
Deciding Confluence of Certain Term
Rewriting Systems in Polynomial

Time
Ashish Tiwari
{tiwari}@csl.sri.com

http://www.csl.sri.com/.

Computer Science Laboratory
SRI International
333 Ravenswood

Menlo Park, CA 94025
Confluence of TRS in PTIME (p.1 of 23)

An Abstract Model
Term rewrite systems
• a binary relation on the set of terms.
• useful abstraction to study variety of things, functional

programs, etc.
• are defined by rules, each of which says when a

certain term can be replaced by another.

Example. A TRS specified by two rules.

f(2n + 1) → f(3 ∗ (2n + 1) + 1)

f(2n) → f(n)

Confluence of TRS in PTIME (p.2 of 23)

Properties of Binary Relations
Two main properties of interest for a binary relation→:

• Termination: Starting from some element, do we
always hit a dead end?

s0 → s1 → s2 → · · ·

• Confluence: In case of a choice, if we take different
paths, do we always have the option of meeting again?

s0

s1 s2

s3

* **

Confluence of TRS in PTIME (p.3 of 23)

Properties of Binary Relations
Two main properties of interest for a binary relation→:

• Termination: Starting from some element, do we
always hit a dead end?

s0 → s1 → s2 → · · ·

• Confluence: In case of a choice, if we take different
paths, do we always have the option of meeting again?

s0

s1 s2

s3

* *

* *
Confluence of TRS in PTIME (p.3 of 23)

Motivation
• For terminating systems, confluence implies

uniqueness of normal forms. Thus, all choice points
can be treated as “don’t-care” choices.

• Confluence implies at most one normal form for any
term. Thus, a partial function from a term to its normal
form is well-defined if the rewrite relation is confluent.

• Rewrite rules, and their ground instances in particular,
are often used for simplification in theorem proving
tasks. Often, little is provably known about the library
of all rules. In such cases it helps to know if the used
instances are confluent and terminating.

Confluence of TRS in PTIME (p.4 of 23)

Examples
Consider the ground rewrite system

R0 = {a→ fab, fab→ fba}

The terms fba and f(fba)b are congruent modulo R0.

fba ← fab → f(fab)b → f(fba)b

But are they both reducible to a common term?

fba → fb(fab) → fb(fba) → · · ·

f(fba)b → f(fb(fab))b → f(fb(fba))b → . . .

No!

Confluence of TRS in PTIME (p.5 of 23)

Definition of Confluence
R : Finite set of directed ground equations
s→R t : if s = s[l] and t = s[r] for some l→ r ∈ R

s→∗
R

t : Transitive closure of→R

s↔∗
R

t : Symmetric-transitive closure of→R

R is (ground) confluent if ∀u, s, t ∈ T (Σ)

u

s t

v

* *

Confluence of TRS in PTIME (p.6 of 23)

Definition of Confluence
R : Finite set of directed ground equations
s→R t : if s = s[l] and t = s[r] for some l→ r ∈ R

s→∗
R

t : Transitive closure of→R

s↔∗
R

t : Symmetric-transitive closure of→R

R is (ground) confluent if ∀u, s, t ∈ T (Σ)

u

s t

v

* *

* *

Confluence of TRS in PTIME (p.6 of 23)

Simple Results
• Equivalent definition of confluence: R is (ground)

confluent if ∀s, t ∈ T (Σ)

s t

v

*

• For terminating systems, confluence is equivalent to
local confluence: check confluence for “local peaks”.

Confluence of TRS in PTIME (p.7 of 23)

Simple Results
• Equivalent definition of confluence: R is (ground)

confluent if ∀s, t ∈ T (Σ)

s t

v

*

* *

• For terminating systems, confluence is equivalent to
local confluence: check confluence for “local peaks”.

Confluence of TRS in PTIME (p.7 of 23)

Some History
• Confluence decidable for ground systems

[DHLT:LICS1987] and [O:TCS1987]: ground tree
transducers

• Existence of polynomial time decision procedure open
for many years.

• Confluence decidable in poly time for ground systems
over one unary symbol [LICS2001 short presentation]

• Confluence decidable in poly time for ground systems
[CGN:FOCS2001]

In this paper:
• give a poly time procedure for this problem (again!)
• poly time procedure to decide confluence of certain

non-ground rewrite systems Confluence of TRS in PTIME (p.8 of 23)

The Crucial Relations
That need to be “computed”:
• Congruence relation: ↔∗

R

Decided using Congruence closure algorithms
• Reachability relation: →∗

R

Decided using Ground Tree Transducers
• Joinability relation: →∗

R
◦ ←∗

R

Compose two GTTs
Checking confluence

↔∗ ⊆→∗ ◦ ←∗

reduces to language inclusion problem for tree automata.
But that is EXPTIME.

Confluence of TRS in PTIME (p.9 of 23)

Abstraction
Transform ground TRS R over Σ to a flat TRS over Σ∪K.

R ∪ {s[u]→ t}

R ∪ {s[c]→ t, u→ c}

R ∪ {s→ t[u]}

R ∪ {s→ t[c], c→ u}

∴ wlog each rule in R is either flat or the inverse of a flat
rule.

f(c1, . . . , cn)→ c, c→ d

Confluence of TRS in PTIME (p.10 of 23)

Abstract Congruence Closure
First idea was to
• Describe the congruence relation induced by R by a

convergent flat rewrite system RCC : abstract
congruence closure.

s t

v

*
R

• The relation→RCC
is terminating.

• Standard completion on a flat R suffices.

Confluence of TRS in PTIME (p.11 of 23)

Abstract Congruence Closure
First idea was to
• Describe the congruence relation induced by R by a

convergent flat rewrite system RCC : abstract
congruence closure.

s t

v

*
R*

RCC

*
RCC

• The relation→RCC
is terminating.

• Standard completion on a flat R suffices.

Confluence of TRS in PTIME (p.11 of 23)

Abstract Rewrite Closure
Second idea was to
• Describe the reachability relation induced by R by an

“asymmetric convergent flat rewrite system” (F,B):
abstract rewrite closure.

s t

v

*
R

• Asymmetric completion gives flat terminating F ∪B−.
• F not confluent, ∴ non-deterministic search for v.

Confluence of TRS in PTIME (p.12 of 23)

Abstract Rewrite Closure
Second idea was to
• Describe the reachability relation induced by R by an

“asymmetric convergent flat rewrite system” (F,B):
abstract rewrite closure.

s t

v

*
R

*
F

*
B

• Asymmetric completion gives flat terminating F ∪B−.
• F not confluent, ∴ non-deterministic search for v.

Confluence of TRS in PTIME (p.12 of 23)

Finally
Recall we need to check the inclusion:

↔∗RCC
⊆ →∗F∪B ◦ ←

∗
F∪B

Now the picture looks like this:

s t

v

v1 v2

*
RCC

*
F *

B

*
B

*
F

Do we need to check this for all pair of terms s, t?

Confluence of TRS in PTIME (p.13 of 23)

Towards the Main Theorem
If (s, t) is a counter-example and

s→+

F
v1, t→+

F
v2

then (v1, v2) is a smaller counter-example.
∴ we only test for F -irreducible terms s, t.

- If at least one of s or t is a constant, we need to check if

◦ ◦

c d c f(t1, . . . , tm)

*
B

*
B

*
B

*
B

but B-rules are of a special form.

Confluence of TRS in PTIME (p.14 of 23)

Towards the Main Theorem
If both s and t are not constants, and

s→∗RCC
u←∗RCC

t

then
- If u is not a constant, then there is a smaller
counter-example in the arguments of s and t.

s = f(s1, . . . , sm) t = f(t1, . . . , tm)

f(_, . . . , _) f(_, . . . , _)

f(c1, . . . , cm)

*RCC

RCC

* RCC

RCC

Confluence of TRS in PTIME (p.15 of 23)

Towards the Main Theorem
- If u is a constant, then

s t

f(c1, . . . , cm) g(d1, . . . , dn)

u

*

RCC

RCC

*
RCC

RCC

If either f 6= g or some ci and di are not equivalent
(modulo RCC), then (s, t) is a witness to non-confluence.

Confluence of TRS in PTIME (p.16 of 23)

Technical Theorem
IRRSIG(c) : { fc1 . . . cn: c is equivalent to this,

fc1 . . . cn represents an F -irreducible term}
IRRCON(c) : { d: d is equivalent to c,

d is F -irreducible}
Theorem. R is confluent iff
• IRRSIG(c) contains at most one element

• if IRRSIG(c) = {f(c1 . . . cn)}, then for all
c′ ∈ IRRCON(c), there is a rule c′→f(c′1 . . . c′n) in B

s.t. ci and c′
i

are equivalent under RCC

• for all d, e ∈ IRRCON(c), d→∗
B
◦ ←∗

B
e.

Confluence of TRS in PTIME (p.17 of 23)

Complete Algorithm
Input: Finite set of ground rewrite rules R

• Flatten R to R

• Construct abstract congruence closure RCC for R

• Construct abstract rewrite closure (F,B) for R

• Compute IRRSIG(c) and IRRCON(c)

• Return confluent if all the three conditions of the main
theorem hold, not confluent otherwise

Complexity:
• Each step can be carried out in polynomial time.
• Rewrite closure complexity is exponential in the

maximum arity of the function symbols in Σ

• But wlog the maximum arity can be bounded by 2Confluence of TRS in PTIME (p.18 of 23)

Back to Example
Recall

R0 = {a→ fab, fab→ fba}

Abstract rewrite closure represents the rewrite relation
induced by R0:

E = {a→ c0, b→ c1, fc0c1 → c2}

F = E ∪ {c0 → c2}

B = E− ∪ {ci → fc1c0, ci → fc1c2, i = i, 2}

Abstract congruence closure represents the congruence
relation induced by R0:

RCC = {{a, fc2c1, fc1c2, c0} → c2, b→ c1, };
Confluence of TRS in PTIME (p.19 of 23)

Back to Example 2

R0 = {a→ fab, fab→ fba}

E = {a→ c0, b→ c1, fc0c1 → c2}

F = E ∪ {c0 → c2}

B = E− ∪ {ci → fc1c0, ci → fc1c2, i = i, 2}

RCC = {{a, fc2c1, fc1c2, c0} → c2, b→ c1, };

Now:

IRRSIG(c1) = ∅

IRRSIG(c2) = {fc1c2, fc2c1}

Oh!, we fail right here. ∴, R0 is not confluent.
Confluence of TRS in PTIME (p.20 of 23)

Summary
• Confluence of Ground TRS has a polynomial time

decision procedure.
• Using the same techniques, the result generalizes to

TRS R s.t. for every rule s→ t ∈ R:
• Variables occur at depth at most one in s and t
• No variable is repeated in s→ t
• Exponential in the arity—can’t be avoided

• The main underlying concept is that of
top-stabilizability of a equivalence class c:

s→∗RCC
f(c1, . . . , cn)→RCC

c

and s is F -irreducible.
Confluence of TRS in PTIME (p.21 of 23)

Shallow Linear Systems
• Shallow: Do not need to use “abstraction”
• Linear: Do not need to consider variable overlaps for

constructing rewrite closure

Confluence of TRS in PTIME (p.22 of 23)

Future Work
• New decidability results for confluence of other

classes of rewrite systems?
• New complexity results?
• Logical descriptions of other decision procedures?

References:
• Abstract congruence closure

[BachmairTiwariVigneron:JAR2002]
• Abstract rewrite closures [Tiwari:FSTTCS2001]

Confluence of TRS in PTIME (p.23 of 23)

	An Abstract Model
	Properties of Binary Relations
	Motivation
	Examples
	Definition of Confluence
	Simple Results
	Some History
	The Crucial Relations
	Abstraction
	Abstract Congruence Closure
	Abstract Rewrite Closure
	Finally
	Towards the Main Theorem
	Towards the Main Theorem
	Towards the Main Theorem
	Technical Theorem
	Complete Algorithm
	Back to Example
	Back to Example 2
	Summary
	Shallow Linear Systems
	Future Work

