlan Yu and

Jeffrey C. Mogul. 2014. Enforcing Network-Wide Policies in the Presence of
Dynamic Middlebox Actions using FlowTags. In Proceedings of USENIX NSDI.

[42] Shin, Seungwon and Porras, Phillip A and Yegneswaran, Vinod and Fong, Martin
W and Gu, Guofei and Tyson, Mabry. 2013. FRESCO: Modular Composable
Security Services for Software-Defined Networks. In Proceedings of ISOC NDSS.

[43] The Risks of Not Deploying IPv6 in the R&E Community. 2017.
https://esnetupdates.wordpress.com/2012/05/21/the-risks-of-not-deploying-
ipv6-in-the-re-community-2/

[44] UCSC 100 Gbps Science DMZ. 2015. https://meetings.internet2.edu/media/
medialibrary/2015/09/30/20151005-Smith-RECommSciDMZ.pdf

[45] UWMadison IT Security Baseline For Research and Academic Computing. 2017.
https://aci.wisc.edu/wp-content/uploads/2014/07/IT-Security-Baseline-for-
Research-and-Academic-Computing-v1.pdf

[46] Yu, Tianlong and Fayaz, Seyed K and Collins, Michael and Sekar, Vyas and Seshan,
Srinivasan. 2017. PSI: Precise security instrumentation for enterprise networks.
In Proceedings of ISOC NDSS.

[47] Yuan, Yifei and Lin, Dong and Mishra, Ankit and Marwaha, Sajal and Alur, Rajeev
and Loo, Boon Thau. 2017. Quantitative Network Monitoring with NetQRE. In
Proceedings of ACM SIGCOMM.

[48] Zavou, Angeliki and Portokalidis, Georgios and Keromytis, Angelos D. 2011.
Taint-exchange: A Generic System for Cross-process and Cross-host Taint
Tracking. In Proceedings of IWSEC.

[49] Zhang, Wei and Hwang, Jinho and Rajagopalan, Shriram and Ramakrishnan,
K.K. andWood, Timothy. 2016. Flurries: Countless Fine-Grained NFs for Flexible
Per-Flow Customization,Proceedings of ACMCoNEXT.

11

https://fasterdata.es.net/science-dmz/DTN/100g-dtn/
https://aws.amazon.com/ec2/
https://goo.gl/xc61Zv
https://www.bnl.gov/atlas/computing.php
http://congress.readthedocs.io/en/latest/architecture.html
http://congress.readthedocs.io/en/latest/architecture.html
http://www.cvedetails.com/cve/CVE-2012-3292/
http://www.cvedetails.com/cve/CVE-2012-3292/
http://fasterdata.es.net/data-transfer-tools/
https://esnetupdates.wordpress.com/category/100g/
https://esnetupdates.wordpress.com/category/100g/
https://cs.lbl.gov/news-media/news/2015/esnet-science-dmz/
https://cs.lbl.gov/news-media/news/2015/esnet-science-dmz/
https://fasterdata.es.net/assets/fasterdata/Firewall-tcptrace.pdf
https://fasterdata.es.net/assets/fasterdata/Firewall-tcptrace.pdf
https://snap.stanford.edu/data/ca-HepTh.html
https://snap.stanford.edu/data/ca-HepTh.html
http://dpdk.org/
https://www.bnl.gov/isd/documents/86283.pdf
https://www.bnl.gov/isd/documents/86283.pdf
https://azure.microsoft.com/en-us/
https://en.wikipedia.org/wiki/National_research_and_education_network
https://en.wikipedia.org/wiki/National_research_and_education_network
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://www.openvswitch.org/
http://www.rn.psu.edu/wp-content/uploads/sites/4349/2016/01/Minimum-Security-Baseline-v004.pdf
http://www.rn.psu.edu/wp-content/uploads/sites/4349/2016/01/Minimum-Security-Baseline-v004.pdf
https://osquery.io/docs/tables/
https://www.openstack.org/assets/presentation-media/20160428-PolicyCanvas-OpenStackSummitAustin-print.pdf
https://www.openstack.org/assets/presentation-media/20160428-PolicyCanvas-OpenStackSummitAustin-print.pdf
https://www.openstack.org/assets/presentation-media/20160428-PolicyCanvas-OpenStackSummitAustin-print.pdf
http://doi.acm.org/10.1145/2785956.2787506
https://pypi.python.org/pypi/psutil/
https://library.educause.edu/~/media/files/library/2015/11/erb1511.pdf
https://library.educause.edu/~/media/files/library/2015/11/erb1511.pdf
https://fasterdata.es.net/science-dmz/science-dmz-security/
https://fasterdata.es.net/science-dmz/science-dmz-security/
https://globalnoc.iu.edu/sdn/scipass.html
https://globalnoc.iu.edu/sdn/scipass.html
https://esnetupdates.wordpress.com/2012/05/21/the-risks-of-not-deploying-ipv6-in-the-re-community-2/
https://esnetupdates.wordpress.com/2012/05/21/the-risks-of-not-deploying-ipv6-in-the-re-community-2/
https://meetings.internet2.edu/media/medialibrary/2015/09/30/20151005-Smith-RECommSciDMZ.pdf
https://meetings.internet2.edu/media/medialibrary/2015/09/30/20151005-Smith-RECommSciDMZ.pdf
https://aci.wisc.edu/wp-content/uploads/2014/07/IT-Security-Baseline-for-Research-and-Academic-Computing-v1.pdf
https://aci.wisc.edu/wp-content/uploads/2014/07/IT-Security-Baseline-for-Research-and-Academic-Computing-v1.pdf

A Appendix

A.1 Abstractions &Mappings

���1��
�����1�

�1�

���1� ���1�

�1�
�1�

���1� ���1	 ���1� ���1�

(a) Host-specific abstractions
for different sites of Project1.
sites{*}.project{P1}:hosts{*}

��
�	����

��
� ��
�

���
� ���
�

��
� ��
�

(b) User-specific abstractions
for different sites of Experi-
ment 1. sites{*}.experiment
{Exp1}:users{*}

	23�3�����
��1���

���� ����

�
��� �
���

���� ��������

	23�� 	23�� 	23� 	23��

(c) Network vs Host-specific ab-
stractions of Site 1. buildings{*}.
site{Site1}:networks{*}:hosts{*}

2
�	��
% ���

27�! "4��
��AB"46B9 �

2�
�����
% 	��

2�
�	���
% ���

2�
�����
% ��

�� "

1!4B94�3�� "3��A
B"46B9 �3��-

�� "� �� "� �4":9��

(d) Temporal and spatial abstrac-
tions Trees.

Figure 13: Infrastructure abstraction trees used for policy specifica-
tion inSDMZwith their respectiveabstraction-mappings. Figure 13a
& 13b illustrates project-specific abstractions. Figure 13c illustrates
network vs host-specific abstractions. Figure 13d represents generic
temporal and spatial-specific abstractions that aids both project or
site administrators in specifying policies.

A.2 Security Use Cases
To illustrate the ability of CoordiNetZ to support a range of security
policies involving data with varying sensitivities, we present the
following use cases: (i) preventing DTN hosts from tag spoofing
flows in order to bypass SDN-enforced flow controls, (ii) preventing
malicious exfiltration of sensitive data, (iii) demonstrating improved
detection fidelity through enhanced contextual-awareness provided
by CoordiNetZ, and (iv) the use of lightweight security-based
microservices.
1) Spoof Protection. While science projects inside an SDMZ
network share host DTNs, each DTNmay require different access
controls and resource allocation rules, per project. To prevent a host
DTNfromemploying tag spoofing tobypass these rules,CoordiNetZ
integrates spoofing protectionmodulewithin the SDN switch (using
OVS [31]). It provides a mapping between tags and hosts managed
by the CNZ Controller. Spoof protection module will filter any flow
that does not match the knownmapping of tags for that host. Figure
15 illustrates an edge switch maintaining the list of portID to tagID
mappings necessary for spoofed flow filtering. SciMon also prevents
spoofing that may arise from one project spoofing traffic from
another. It does this by monitoring process and file system accesses,
and analyzing network IO events for flows and their associated tags.
2) Data Exfiltration. To illustrate CoordiNetZ data exfiltration
prevention, let us consider the following scenario. An attacker gains

����
 ����"

�������

�����	

����
	

A A

A

�����
���

���
����������

����
����������

�����"�� ����
���������

�!����������

�
�
��

����������

����������

�
�
��

(a) Data exfiltration.

,AD'�
��0

)0�
)A"'CA �C

��0�
)A"'CA �C

-��

�AC'�9�'�� D�
 	����� 	�&���

��($$�-"�A��
)A"'�H'

������D�9�
 A)�CF �D

�1�
�1�

��'��
 A)

)A"'�H'�-"�AC!�'�A"

����-"�AC!�'�A"

(b) Collaborative protection.

Figure 14: Security use cases with context-awareness.

access to a DTN, for example, through an exploit targeting GridFTP
(e.g., using CVE-2012-3292 [8]). Once inside, the attacker then
seeks to exfiltrate DTN-hosted data, which could not be effectively
prevented with simple application-centric access control and
authenticationmechanisms.However, SciMonmonitors and enforces
a DTN-internal data export policy defined by both project and site
administrators. SciMon policies enforce access restrictions based (a)
usernames, (b) application binaries, (c) ability to access sensitive files,
(d) ability to send data out of host (protocol level restrictions such
as packet size, protocol etc.), and (e) situational attributes (such as
time, location, geolocation etc.). Attempts to initiate outbound flows
of project data to unauthorized sites trigger violations that occurs
during the process, network, andfile I/O interactions (see Figure 14a),
which are forwarded to the CNZ Controller for coordinated security
enforcement. The CNZ Controller would configure network-level
devices with a block rule to thwart the data exfiltration.

��"2/ 2F6GI-
���������6GI-2/�
��� 6GI-2/	
���������6GI-2/(
���������6GI-2/����

��"2/ 5.-�6GI-
��� 6GI-2/*��

��"2/ 5.-6GI-
��� 6GI-2/*������
��� 6GI-2/
��� 6GI-2/�
��� 6GI-2/*

7�
7	

7(
7) 7* 7

7���7*GG!�1.�I��
���D

7���0GIM�I�AF"�
���D

7��0GIM�I�AF"�
���D

��"2/ 5.-�6GI-
��� 6GI-2/���

7*��0GIM�I�AF"�
���D

7/3��.GI �
4 -MGIC

2/7
2/7

.4��.GGI�AF�-GI�
��7/4�.GF-IGDD I

��"��,,A"F' F-�
-G�6IG$ �-,�

Figure 15: Spoof protection with Port-ID & Tagmappings.

3) Collaborative Protection. Clustered monitoring (see Section
2), prevents the IDS instances from detecting attacks (such as DDoS
and reconnaissance scans) using threshold-based filters. The use of
high-performance data transfer applications (e.g., GridFTP, ddftp),
which rely on encryption and parallel data streaming, further com-
plicates network-based intrusion detection. CoordiNetZ addresses
this problem by providing contextual information from the host
DTN to BroIDS, allowing the traffic to be aggregated and categorized
for filtering. In Figure 14b, the host DTN node adds flow-based tags
to the traffic that need to be processed by the same IDS instance,
and adds the necessary rules in the SDN switch to steer the traffic
in accordance to flow-based tags to the respective IDS entity.
4) Protectionwith LightweightMicroservices.Two factors that
degradeSDMZelephantflowperformanceacross sites are: (i) stateful
inspection devices such as firewalls and DPIs [14], and (ii) dynamic
flowsteering tomiddleboxes and associated security-statemigration.

12

Toaddress these challenges,CoordiNetZ employs statelessmicroser-
vices that decompose full-fledged firewall capabilities built on top of
existing stateless NF platform [27, 49]. We built a few light-weight
functionally customized security microservices (e.g., tag-based
filtering, spoofing protection, connection tracking, exfiltration pro-
tection, rate limiting) that can be introduced along the data path via
network function chains to provide on-demand security capabilities.

A.3 FlowRecords

�A�"� ���
/ ��<��
�!!����B�>� ����"E� ��!!����B�>� ����"E ��<��
�">��AA� ��">��AA ��<� >" ��	�
��<�� ���<!>"�� ��B���A�
�">< �>��B�>�� ���BE���B�BC����>���BC����>C�B"E >� -"�����
��B�>�� ���>�: -!�"�B�>� � �>B��E ��<���
��BD>": �>C"��� �����: �AB�� �>C�B"��A � ��A � �><������<�A�
��BD>": ��AB���B�>�� �����: �AB�� �>C�B"��A � ��A � �><������<�A�

Figure 16: Sample process flow table entry.

�����:
�!F���BA��, �BA�,!AC ��BC�, ��BC,!AC �BC�AC �� � ��DA�C:! �"A!C!�!� �
BC�C� �BA���A!"��B �BA���C�"��B �BA�#E�"�� �BA��*C�� C �BA�,��� C �
�BC��A!"��B ��BC��C�"��B �E�� ��BC#E�"�� ��BC�*C�� C ��BC,��� C �
D"��C��:�� �D"��C��A��*C�� C �"��C��A�,��� C �BA�,A��:) ��BC,A��:) �
D"��C��BC�*C�� C �D"��C��BC,��� C �:��",��� C �BA��!��: �
�BC�!��: �BA��!D CA* �BA��:C* ��BC�!D CA* ��BC�:C* �BA���C:CD�� �
DB�A�� �BA��! �:CD�� ��BC��C:CD�� ��BC�! �:CD�� ��,��!A�

����:! ���DB�A ��� ��!BC ��� �"A!��BB�� ��"" ��� ��)��"�C� �
�)��#A�D�� CB ��)���A��� C:�� �!"�
:���:BC �: C��A:C* �",A!��BB�� �
"#"" ��� �")��,�C� �B� B!A�� �B� B!A��A

Figure 17: DTN flow record field (Flow Record = Timestamp +
SciFlow Record + SciMon Record).

A.4 Policy Composition &Optimizations
A.4.1 Incremental Policy Composition. Policy updates are nec-
essary whenever network conditions and security states change,
site topologies are modified, or when projects are added, migrated,
or completed (removed). When such changes occur, the policy
composition and conflict resolution must be recomputed. In general,
policy updates could result in tens to hundreds of rule modifications.
Incremental composition helps reduce the overall run-time of
composition, by avoiding the recomposition of the whole policy
state, which may consume several seconds to minutes (see §6(2)).
Rather, incremental composition recomposes only the updated set
of policies with the whole set of composed policies.

Updating a policy from the composition graph involves first delet-
ing the policy from the graph, and then inserting a modified version.
Deleting a policy requires one to remove the edges that belong to the
policy from graph. However, the composition procedure might have
removed portions of other policies that had a higher precedence dur-
ing conflict resolution. Hence, these lost portions must be returned.

Two items are recorded during composition that accelerate incre-
mental composition time. First, for each original policy, a reference
pointer to each edge is maintained in the graph that belongs to the
policy. If a policy is split into multiple sub-policies during conflict
resolution, the edges associated with these child policies are stored.
Second, during a conflict, if a policy that has a higher precedence
causes the policy to be split intomultiple sub-policies, then the policy
number of the lower-precedence policy is recorded in a data struc-
ture associated with the higher-precedence policy. During deletion,

this data structure enables CoordiNetZ to restore edges from the
deleted policy when it finds that other policies also depend on these
edges. This internal bookkeeping enables edge deletion in constant
time, resulting in orders of magnitude faster overall composition.

From the aforementioned equation (1) in §4.3, themajor time com-
plexity of the algorithm lies with the iteration of policies O(L) over
the list of all source nodes S J in the composed bi-partite graphG and
comparing the policy’s source node s(p) havingm host entities with
the graph’s source node S(G) havingn entities. The overall complex-
ity calculation for finding overlaps among the source nodes stage
is thereforeO(L∗S J ∗(m∗n)). Consider the policy’s source node s(p)
hasm host entities (i.e.,h1, ...hm), and the graph’s source node S(G)
hasnhost entities (i.e.,h1, ...hn). Thenaivecomparisonof twosubsets
of sizem and n will result inO(m∗n) complexity. Similarly, for each
propertydefinedon theedge, thecompositionengine incursacompu-
tation complexity ofO(q+r),whereq andr are thenumber of entities
associated with edge properties of composed policy graphG and the
edge property of the policy pi . For the list Lt overlapping edges, the
compositionenginechecks for theoverlap in the targetnodeofpolicy
pi that hasu host entitieswith the edge of the composed policy graph
G withv host entities, incurring computation complexityO(u+v).

A.4.2 Policy Composition Optimization. To reduce the complexity
fromO(m ∗n) toO(m+n), we employ a hashing algorithm: them
host entries of s(p) are hashed as key-value pairs. Then the host
entities of S(G) are looked up in the hash for the existence of the host
n. As the hash lookup complexity is O(1), the total subset calculation
complexity results in O(m + n) complexity. Now, the baseline
complexity will be reduced to:O(L∗S J ∗(m+n)). To further reduce
this complexity, we Caching the comparison calculation outcome as
key-value pairs in the hash further reduces complexity: the s(p):S(G)
as key and the value as the first comparison result. Hence, the next
node comparison can be extracted from the hash entry with an O(1)
lookup cost. This reduces the overall baseline complexity toO(L∗S J).

Similarly, the edge properties and target nodes of pi and Sj (G)
are added on top of the baseline composition cost. Any complexity
beyond the baseline comparison will be present only when there
exists an overlap in the edges properties or target nodes. Therefore,
the source-node overlaps trigger checks for edge-property overlaps
and these occurrences then necessitate target node comparisons
resulting in a worst case complexity ofO(L∗S J ∗Le ∗Lt). Similarly,
by hashing the comparison results of edge nodes and the target
nodes, we can eventually reduce the complexity toO(L∗S J). A proof
of this complexity bound is outside the scope of this paper but will
be provided in an expanded technical report.

A.5 Optimization of Tag-Space Reuse
Depending on the tag-space allocation mechanism discussed above
in Section 5.2, each project is assigned tag space, while taking into
consideration the tag space requirement of the project plus the slack
space (i.e., range of tags that are left for future use). This allows each
project to expand its policies either due to the dynamic network
conditions or from new policy additions by administrators. If the
slack space is completely consumed by project Pi , then the new
range of tag space is assigned using one of the following methods:
(i) considering the non-overlapping tag space assigned to other
projects inside site Si and its adjacent sites SAi , a new color is added

13

to the project Pi , and (ii) if there are no flows for the project for
which the active rules exist, then project Pi is assigned a new color,
recalculating tag space allocation between Si and SAi . The approach
described above in (ii) is used only when there exists spare colors
unassigned between the Si and its adjacent sites SAi .

However, during tag space allocation, when a project Pi from
site Si requires less tag space than what is available, to optimize the
tag space utilization we temporarily decompose a color into its sub-
colors. That is, a color is decomposed into twopieces: the size equal to

the tag space requirement of the Pi + its slack size. The decomposed
sub-color is allowed to be reused only among its adjacent sites. The
opposite scenario (i.e., the tag space requirement of a project is
more than what is available with color pool) does not arise in our
mechanism because our heuristic of pre-computing the possible tag
space sizeswith color.That is,wechoose the color sizebyconsidering
the topSN highestpolicy sizes forwhichcolors are associated.Hence,
there exists no scenario in which a project requires a tag space or
color for which a suitable color or tag space does not exist.

14

	Abstract
	1 Introduction
	2 SDMZ Background
	2.1 SDMZ Security Requirements

	3 The CoordiNetZ System Framework
	3.1 System Components
	3.2 Threat Model

	4 Dataflow-based Policy Framework
	4.1 Infrastructure Abstractions
	4.2 Policy Specification
	4.3 Policy Composition & Deconfliction

	5 Context-Aware Tagging
	5.1 Intra-Site Tag Assignment
	5.2 Inter-Site Tag Allocation

	6 System Evaluation
	7 Related Work
	8 Conclusion
	References
	A Appendix
	A.1 Abstractions & Mappings
	A.2 Security Use Cases
	A.3 Flow Records
	A.4 Policy Composition & Optimizations
	A.5 Optimization of Tag-Space Reuse

