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Abstract. We present a method for the synthesis of polynomial lasso
programs. These programs consist of a program stem, a set of transitions,
and an exit condition, all in the form of algebraic assertions (conjunc-
tions of polynomial equalities). Central to this approach is the discovery
of non-linear (algebraic) loop invariants. We extend Sankaranarayanan,
Sipma, and Manna’s template-based approach and prove a complete-
ness criterion. We perform program synthesis by generating a constraint
whose solution is a synthesized program together with a loop invariant
that proves the program’s correctness. This constraint is non-linear and
is passed to an SMT solver. Moreover, we can enforce the termination of
the synthesized program with the support of test cases.

1 Introduction

There have been significant advances in automating program verification, and
even extending the verification techniques to perform automated synthesis of
correct programs. Often, automation is achieved using appropriate abstract do-
mains for analysis. The choice of abstract domains is governed by the class of
program fragments being analyzed. In this paper, we are interested in programs
that perform some numerical computation. For reasoning about such programs,
the theory of polynomial ideals has proven to be an excellent abstract domain
because of two reasons. First, there is a nice correspondence between subsets of
the program state space and polynomial ideals (as established in the field of al-
gebraic geometry), and second, there are effective algorithms for computing with
polynomial ideals. In this paper, we will use the abstract domain of polynomial
ideals for reasoning about polynomial lasso programs.

In our terminology, a polynomial lasso program consists of an assertion de-
scribing program states before loop entry, an assertion describing program states
after loop termination and a set of transitions corresponding to the branches in
the loop body. All involved assertions are algebraic; that is, conjunctions of
polynomial equalities.

Our approach for analysis of such polynomial lasso programs is not based on
iterative fixpoint computation. Instead, we use the constraint-based approach,
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also known as template-based approach, for directly finding fixpoints using con-
straint solving. This way we avoid convergence issues of iterative fixpoint meth-
ods. Our starting point is a method presented by Sankaranarayanan, Sipma and
Manna [19]. Despite its obvious incompleteness, the method is often successful
in verifying programs. Why is this method “complete in practice”? We answer
the question here by presenting a first completeness criterion for this method.
For this purpose, we have to extend the original invariance criteria in [19] and
generate a new and refined invariance condition.

Our interest here is not just on the verification problem, but also on the
synthesis problem. Specifically, taking inspiration from recent work on synthesis
of programs by completing partial program “sketches” [21,10], we start with a
polynomial lasso program that contains parameters (variables to be synthesized)
and a post condition. The goal is to find values for the parameters that result
in a correct program. We solve the synthesis problem by generating a synthesis
constraint—a constraint whose solution provides a valuation for the parameters.
Additionally, the constraint’s solution also supplies values that define an induc-
tive loop invariant for the synthesized polynomial lasso program. This invariant
constitutes as proof that the synthesized program is in fact correct with respect
to the given post condition. Thus, we simultaneously synthesize the program
and its proof of correctness. There is one caveat though: if variables that are
critical to termination have parameterized updates, then the synthesized lasso
program might not be terminating. To solve this problem, we use a finite number
of test cases that specify input variable assignment, output variable assignment
and a sequence of loop transitions. These test cases are used to strengthen the
synthesis constraint so that the undesirable solutions are eliminated.

The template-based approach reduces the synthesis problem and the loop
invariant discovery problem into an ∃∀ constraint: the template variables and
the synthesis variables are existentially (∃) quantified, whereas the program vari-
ables are universally (∀) quantified [10]. We use the theory of polynomial ideals
to (conservatively) eliminate the inner ∀ quantifier. The resulting formula is
our synthesis constraint – an (existentially quantified) conjunction of non-linear
algebraic equalities – which is solved by an off-the-shelf non-linear SMT solver.

We demonstrate that the template-based approach on polynomial ideals ab-
stract domain can be used to successfully synthesize polynomial lasso programs.
However, the approach has certain limitations. First, it cannot handle inequali-
ties. Polynomial ideals logically correspond to conjunctions of polynomial equal-
ities. Now, inequalities can be encoded as equalities, but algorithms on polyno-
mial ideals (that compute canonical Gröbner basis) do not lift easily to reasoning
about the encoded inequalities [24]. For handling inequalities, one could use semi-
algebraic sets as the abstract domain, and then use algorithms based on either
cylindric algebraic decomposition [5] or the Positivstellensatz [23,15,24], but we
leave that for future work.

A second issue is the size of the synthesis constraint. Non-linear solvers scale
very poorly with increasing number of variables and the synthesis constraint
(generated by the synthesis process) can be large and tends to be non-linear.



The final issue is related to the completeness of our approach. Incompleteness
arises due to the use of templates, and also due to the use of polynomial ideal
theory rather than the theory of reals. We address the latter issue in section 5.
For the former issue, we just have to use polynomial templates with sufficiently
large degree bounds. In our examples, a general template of degree two or three
was sufficient, but the size of generic template polynomials grows exponentially
with their degree.

2 Related Work

The automatic discovery of polynomial invariants for imperative programs has
received a lot of attention in recent years. Müller-Olm and Seidl generate in-
variant polynomial equalities of bounded degree by backwards propagation [13].
This can be seen as an extension to Karr’s algorithm [12], which uses only linear
arithmetic. Seidl, Flexeder and Petter apply the backwards-propagation method
to programs over machine integers, i.e., programs whose variables range over the
domain Z2w [20].

Rodŕıgues-Carbonell and Kapur use an iterative approach based on forward
propagation and fixed point computation on Gröbner bases over the lattice of
ideals to generate the ideal of all loop invariants [17,18].

Colón combines the two aforementioned approaches by doing the fixed point
computation on ideals with linear algebra [7]. He introduces the notion of pseudo-
ideals to ensure termination of the fixed point computation while retaining the
expressiveness of generated invariants.

Polynomial program invariants can also be derived without using Gröbner
basis computations [4]. Cachera et al. use backwards analysis and variable sub-
stitution on template polynomials for an incomplete approach.

The constraint solving approach that generates invariant polynomial equali-
ties using templates was proposed by Sankaranarayanan, Sipma and Manna [19].
Invariant generation is a central ingredient to our synthesis method, so we want
the invariant generation process to be as complete as possible. Therefore we ex-
tend their approach by using a more general condition for the invariant (see also
Remark 2) that enables us to state a completeness criterion.

Polynomial lasso programs have also received some attention regarding the
analysis of their termination properties. Bradley, Manna and Sipma use finite
difference arithmetic to compute lexicographic polynomial ranking functions for
polynomial lasso programs [3].

All the aforementioned papers consider the verification (or the invariant gen-
eration) problem. In this paper, inspired by recent work on program synthe-
sis [21], we also consider the synthesis problem. Our work can be considered a
more formal approach to Colón’s method [6] that uses non-linear constraint solv-
ing to instantiate program schemata (parameterized programs augmented with
constraints). Our approach relies on algebraic methods instead of heuristics.

Finally, Srivastava et al. [22] describe a big-picture program synthesis al-
gorithm from scaffolds. These scaffolds consist of pre- and postconditions, a



program flow template, and bounds on the number of variables and the number
of local branches. For the synthesis condition, all control flows of the template
program are unfolded and constraints are generated with respect to invariants
and ranking functions ensuring the program’s correctness and termination. This
constraint is then proven by a specialized external method and our algorithm
can be used as one of these external methods.

3 Preliminaries

Let V be a set of variables, V = {x1, . . . , xn}. The variables of the ‘next state’ are
denoted by the corresponding primed variables V ′ = {x′1, . . . , x′n}. Having both
primed and unprimed variables in an expression enables stating a relationship
between two states.

For the set of real numbers R, let R[V ] denote the ring of polynomials in the
variables V with coefficients from R. A subset I ⊆ R[V ] is an ideal if (a) 0 ∈ I,
(b) f + g ∈ I for all f, g ∈ I, and (c) h · f ∈ I for all f ∈ I and h ∈ R[V ]. For a
set of polynomials P = {p1(V ), . . . , pk(V )}, the ideal 〈P 〉 generated by P is

〈P 〉 = 〈p1, . . . , pk〉 =
{ k∑
i=1

qi(V )pi(V )
∣∣∣ q1, . . . , qk ∈ R[V ]

}
.

Note that if all polynomials in P evaluate to 0 at any point in Rn, then all
polynomials in 〈P 〉 will also evaluate to 0 at that point.

By the Hilbert Basis Theorem, every ideal I has a finite set of generators.
Moreover, for a fixed ordering on the monomials (such as total degree lexico-
graphic ordering induced by any precedence relation on the variables), there is a
finite “canonical” set of generators of I called a Gröbner basis. A Gröbner basis
G = {g1, . . . , gk} for I has the following properties [8].

1. G is computable in DOUBLE-EXPSPACE from a set of generators of I (Buch-
berger’s Algorithm).

2. For all p ∈ R[V ], the result of division of p on G, denoted NFG(p), is unique
and does not depend on the order in which the division steps are performed.

3. For all p ∈ R[V ], NFG(p) = 0 iff p ∈ I.

For example, if P = {xy − 2, x2 − 4} and we use the precedence x � y, then
G = {x− 2y, y2− 1} is a Gröbner basis for the ideal 〈P 〉. Division of p on G can
be performed by replacing x by 2y and replacing y2 by 1 in p repeatedly. The
result NFG(x2 + y2 − 5) of division of x2 + y2 − 5 on G is 0, and hence we can
conclude that x2 + y2 − 5 ∈ 〈P 〉.

Definition 1 (Radical Ideal). An ideal I is a radical ideal if fm ∈ I implies
f ∈ I for every m ∈ N.

Given an ideal I, note that the set {f | ∃m ∈ N : fm ∈ I} is a (radical) ideal.



Definition 2 (Algebraic Assertion). An algebraic assertion ϕ(V ) (or just
ϕ) over the set of variables V is a formula of the form

∧m
i=1 pi(V ) = 0 where

each pi ∈ R[V ] for 1 ≤ i ≤ m.

An algebraic assertion
∧m
i=1 pi(V ) = 0 generates an ideal 〈ϕ〉 = 〈p1, . . . , pm〉.

We will use ϕ to denote the formula as well as the set of polynomials {p1, . . . , pm}
in the formula. An assertion ϕ can be interpreted in the theory R of reals or in
the theory C of complex numbers. A valuation is a mapping from variables to
values (in the set of real numbers or the set of complex numbers). A polynomial
in R[V ] evaluates to a value (in R or C) for a given valuation for V .

Theorem 1 (Zero Polynomial Theorem). A polynomial p ∈ R[V ] is zero
for all possible valuations ν : V → R if and only if all of its coefficients are zero.

Lemma 1. Let ϕ be an algebraic assertion over V and p ∈ R[V ] a polynomial.
If p ∈ 〈ϕ〉, then R |= ϕ(V )→ p(V ) = 0.

Theorem 2 (Hilbert’s Nullstellensatz [8]). Let ϕ be an algebraic assertion
and p ∈ C[V ] a polynomial. If 〈ϕ〉 is a radical ideal and C |= ϕ(V )→ p(V ) = 0,
then p ∈ 〈ϕ〉.

Lemma 2. Let p, s ∈ R[V ] and 〈ϕ〉 ⊆ R[V ] be an ideal. Then, p ∈ 〈s, ϕ〉 if and
only if there is a polynomial t ∈ R[V ] such that p− t · s ∈ 〈ϕ〉.

Proof. Let 〈ϕ〉 = 〈p1, . . . , pk〉. By definition, p ∈ 〈s, ϕ〉 iff there are t, t1, . . . , tk ∈
R[V ] such that p = ts +

∑
i tipi. This is equivalent to p − ts =

∑
i tipi, which

holds iff p− ts ∈ 〈ϕ〉. ut

Similar to the definition by Sankaranarayanan et al., we introduce template
polynomials as a means for finding polynomials with certain properties. In our
definition the template coefficients can be non-linear polynomials. For the math-
ematical details regarding template polynomials, see [19].

Definition 3 (Template Polynomial). Let A and V be two disjoint sets of
variables. A template polynomial or template over (A, V ) is a polynomial with
variables V and coefficients from R[A]. A template is said to be a linear template
if all of its coefficient polynomials are linear.

Template polynomials will be denoted by upper case Greek letters. Given a
degree bound d, the generic template polynomial Ψ over (A, V ) of total degree
d is given by

Ψ(V ) =
∑
|γ|≤d

aγV
γ

where γ ∈ N#V is a multi-index and A = {aγ | γ ∈ N#V } are template variables.

Definition 4 (Semantics of Templates). For a set of template variables A,
an A-valuation is a map α : A → R. This map can be naturally extended to a
map α̃ : R[A][V ]→ R[V ] that replaces every occurrence of an a ∈ A by α(a).



4 Polynomial Lasso Programs

We define the syntax and semantics of polynomial lasso programs. We also de-
fine inductive invariants for such programs. Henceforth, semantic entailment, |=,
should always be interpreted as in the theory R of reals.

Definition 5 (Polynomial Lasso Program). A polynomial lasso program
L = (V, stem, T , exit) consists of

– a set of variables V ,
– an algebraic assertion stem over V called the program stem,
– a set of transitions T , where each transition τ ∈ T is an algebraic assertion

over V ∪ V ′,
– and an algebraic assertion exit over V , called the exit condition.

A transition τ is said to be deterministic if it can be written in the form∧
j

hj(V ) = 0 ∧
∧
i

x′igi(V )− fi(V ) = 0,

where every x′i ∈ V ′ occurs exactly once and ¬exit |= gi(V ) 6= 0. For every i
and j, the polynomial hj is called guard and the polynomial x′igi(V ) − fi(V )
is called update: fi is its numerator and gi its denominator. The polynomial
lasso program L is called pseudo-deterministic if all its transitions τ ∈ T are
deterministic.

Lassos with solely deterministic transitions can have overlapping guards,
hence the choice of transitions may be non-deterministic even in a pseudo-
deterministic polynomial lasso program. Due to the nature of imperative lan-
guages, pseudo-deterministic lassos possess a specific interest to us.

Definition 6 (Semantics of a Lasso Program). Let L = (V, stem, T , exit) be
a polynomial lasso program. An execution of L is a (potentially infinite) sequence
σ = ν0ν1 . . . where νi : V → R is a valuation on the variables V such that

1. ν0 |= stem
2. For all i ≥ 0 there is a τ ∈ T such that τ(νi, νi+1).
3. νi |= exit iff it is the last element in σ.

Example 1 (Running example). Consider the imperative program and its lasso
representation L shown in Figure 1. L is a pseudo-deterministic lasso program
since τ is a deterministic transition with the two update polynomials y′ − y + 1
and s′ − s− x0 and no guards. An execution of L is σ = ν0ν1 where

ν0: x0 7→ 3 y0 7→ 1 y 7→ 1 s 7→ 0,
ν1: x0 7→ 3 y0 7→ 1 y 7→ 0 s 7→ 3.



procedure product (x0 , y0 ) :
s := 0 ;
y := y0 ;
while (y 6= 0 ) :

s := s+ x0 ;
y := y − 1 ;

return s ;

Lasso program L = (V, stem, T , exit):

V = {x0, y0, y, s},
stem ≡ s = 0 ∧ y = y0,

τ ≡ y′ = y − 1 ∧ s′ = s+ x0,

exit ≡ y = 0,

T = {τ}

Fig. 1. An example imperative code and its representation as a polynomial lasso pro-
gram (see Example 1). The program performs a multiplication by repeated addition.

Definition 7 (Correctness). Let L = (V, stem, T , exit) be a polynomial lasso
program and let post be an algebraic assertion over V . The lasso L is said to be
(partially) correct with respect to the post condition post if for every finite exe-
cution σ of L, the last valuation in σ is a model of post. L is totally correct with
respect to post if it is partially correct with respect to post and it is terminating,
i.e., there are no infinite executions of L.

Definition 8 (Invariant). Let L = (V, stem, T , exit) be a polynomial lasso pro-
gram. A polynomial p ∈ R[V ] is called an (inductive) invariant of a transition
τ ∈ T if

1. stem |= p(V ) = 0 and
2. p(V ) = 0 ∧ τ(V, V ′) ∧ ¬exit |= p(V ′) = 0.

The polynomial p is called an (inductive) invariant of L if it is an invariant of
all transitions τ ∈ T .

It is easily shown by means of induction that if p is an invariant of a lasso L,
then for every execution σ of L and every valuation ν ∈ σ, we have ν |= p = 0.

Example 2. Example 1 calculates the product s of the two input values x0 and y0
by repeated addition. The polynomial lasso program L is partially correct with
respect to the post condition s = x0y0 and it is easy to check that s+x0y−x0y0 =
0 is an invariant of L.

5 Polynomial Loop Invariants

In this section, we extend the approach for discovering loop invariants for poly-
nomial lasso programs introduced by Sankaranarayanan, Sipma and Manna [19].
We define a weakened form of what they call polynomial consecution. We prove
that under some restrictions, this is a complete approach for invariants over the
complex numbers. The results established in this section will then be applied to
program synthesis in section 6.

The first lemma relieves us in certain cases from the potentially very expen-
sive computation of a Gröbner basis for the loop transitions. Specifically, for a



deterministic transition τ , division by the Gröbner basis of τ is equivalent to
substitution of the primed variables according to the update statements.

Lemma 3. Let τ be a deterministic transition with at most one guard polyno-
mial h and updates x′i− fi(V ) that have denominator 1. If x′i � xj in the mono-
mial ordering for all i and j, then the set G = {h(V )} ∪ {x′i− fi(V ) | 1 ≤ i ≤ n}
is a Gröbner basis of the ideal 〈τ〉.

For the remainder of this paper, let L = (V, stem, T , exit) be a fixed pseudo-
deterministic polynomial lasso program. We will now define a sufficient, and
under some assumptions also necessary, condition for a template polynomial to
be an invariant of L.

Definition 9 (Invariance Condition). For each transition τ ∈ T , let qτ be
any common multiple of the denominators of the update statements of τ . (In
particular, qτ can be the product of all denominators.) Let Ψ be a template poly-
nomial over (A, V ) of total degree d. Let s(V ) be the generator of exit if it has
only one generator and 1 otherwise. The invariance condition IC(L, Ψ) of L for
Ψ is the conjunction of

NFstem(Ψ(V )) = 0,

NFτ (qτ (V )d · s(V ) · Ψ(V ′)) = Φτ (V ) · Ψ(V ), for all τ ∈ T ,

where the polynomials Φτ are generic template polynomials over (Bτ , V ) whose
degrees are bounded by the result of the division NFτ (qτ (V )d · s(V ) · Ψ(V ′)) and
Bτ are new disjoint sets of template variables.

The variables V and V ′ are universally quantified in the invariance condition,
whereas the variables A and (Bτ )τ∈T are existentially quantified. By the Zero
Polynomial Theorem 1, the equations in the invariance condition hold for all
valuations on V ∪ V ′ if and only if all the coefficients of the polynomials are
identical to zero. Therefore the variables V and V ′ can be removed from the
invariance condition yielding a constraint on the variables A and (Bτ )τ∈T .

Remark 1. The invariance condition is designed to allow completeness in a wide
variety of cases. We provide some intuition for its components below, but for
details the reader is referred to the proof of Theorem 4.

– The result of the division NFτ (qτ (V )d · s(V ) · Ψ(V ′)) may not yield Ψ(V ),
but rather some multiple of Ψ(V ). Hence, we have the generic template
polynomial Φτ in the invariance condition.

– If an update statement, say x′igi−fi, in τ contains a nontrivial denominator
gi, then we may not be able to remove x′i from Ψ(V ′) by division on τ . Since
every monomial in Ψ(V ′) contains at most d primed variables, therefore
multiplying Ψ(V ′) with the polynomial qτ (V )d guarantees that division by
τ will eliminate all primed variables.

– When the exit condition s(V ) = 0 holds, we do not need Ψ to be inductive.
Hence, we use the product Ψ(V ′) · s(V ), which encodes that Ψ holds in the
next state or the exit condition is satisfied.



– If the exit condition is generated by more than one polynomial, we cannot
use this trick for all generators, thus loosing completeness. For simplicity, we
set s = 1 in those cases, but selecting one of the exit condition’s generators
as s will make the condition more complete (but also more complex).

Remark 2. The invariance condition in Definition 9 is more general than the con-
dition used by Sankaranarayanan et al. [19]. They use the following inductiveness
property:

NFτ (Ψ(V ′))− λ ·NFτ (Ψ(V )) = 0,

where λ is a real-valued variable. This not only restricts Φτ to a template of
degree 0, it also omits the additions we have discussed in Remark 1.

Example 3. In order to state the invariance condition for Example 1, we first fix
a template polynomial Ψ over V . The general second-degree template polynomial
over V is the following.

Ψ(V ) = a0x
2
0 + a1y

2
0 + a2y

2 + a3s
2 + a4x0y0 + a5x0y + a6x0s

+ a7y0y + a8y0s+ a9ys+ a10x0 + a11y0 + a12y + a13s+ a14

The invariance condition IC(L, Ψ) is given by the following equations.

0 = a0x
2
0 + (a1 + a2 + a7)y2 + (a4 + a5)x0y + a10x0 + (a11 + a12)y + a14

0 = (a0 + a3 + a6 − ba0)x20y + (a1 − ba1)y20y + (a2 − ba2)y3 + (a3 − ba3)ys2

+ (a4 + a8 − ba4)x0y0y + (a5 + a9 − ba5)x0y
2 + (a6 + 2a3 − ba6)x0sy

+ (a7 − ba7)y0y
2 + (a8 − ba8)y0ys+ (a9 − ba9)y2s

+ (a10 + a13 − a9 − a5 − ba10)x0y + (a11 − a7 − ba11)y0y

+ (a12 − 2a2 − ba12)y2 + (a13 − a9 − ba13)ys+ (a14 − ba14)y

Here, Φτ (V ) = b · y is the generic template polynomial over Bτ = {b} of degree
0 multiplied with y, the generator of exit (for simplicity of presentation, we
abstained from using a generic template polynomial for Φτ ). By Theorem 1,
these two equalities yield 21 equations which are linear after assigning a value
to b. The assignment α : A ∪ Bτ → R given by the following table is a solution
to the invariance condition IC(L, Ψ).

b a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14
α 1 0 0 0 0 −1 1 0 0 0 0 0 0 0 1 0

This yields the loop invariant α̃(Ψ) = s+ x0y − x0y0 from Example 2.

Theorem 3 (Soundness). If α : A ∪
⋃
τ∈T B → R is an assignment for the

template variables that is a solution to the invariance condition IC(L, Ψ), then
α̃(Ψ) is an invariant of L.

Proof. NFstem(α̃(Ψ)) = 0, hence α̃(Ψ) ∈ 〈stem〉, and therefore stem |= α̃(Ψ) = 0
according to Lemma 1. By the premise,

qτ (V )d s(V ) α̃(Ψ)(V ′)− α̃(Φτ )(V ) α̃(Ψ)(V ) ∈ 〈τ〉



for all τ ∈ T , therefore qτ (V )ds(V )α̃(Ψ)(V ′) ∈ 〈τ, α̃(Ψ)(V )〉 by Lemma 2, and
from Lemma 1 follows

τ(V, V ′) ∧ α̃(Ψ)(V ) = 0 |= qτ (V )d · s(V ) · α̃(Ψ)(V ′) = 0.

Since qτ is a common multiple of denominators of updates in τ and ¬exit holds
before any transition τ , it follows that ¬exit |= qτ (V ) 6= 0 by Definition 5. With
¬exit |= s(V ) 6= 0 we conclude that

τ(V, V ′) ∧ α̃(Ψ)(V ) = 0 ∧ ¬exit |= α̃(Ψ)(V ′) = 0. ut

A criterion for the method’s completeness is given by the following theorem.
The Nullstellensatz is applicable only when one considers the theory of complex
numbers, which in general admits a proper subset of loop invariants. Further-
more, the Nullstellensatz demands all involved ideals be radical ideals [8].

Theorem 4 (Completeness in C). Let L = (V, stem, T , exit) be a polynomial
lasso program with the complex loop invariant3 p ∈ R[V ]. If α : A → R is
a valuation such that α̃(Ψ) = p, then α can be extended to a solution to the
invariance condition if the following additional premises are met.

1. The lasso L is pseudo-deterministic.
2. The ideal 〈stem〉 and the ideal 〈p〉 are both radical ideals.
3. The ideal 〈exit〉 is generated by a single polynomial s ∈ R[V ].
4. The guard h = 0 of each transition τ ∈ T is equivalent to True (i.e., h is 0).
5. The monomial ordering � is lexicographic and x′i � xj for all i, j.

Proof. The polynomial p is a loop invariant of L, so by Definition 8,

stem |=C p(V ) = 0 and (1)

p(V ) = 0, τ(V, V ′),¬exit |=C p(V
′) = 0 for all τ ∈ T . (2)

The ideal 〈stem〉 is a radical ideal by Premise 2, so according to Hilbert’s Null-
stellensatz, Equation (1) implies p ∈ 〈stem〉; and hence, α satisfies the first part
of the invariance condition (IC).

To prove that α can be extended to satisfy the second part of IC, note that
Equation (2), combined with Premise 3, yields

p(V ) = 0, τ(V, V ′) |=C s(V )p(V ′) = 0.

Using the Nullstellensatz, for some positive number k, we have(
qτ (V )ds(V )p(V ′)

)k ∈ 〈p, τ〉.
Since h is 0, normalizing by τ is equivalent to replacing primed variables using
the update expressions in τ , and hence,

s(V )kr(V )k ∈ 〈p, τ〉, where r(V ) := NFτ (qτ (V )dp(V ′))

3 The assertions of Definition 8 hold in the theory of the complex numbers.



Note that r(V ) has no prime variables since Premise 5 ensures all prime variables
are greater with respect to the monomial ordering� than the unprimed variables.
Therefore, s(V )kr(V )k ∈ 〈p, τ〉 ∩ R[V ]. Now, there are two cases.
(Case 1): 〈p, τ〉 ∩ R[V ] = 〈p〉. Then, it follows that s(V )kr(V )k ∈ 〈p〉. Since 〈p〉
is a radical ideal, we can infer s(V )r(V ) ∈ 〈p〉 and hence NFτ (qτ (V )ds(V )p(V ′))
is a multiple of p. Hence, second part of IC is satisfied.
(Case 2): 〈p, τ〉 ∩ R[V ] 6= 〈p〉. This is possible only if some multiple of the
denominators rewrites to 0 by p. Hence, p = 0 implies s(V ) = 0 (since s 6= 0
implies that denominators are nonzero). Since 〈p〉 is a radical ideal, it follows
s ∈ 〈p〉, and hence s(V )r(V ) ∈ 〈p〉 — as in (Case 1) above. ut

It is important to emphasize that the generic template polynomial for the
invariant must have a sufficiently large degree to be able to specialize to the loop
invariant. This is presumed in the completeness statement. We will now discuss
the other premises of Theorem 4.

Premise 1 ensures that the division of Ψ(V ′) on a transition τ removes all
primed variables, since we multiplied with qτ (V )d in the invariance condition.
Premise 2 is a requirement by Hilbert’s Nullstellensatz. In order to write a dis-
junction of exit and a polynomial equality as a product, exit must have a single
generator; this is stated in Premise 3. We will discuss relaxing Premise 4 below.
Finally, Premise 5 assures that primed variables are eliminated first, leaving only
unprimed variables in appropriate cases. This is relevant because the right hand
side Φτ (V ) · Ψ(V ) in the invariant condition contains only unprimed variables.

Remark 3. We can generalize the completeness result to also include the case
when guards of transitions are nontrivial and when a conjunction p1 = 0∧p2 = 0
is an inductive invariant, but neither p1 = 0 nor p2 = 0 by itself is an inductive
invariant. This requires generalizing the second part of the invariance condition.
Let Ψ1 and Ψ2 be the templates whose instantiation gives p1 and p2 respectively.
Then, for all τ in T , and for i = 1, 2,

NFτ (qτ (V )d · s(V ) · Ψi(V ′)) = Φ1(V ) · Ψ1(V ) + Φ2(V ) · Ψ2(V ) + Φ3(V ) · hτ (V )

Note that Φ1, Φ2, Φ3 are different templates for different τ ’s and different i’s. As
before, the degrees of the templates are bounded by the degree of the left-hand
side, and d is the total degree of Ψi. In the completeness theorem, we can now
drop Premise 4, but replace Premise 2 by the following generalization:

2 The ideal stem, and for all τ , the ideals 〈p1, p2, hτ 〉, where hτ = 0 is the
guard of τ , are radical ideals. Moreover, {p1, p2, hτ} is a GB of 〈p1, p2, hτ 〉.

The proof of the new completeness claim is a natural generalization of the proof
of Theorem 4 above. ut

Besides the five restrictions of Theorem 4, completeness does not extend to
the field of real numbers due to the requirements of Hilbert’s Nullstellensatz.
The underlying problem is illustrated by the following example.



Example 4. The formula ϕ ≡ x21 + x22 = 0 has x1 = x2 = 0 as its only solution
over the reals. However, x1, x2 /∈

〈
x21 + x22

〉
, although

〈
x21 + x22

〉
is a radical ideal

and ϕ |=R x1 = 0, x2 = 0.

Alternatively, we could formulate our results using real radical ideals [14].
Because the invariance condition in general is a non-linear constraint, solving

it might be very difficult. General approaches for solving non-linear constraints
have worst case space requirements that are doubly exponential in the size of
the input. However, non-linear constraint solving is an active field of research
and recently there have been some promising efforts to take the practical cases
away from their DOUBLE-EXPSPACE worst-case complexity bound [11].

Another approach for solving the invariance condition stems from the ob-
servation that the invarianc condition becomes linear if an assignment for the
template variables (Bτ )τ∈T is given. One could use heuristics to find this assign-
ment. For instance, practical experience suggests that if a solution to a variable
b ∈ Bτ is λb ∈ R, then the factor (b − λb) occurs somewhere in the invariance
condition. Using factors in the former form as an initial guess for the variables
(Bτ )τ∈T linearizes the equations and thus enables quick discovery of a solution
in some cases.

In the special case that Φτ (V ) := λ is degree 0 (also called constant con-
secution), λ can be found as an eigenvalue of an appropriate transformer con-
structed by interpreting bounded degree polynomials as finite-dimensional vector
spaces [16].

6 Synthesis

The technique for finding a loop invariant using the invariance condition estab-
lished in the previous section will now be used for program synthesis. Given a
polynomial lasso program, some transition updates can be parameterized by re-
placing them with template polynomials. The synthesis process will try to find a
valuation of these template variables while respecting some post condition. The
following definition formalizes this concept.

Definition 10 (Synthesis Problem). A synthesis problem S = (C,L, post)
consists of

– a set of synthesis variables C,
– a polynomial lasso program L = (V, stem, T , exit) where stem and τ ∈ T

contain template polynomials over (C, V ), and
– a post condition in form of an algebraic assertion post over V .

A solution to the synthesis problem S is a valuation α : C → R such that
the lasso Lα = (V, α̃(stem), α̃(T ), exit) is partially correct with respect to the post
condition post.

Example 5. Transforming L from Example 1 to L′ by changing the transition τ
to

y′ = y − 1 ∧ s′ = c1x0 + c2y0 + c3y + c4s+ c5



gives rise to a synthesis problem S = (C,L′, post) for C = {c1, c2, c3, c4, c5} and
post ≡ s = x0y0. A solution to S is α : c1 7→ 1, c2 7→ 0, c3 7→ 0, c4 7→ 1, c5 7→
0 since Lα = L and L is partially correct with respect to post according to
Example 2.

Our approach for solving the synthesis problem is based on the technique
from the previous section. We will prove the partial correctness of the synthesized
lasso program. The following lemma states that synthesized polynomial lasso
program will be partially correct.

Lemma 4 (Synthesis Solution). Let S = (C,L, post) be a synthesis problem,
α : C → R be a valuation on the synthesis variables, and let p be an invariant
for Lα. If p = 0 ∧ exit |= post, then Lα is partially correct with respect to post,
i.e., α is a solution to S.

Proof. Let σ = ν0 . . . νk be a finite execution of Lα. According to the assumption,
p is an invariant of Lα, so by Definition 8, νi |= p = 0 for all 0 ≤ i ≤ k. By
Definition 6, νk |= exit, therefore νk |= p = 0∧exit. According to the assumption,
this implies νk |= post, which proves the correctness of Lα. ut

To find a valuation for the synthesis variables, we define a synthesis condition.
The synthesis condition will constrain the synthesis variables so that existence
of a loop invariant p that implies the post condition is guaranteed; that is,

p = 0 ∧ exit |= post. (3)

If post =
∧
i posti = 0, then the above is implied by posti ∈ 〈p, exit〉 by Lemma 1.

However, computing the Gröbner basis with respect to a template polynomial for
p is extremely inefficient and potentially involves a huge number of case splits.
But according to Lemma 2, we can equivalently write

posti − tp ∈ exit, (4)

for some unknown t ∈ R[V ]. This enables us to rewrite (3) in a way that only
involves computing the Gröbner basis for non-template polynomials.

Example 6. Let S be the synthesis problem from Example 5. We use the loop
invariant p = s + x0y − x0y0 from Example 2 in Lemma 4 to show that α is a
solution to S by checking

s+ x0y − x0y0 = 0 ∧ y = 0 |= s = x0y0,

or instead that for t = 1,

(s− x0y0)− t(s+ x0y − x0y0) ∈ exit.

Definition 11 (Synthesis Condition). Let S = (C,L,
∧m
i=1 posti(V )=0) be a

synthesis problem, let Ψ be a template polynomial over (A, V ) and for all 0 ≤
i ≤ m, let Ωi be a template polynomial over (Di, V ). The synthesis condition,
SC(S, Ψ, {Ωi | 0 ≤ i ≤ m}), of S is the formula

IC(L, Ψ) ∧
∧
i

NFexit(posti(V )−Ωi(V )Ψ(V )) = 0



Following the same argument as for the invariant condition, the synthesis
condition simplifies to a conjunction of non-linear equations in the variables A∪
C∪(

⋃
τ∈T Bτ )∪(

⋃m
i=1Di). Utilizing an SMT solver, a solution to this constraint

can be obtained that is then used to instantiate the template polynomials in the
loop invariant and polynomial lasso program. According to the next theorem,
this yields a correct program instance.

Motivated by Example 6, we may set Ωi = 1 in the synthesis condition.
In this case the constraint NFexit(posti(V ) − Ψ(V )) = 0, the synthesis condi-
tion’s constraint corresponding to the post condition, is linear. Using this ob-
servation we can use linear methods to eliminate some variables from the con-
straint system, thus simplifying it. The same trick also applies to the constraint
NFstem(Ψ(V )) = 0 in the invariance condition if the program stem does not
contain any synthesis variables C.

Because the coefficients of some of the polynomials in L contain template
variables, special care must be taken when computing a Gröbner basis for stem or
τ ∈ T . Every division by some term containing a variable demands a case split on
whether this term evaluates to zero. One way of circumventing this problem is to
compute a Gröbner basis where the underlying algebraic structure for polynomial
coefficients is the ring of parameter polynomials R[A]. This requires a slightly
modified division algorithm [1,2].

Theorem 5 (Synthesis Soundness). If α : A∪ (
⋃
τ∈T Bτ )∪C∪ (

⋃
iDi)→ R

is an assignment for the template variables that models the synthesis condition,
then Lα is partially correct with respect to the post condition post and α̃(Ψ) is
an invariant of Lα.

Proof. By Theorem 3, α̃(Ψ) is an invariant of Lα. By definition, posti(V ) −
α̃(Ωi)(V )α̃(Ψ)(V ) ∈ 〈exit〉, therefore posti ∈ 〈α̃(Ψ), exit〉 for all i according to
Lemma 2. By Lemma 1, α̃(Ψ) ∧ exit |= posti for all i, hence α̃(Ψ) ∧ exit |= post.
Lemma 4 ensures that this implies that Lα is partially correct. ut

The synthesis process is not complete, even when the restrictions of Theo-
rem 4 hold. The reason for this is the polynomial t in (4): we are using templates
Ωi for t, but a priori we have no upper bound on the degree of t. In practice, a
template of degree 0 might be sufficient, as in our examples (see section 8).

7 Termination

A solution to the synthesis problem guarantees partial correctness of the synthe-
sized program; however, termination is not guaranteed. Even if the synthesized
program terminates, it might be highly inefficient, going through unnecessarily
many loop iterations.

Example 7. If one extends L′ from Example 5 to L′′ by changing τ to

y′ = c6y + c7 ∧ s′ = c1x0 + c2y0 + c3y + c4s+ c5



this yields a synthesis problem S′ = (C ′, L′′, post) with C ′ = C∪{c6, c7}. Possible
solutions to S′ include the valuations αλ : c1 7→ λ, c2 7→ 0, c3 7→ 0, c4 7→ 1, c5 7→
0, c6 7→ 1, c7 7→ −λ for all λ ∈ R.

If λ is small, the program needs more iterations for the same input, and if λ
is zero, Lα will not terminate at all.

In order to address this, the synthesis condition can be augmented with
a series of test cases, predefined input-output pairs that explicitly state the
transitions required to compute them.

Definition 12 (Test Case). Let (C,L, post) be a synthesis problem where L =
(V, stem, T , exit) is a pseudo-deterministic polynomial lasso program containing
template variables C. A test case t = (ν0, ν, τ1 . . . τk) consists of two V -valuations
ν0 and ν corresponding to the initial and final state respectively such that ν |=
exit, as well as a finite sequence of transitions τ1, . . . , τk ∈ T . A solution α to a
synthesis problem S is said to adhere to the test case t if, for νi = τi◦ . . .◦τ1(ν0),
the sequence σ = ν0ν1 . . . νk is an execution of Lα and νk = ν.

Lemma 5. Let S = (C,L, post) be a synthesis problem with solution α and let
t = (ν0, ν, τ1 . . . τk) be a test case. If

ν0 |= α(stem), (5)

ν = α(τk) ◦ . . . ◦ α(τ1)(ν0), (6)

νi 6|= exit for 0 ≤ i ≤ k − 1, and (7)

νk |= exit (8)

then Lα adheres to the test case t.

Proof. σ = ν0ν1 . . . νk for νi = α(τi) ◦ . . . ◦ α(τ1)(ν0) is by construction an
execution of Lα according to Definition 6. From (6) follows that νk = ν. ut

If we add the equations (5), (6), (7) and (8) to the synthesis condition for
every given test case, then by Lemma 5 any solution to these constraints will
yield a solution to S that adheres to the test cases.

Example 8. Consider the synthesis problem S′ from Example 7. The execution
σ from Example 1 gives rise to the test case t = (ν0, ν1, τ), which by Lemma 5
adds the following additional constraints on the synthesis condition.

1 = 1

0 = 0

0 = 1c6 + c7

3 = 3c1 + 1c2 + 1c3 + 0c4 + c5

1 6= 0

0 = 0

The valuation α1 is the only one of the valuations αλ given in Example 7 that
models these two equations (however, it is not the only possible solution). Lα1

is a terminating lasso program for positive integers y0.

In theory, if it is possible to synthesize a terminating program, then there
exists a finite set of test cases that will guarantee that a terminating lasso is
synthesized.



Theorem 6. Let S = (C,L, post) be a synthesis problem. If there is a solution
α to S such that Lα is terminating then there is a finite set of test cases Σ such
that any solution β of S which adheres to all test cases t ∈ Σ is terminating.

Proof. Let Σ = {t0, t1, . . .} be the test cases to all possible executions of Lα,
and assume Σ is infinite (otherwise there is nothing to show). Each test case
t ∈ Σ corresponds to a polynomial assertion over the variables C by (5) and
(6). This assertion constrains possible assignments of C. For every i ≥ 0, let
Σi = {t0, . . . , ti} ⊂ Σ be an ascending chain of finite subsets of Σ and let Ii
be the ideal generated by the assertions from the test cases of Σi. It is clear
that Σi ⊂ Σi+1, and hence Ii ⊆ Ii+1. By the Ascending Chain Condition [8],
the ascending chain of ideals I0 ⊆ I1 ⊆ . . . must become stationary for some
integer k, meaning Ik = Ii for all i ≥ k. This implies that the finite set of test
cases Σk corresponds to the same ideal as Σi for i ≥ k and hence they have the
same solution (set of assignments) for C. As a consequence, any solution β to S
adhering to the test cases from Σk will enforce that σ is an execution of Lβ iff
it is an execution of Lα. ut

While Theorem 6 assures that under any circumstances, a finite set of test
cases Σ suffices to force a useful solution from the synthesis problem, no upper
bound to the cardinality of Σ is given.

In theory, this provides us with two powerful approaches of generating poly-
nomial lasso programs, given an a priori bound on the number of program vari-
ables V . Both involve creating a polynomial lasso program with generic template
polynomials as updates and guards.

1. Specify a (large) number of test cases. Ideally, these test cases can be au-
tomatically generated in some sophisticated way that ensures that they are
not too redundant.

2. Provide a post condition and a complexity guess. Using the complexity guess,
a terminating skeleton of the synthesis problem is generated using counter
variables. The post condition provides a statement regarding the program’s
purpose.

Needless to say, both approaches create very large synthesis conditions that are
unlikely to be handled automatically by present-day non-linear solvers, but this
can change, especially for small program fragments, as technology develops.

8 Experimental Evaluation

We implemented our method in Haskell and used nlsat [11]4 to solve the non-
linear constraints. To evaluate the practicability and scalability of our method,
we ran it on a few selected examples which are listed in Table 1 together with a
short description. Each example translates to a pseudo-deterministic polynomial
lasso program. See the appendix for the source code to the examples as well as
the discovered solutions to the constraints.
4 As implemented in z3 version 4.3.1. http://z3.codeplex.com/

http://z3.codeplex.com/


name description

product multiplication of two integers by repeated addition (see Figure 1 and
Example 1)

productS product with synthesis of one update statement (see Example 5)
productSY product with synthesis of the loop body, including the termination-

critical variable y (see Example 7)
product2 product with reciprocal y
product2S product2 with synthesis of one update statement
gcd lcm greatest common denominator and least common multiple of two in-

tegers [19]
gcd lcmS gcd lcm with synthesis of two update statements
div mod integer division with remainder [9]
div modS div mod with synthesis of the complete loop body with linear updates
root2 integer square root [9]
root2S root2 with synthesis of the stem and one update statement
squareS square of an integer synthesized from a terminating skeleton with

linear assignments
cubeS cube of an integer synthesized from a terminating skeleton with linear

assignments
Table 1. Example programs used to perform verification and synthesis experiments
described in Table 2. For the source code to the examples see the appendix.

Table 2 contains the experiment’s results. We list the program name together
with the number of synthesis variables (#C), the degree of the loop invariant’s
generic template polynomial (deg), the number of its template variables (#A),
the total number of variables in the generated constraint (#vars), the number of
test cases used (#tc), the time to generate the constraint in seconds (constraints
time) and the running time of the SMT solver in seconds (solver time). Our test
system was a computer with eight AMD Opteron 8220 2.80GHz CPUs and 32GB
RAM.

While the synthesis process is very fast for small examples, the non-linear
constraint solver becomes the bottleneck in medium-sized problems (product2,
product2S and cubeS use generic templates of degree 3): solving non-linear
constraints scales poorly with the number of variables involved. Test cases might
help mitigate this issue by significantly reducing the solution space.

9 Conclusion

We presented a method for synthesizing polynomial programs. This method is
based on the discovery of non-linear loop invariants that prove the program’s
correctness. We generate a synthesis condition, a non-linear constraint whose
solution is the synthesized polynomial lasso program and a loop invariant. We
extended existing methods for non-linear invariant generation and provided a
completeness criterion (Theorem 4). If we synthesize update statements of vari-
ables that occur in the exit condition, termination becomes a concern. We showed



name #C deg #A #vars #tc constraints time (s) solver time (s)

product 0 2 15 20 0 0.55 0.02
productS 5 2 15 25 0 1.47 0.01
productSY 7 2 15 27 2 3.39 0.02
product2 0 3 35 50 0 39.23 128.24
product2S 5 3 35 55 0 200.20 24.46
gcd lcm 0 2 28 42 0 11.85 0.02
gcd lcmS 10 2 28 52 0 17.01 0.01
div mod 0 2 15 16 0 0.62 0.01
div modS 10 2 15 26 5 10.03 0.03
root2 0 2 15 25 0 2.80 4.52
root2S 9 2 15 34 0 3.80 0.02
squareS 6 2 10 20 0 0.56 0.00
cubeS 14 3 35 54 0 90.88 41.05

Table 2. Experimental results showing the time required to verify/synthesize vari-
ous example programs, along with the size of the non-linear constraints solved in the
process.

that we can utilize a finite set of test cases to restrict the solution space to ter-
minating lassos (Theorem 6).

Using a benchmark of small examples, we showed that our method is ap-
plicable for the synthesis of small programs, as well as parts of medium-sized
ones. A resource bottleneck is the non-linear constraint solver. As the solving of
non-linear constraints is an active area of research, we expect that our technique
will become more effective as non-linear solvers improve.

We assumed that the programs’ variables take values in the set of reals R,
but since Gröbner bases are computable over rings [1,2], our method can also
be applied to the integers Z or the finite ring of machine integers Z2w (see also
[20]). Future work could also consider the question of how this method can be
improved to handle inequalities.
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Appendix: Source Code to the Experiments

This appendix lists the source code for the example programs used in section 8
(compare Table 1 for a short description). The programs are given in pseudo-
code rather than polynomial lasso programs for improved readability and for
completeness: some parts of the program code have to be omitted in the trans-
lation to polynomial lasso programs (e.g. the exit condition in div mod and
div modS is an inequality). However, this translation is straightforward. The re-
sult is a pseudo-deterministic polynomial lasso program in each example. We
provide the assignment α to the generated constraints as found by the SMT
solver. In our examples, we set Ωi = 1 in the synthesis condition.

For the source code to the program product see Figure 1. Also compare Exam-
ple 1 and Example 3. We use the generic template of degree 2 over the variables
V = {x0, y0, y, s}.

α̃(Ψ) =
1

4
(x0y0 − x0y − s)

α̃(Φ) = y

procedure productS (x0 , y0 ) :
s := 0 ;
y := y0 ;
while (y 6= 0 ) :

s := c0x0 + c1y0 + c2y + c3s+ c4 ;
y := y − 1 ;

assert (s = x0y0 ) ;
return s ;

From Example 5. C = {c0, c1, c2, c3, c4}; we use the generic template of degree
2 over the variables V = {x0, y0, y, s}.

α(c0) = 1, α(c1) = α(c2) = 0, α(c3) = 1, α(c4) = 0

α̃(Ψ) = s− x0y0 + x0y

α̃(Φ) = y

procedure productSY (x0 , y0 ) :
s := 0 ;
y := y0 ;
while (y 6= 0 ) :

s := c0x0 + c1y0 + c2y + c3s+ c4 ;
y := c5y + c6 ;

assert (s = x0y0 ) ;
return s ;



Test cases:

– productSY(3, 1) == 1 (1 loop iteration)
– productSY(3, 2) == 6 (2 loop iterations)

From Example 7. C = {c0, c1, c2, c3, c4}; we use generic template of degree 2 over
the variables V = {x0, y0, y, s}.

α(c0) = 1, α(c1) = −1

2
, α(c2) = 1, α(c3) = 1, α(c4) = −1

2
,

α(c5) = 1, α(c6) = −1

α̃(Ψ) = s− x0y0 + x0y +
1

2
y2 − 1

2
y0y

α̃(Φ) = y

procedure product2 (x0 , y0 ) :
s := x0 ;

y := 1
y0

while (y 6= 1 ) :
s := s+ x0 ;
y := y

1−y ;

return s ;

This example differs from product by the use of the reciprocal value of y. The
assignments y := 1

y0
; and y := y

1−y; are translated to the polynomials y′y0−1

and y′(1− y)− y respectively. We use the generic template of degree 3 over the
variables V = {x0, y0, y, s}.

α̃(Ψ) =
√

2(x0y − x0 + x0y0y − ys)
α̃(Φ) = y − 1

procedure product2S (x0 , y0 ) :
s := x0 ;

y := 1
y0

while (y 6= 1 ) :
s := c0x0 + c1y0 + c2y + c3s+ c4 ;
y := y

1−y ;

assert (s = x0y0 ) ;
return s ;

We use the generic template of degree 3 over the variables V = {x0, y0, y, s}.

α(c0) = 1, α(c1) = α(c2) = 0, α(c3) = 1, α(c4) = 0

α̃(Ψ) = x0 − x0y − x0y0y + ys

α̃(Φ) = y − 1



procedure gcd lcm (x1 , x2 ) :
y1 := x1 ;
y2 := x2 ;
y3 := x2 ;
y4 := 0 ;
while (y1 6= y2 ) :

i f (y1 > y2 ) :
y1 := y1 − y2 ;
y4 := y4 + y3 ;

else :
y2 := y2 − y1 ;
y3 := y3 + y4 ;

assert (y1(y3 + y4)− x1x2 ) ;
return (y1, y3 + y4) ;

The inequality y1 > y2 cannot be translated into a polynomial lasso program
syntax and is thus omitted. We use the generic template of degree 2 over the
variables V = {x1, x2, y1, y2, y3, y4}.

α̃(Ψ) = x1x2 − y1y3 − y2y4
α̃(Φ1) = α̃(Φ2) = y1 − y2

procedure gcd lcmS (x1 , x2 ) :
y1 := x1 ;
y2 := x2 ;
y3 := x2 ;
y4 := 0 ;
while (y1 6= y2 ) :

i f (y1 > y2 ) :
y4 := c0y1 + c1y2 + c2y3 + c3y4 + c4 ;
y1 := y1 − y2 ;

else :
y3 := c5y1 + c6y2 + c7y3 + c8y4 + c9 ;
y2 := y2 − y1 ;

assert (y1(y3 + y4)− x1x2 ) ;
return (y1, y3 + y4) ;

The inequality y1 > y2 cannot be translated into a polynomial lasso program
syntax and is thus omitted. C = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9}; we use the
generic template of degree 2 over the variables V = {x1, x2, y1, y2, y3, y4}.

α(c0) = α(c1) = 0, α(c2) = α(c3) = 1, α(c4) = 0,

α(c5) = α(c6) = 0, α(c7) = α(c8) = 1, α(c9) = 0,

α̃(Ψ) = x1x2 − y1y3 − y2y4
α̃(Φ1) = α̃(Φ2) = y1 − y2



procedure div mod (a , d ) :
q := 0 ;
r := a ;
while (r ≥ d ) :

r := r − d ;
q := q + 1 ;

return (q, r) ;

The while-condition r ≥ d is translated to true. We use the generic template of
degree 2 over the variables V = {a, d, q, r}.

α̃(Ψ) =
1

2
(r + qd− a)

α̃(Φ) = 1

procedure div modS (a , d ) :
q := 0 ;
r := a ;
while (r ≥ d ) :

r := c0a+ c1d+ c2q + c3r + c4 ;
q := c5a+ c6d+ c7q + c8rold + c9 ;

return (q, r) ;

Test cases:

– div modS(4, 3) == (1, 1) (1 loop iteration)
– div modS(5, 2) == (2, 1) (2 loop iterations)
– div modS(1, 1) == (1, 0) (1 loop iteration)
– div modS(15, 6) == (2, 3) (2 loop iterations)
– div modS(17, 17) == (1, 0) (1 loop iterations)

The while-condition r ≥ d is translated to true. The synthesis relies purely on
test cases for correctness and termination as there are no exit or post condition
supplied. C = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9}; we use the generic template of
degree 2 over the variables V = {a, d, q, r}.

α(c0) = 0, α(c1) = −1, α(c2) = 0, α(c3) = 1, α(c4) = 0,

α(c5) = 0, α(c6) = 0, α(c7) = 1, α(c8) = 0, α(c9) = 1

α̃(Ψ) = r + dq − a
α̃(Φ) = 1

procedure root2 (n ) :
p := 0 ;



q := 1 ;
r := n ;
while (q ≤ n ) :

q := 4q ;
while (q 6= 1 ) :

q := q
4 ;

h := p+ q ;
p := p

2 ;
i f (r ≥ h ) :

p := p+ q ;
r := r − h ;

assert (n = p2 + r ) ;
return (p, r) ;

The first while loop is translated to an arbitrary assignment to q, the if-
condition is omitted. We use the generic template of degree 2 over the variables
V = {p, q, r, n}.

α̃(Ψ) =
1

8
(nq − qr − p2)

α̃(Φ1) = α̃(Φ2) =
1

4
(q − 1)

procedure root2S (n ) :
p := c0n+ c1 ;
q := 1 ;
r := c2n+ c3 ;
while (q ≤ n ) :

q := 4q ;
while (q 6= 1 ) :

q := q
4 ;

h := p+ q ;
p := p

2 ;
i f (r ≥ h ) :

p := p+ q ;
r := c4r + c5pold + c6qold + c7n+ c8 ;

assert (n = p2 + r ) ;
return (p, r) ;

C = {c0, c1, c2, c3, c4, c5, c6, c7, c8}. The first while loop is translated to an arbi-
trary assignment to q, the if-condition is omitted. This example has a parame-
terized program stem. We use the generic template of degree 2 over the variables



V = {p, q, r, n}.

α(c0) = α(c1) = 0, α(c2) = 1, α(c3) = 0,

α(c4) = 1, α(c5) = −1, α(c6) =
1

4
, α(c7) = α(c8) = 0

α̃(Ψ) = nq − qr − p2

α̃(Φ1) = α̃(Φ2) =
1

4
(q − 1)

procedure squareS (n ) :
a := n ;
b := c0n+ c1 ;
while (a 6= 0 ) :

b := c2a+ c3b+ c4n+ c5 ;
a := a− 1 ;

assert (b = n2 ) ;
return b ;

C = {c0, c1, c2, c3, c4, c5}. This is an example for a synthesis from terminating
lasso program skeleton. The lasso is constructed from a complexity guess (n
steps to termination) and an auxiliary variable b (see also the program cubeS).
We use the generic template of degree 2 over the variables V = {a, b, n}.

α(c0) = −1

2
, α(c1) = 0,

α(c2) = 2, α(c3) = 1, α(c4) = 0, α(c5) = −1

2

α̃(Ψ) = b− n2 +
1

2
a+ a2

α̃(Φ) = a

procedure cubeS (n ) :
a := n ;
b := c0n+ c1 ;
c := c2n+ c3 ;
while (a 6= 0 ) :

b := c4a+ c5b+ c6c+ c7n+ c8 ;
c := c9a+ c10bold + c11c+ c12n+ c13 ;
a := a− 1 ;

assert (b = n3 ) ;
return b ;

C = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13}. This is an example for a
synthesis from terminating lasso program skeleton. The lasso is constructed from
a complexity guess (n steps to termination) and an auxiliary variables b and c



(see also the program squareS). We use the generic template of degree 3 over
the variables V = {a, b, c, n}.

α(c0) = −
√

8 +
1

2
, α(c1) = 0, α(c2) =

1

2
(
√

2− 1), α(c3) =
√

2,

α(c4) = 0, α(c5) = 1, α(c6) = 1, α(c7) =
1√
2

+ 1, α(c8) = 0,

α(c9) =
3

2
, α(c10) = 0, α(c11) = 1, α(c12) = 1, α(c13) = −

√
8

α̃(Ψ) = b− n3 +
1

2
a2n+

1

2
a3 + ac+

(√
2− 1

2

)
a+

1

2

(√
2 + 1

)
an−

√
2a2

α̃(Φ) = a
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