Verification and Synthesis

Using Real Quantifier Elimination

Thomas Sturm Max-Planck-Institute for Informatik Saarbrucken, Germany sturm@mpi-inf.mpg.de

Ashish Tiwari

SRI International

Menlo Park, USA

tiwari@csl.sri.com

Ashish Tiwari, SRI Intl.

Model and analyze systems formally

Two aspects:

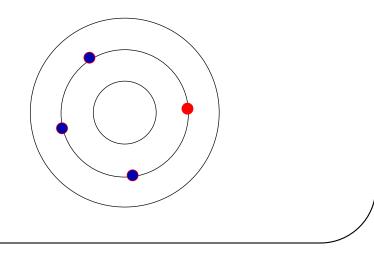
- Formal model of dynamical system M
- Formal property specification ϕ

Example:

$$M := \{\frac{dx}{dt} = y, \ \frac{dy}{dt} = -x\}$$

$$\phi := (x = 1 \land y = 0 \Rightarrow \mathbb{G}(x \le 1)$$

Verification Problem: Prove $M \models \phi$



Certificate-Based Verification

A certificate for $M \models \phi$ is Φ such that

1. $\models \Phi \Rightarrow \phi$

2. $M \models \Phi$ is locally checkable

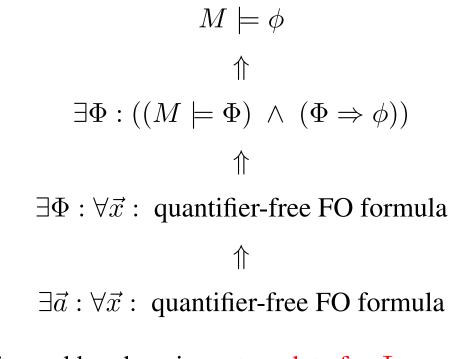
 $M \models \Phi$ reduces to a formula in the (underlying FO) logic

Examples:

Property ϕ	Certificate Φ
safety	inductive invariant
stability	Lyapunov function
termination	ranking function
controlled safety	controlled inductive invariant

Certificate-Based Verification

Certificate-based verification reduces the verification problem to an $\exists \forall$ formula.



The last step performed by choosing a template for Φ

Example: Certificate-Based Safety

Example:
$$\frac{dx_1}{dt} = x_2$$
 $\frac{dx_2}{dt} = -x_1$

Problem: If $x_1 = 1$ and $x_2 = 0$ initially, prove $G(x_1 \le 1)$

Let us find a certificate of the form $p \le 0$ where $p := ax_1^2 + bx_2^2 + c$

We need to solve

$$\exists a, b, c : \forall x_1, x_2 : \qquad (p = 0 \Rightarrow \frac{dp}{dt} \le 0) \land$$
$$(x_1 = 1 \land x_2 = 0 \Rightarrow p \le 0) \land$$
$$(p \le 0 \Rightarrow x_1 \le 1)$$

We get $p := x_1^2 + x_2^2 - 1$. Proved.

Ashish Tiwari, SRI Intl.

Certificate-Based Verification: Observations

A generic approach for verification based on symbolic constraint solving

- Observation 1: Verification = searching for right witness
- Observation 2: Bounded search for witnesses of a specific form
- Net result: Verification problem $\mapsto \exists \forall$ problem

 $\exists\forall$ formula depends on the property ϕ and certificate Φ

Can also handle uncontrollable inputs/noise

Ashish Tiwari, SRI Intl.

Example: Certificate-based Verification

Consider the system *M*:

$$\frac{dx_1}{dt} = -x_1 - x_2$$
$$\frac{dx_2}{dt} = x_1 - x_2 + x_d$$

Initially: $x_1 = 0, x_2 = 1$

Property: $|x_1| \leq 1$ always

Guess

- Template for witness $\Phi := W \le 0$, where $W := ax_1^2 + bx_2^2 + c$
- Template for assumption $A := |x_d| < d$

Example Continued

Verification Condition: $\exists a, b, c, d : \forall x_1, x_2, x_d :$

$$x_1 = 0 \land x_2 = 1 \quad \Rightarrow \quad W \le 0$$
$$A \land W = 0 \quad \Rightarrow \quad \frac{dW}{dt} < 0$$
$$W \le 0 \quad \Rightarrow \quad |x_1| \le 1$$

Ask contraint solver for satisfiability of above formula

Solver says:
$$a = 1, b = 1, c = -1, d = 1$$

 $x_1 = 0 \land x_2 = 1 \Rightarrow x_1^2 + x_2^2 - 1 \le 0$
 $|x_d| < 1 \land x_1^2 + x_2^2 - 1 = 0 \Rightarrow 2x_1(-x_1 - x_2) + 2x_2(x_1 - x_2 + x_d) < 0$
 $x_1^2 + x_2^2 - 1 \le 0 \Rightarrow |x_1| \le 1$

This proves that $|x_1| \leq 1$ always.

Ashish Tiwari, SRI Intl.

Solving ∃∀ **Formulas**

Two symbolic approaches:

- Virtual Substitution: scalable, but limited applicability
- Cylindrical Algebraic Decomposition: general, but unscalable

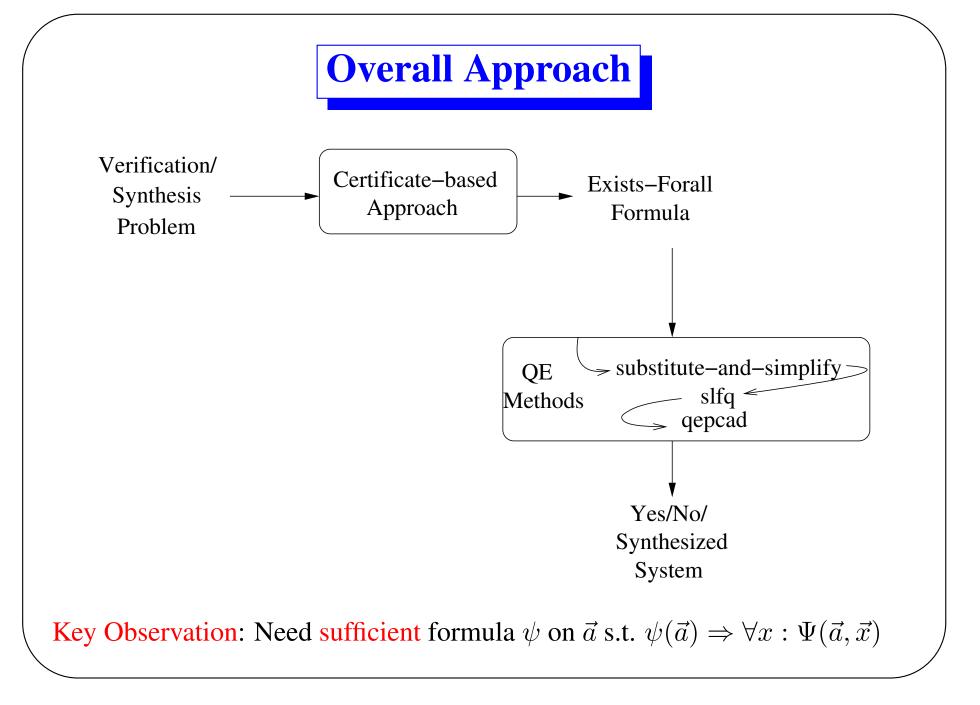
Combination Approach for QE

Solve quantified formula ϕ :

- $\phi_1 :=$ apply virtual substitution (redlog) on ϕ as long as possible
- $\phi_2 := apply simplifier (slfq) to simplify \phi_1$
- if ϕ_2 is $\exists \vec{x} : \bigvee_i \phi_{2i}$ $\phi_3 := \bigvee_i \operatorname{qepcad}(\phi_{2i}) // \operatorname{Can}$ be limited to a subset of *i*'s else $\phi_3 := \operatorname{qepcad}(\phi_2)$
- return ϕ_3

The tool qepcad used with Singular

All components interfaced via Reduce



Ashish Tiwari, SRI Intl.

Benchmark examples:

- Adaptive cruise control: verify that cars do not collide
- Robot motion: synthesize safe switching logic
- Adaptive flight control: verify stability
- Inverted pendulum: synthesize stable switching controller

Other examples:

- Navigation benchmarks: Safety verification of hybrid systems
- PID controllers: Stability verification of open controllers
- Train gate controller synthesis
- Others: LCR circuit, thermostat, insulin infusion pump controller

Adaptive Cruise Control

Consider a cruise control:

 $\dot{v} = a$ $g\dot{a}p = -v + v_f$ $\dot{v}_f = a_f$ $\dot{a} = -4v + 3v_f - 3a + gap$ Controller where v, a is velocity and acceleration of this car, v_f, a_f is the same for car in

front, and *gap* is the distance between the two cars.

Physical limits puts constraints on v, v_f, a, a_f .

Adaptive Cruise Control

Goal: Find initial states such that, if ACC mode is initiated in those states, then cars will not collide.

Solution: Pick a linear template for the initial states $\texttt{Init}(\vec{a})$ and for the inductive invariant $\texttt{Inv}(\vec{b})$ and solve the resulting $\exists \forall$ formula.

The formula states that there exists \vec{a} and \vec{b} such that (1) all initial states in $\text{Init}(\vec{a})$ are also in $\text{Inv}(\vec{b})$, and (2) all states in $\text{Inv}(\vec{b})$ are in *Safe*, and (3) the system dynamics cannot force the system to go out of the set $\text{Inv}(\vec{b})$

Formulas encoding (1),(2),(3) are \forall formulas

Adaptive Cruise Control: Analysis

Complexity of the generated $\exists \vec{a} : \forall \vec{x} : \phi$ formula:

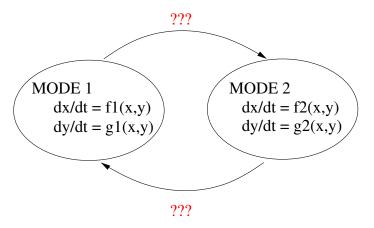
- $|\vec{a}| = 4$
- $|\vec{x}| = 5$
- $\bullet \ \operatorname{degree}(\phi) = 2$

Results:

- Virtual substitution eliminates all but one variable
- Returns a disjunction of 584 subformulas containing 33365 atomic formulas (nested to depth 13)
- Simplifier slfq fails
- But succeeds on part of the formula
- That is sufficient to give a useful answer

Switching Logic Synthesis

Do not verify, synthesize correct systems



Problem: Under what conditions to switch between the components so that final system is safe.

Solution: Find a set of states (Φ) within which the two modes can keep the system

Examples: robot motion, thermostat, inverted pendulum

Adaptive Flight Control: Model

Goal: Verify an adaptive flight controller

Flight controller: Keeps the plane stable in flight

Adaptive: Learn and compensate for damages, aging and so on

The dynamics of the aircraft are given by

$$\dot{\vec{x}} = A\vec{x} + B\vec{u} + G\vec{z} + f(\vec{x}, \vec{u}, \vec{z}) \tag{1}$$

where

 \vec{x} : 3 × 1 vector of roll, pitch, and yaw rates of the aircraft

 $\vec{u}: 3 \times 1$ vector of aileron, elevator, and rudder inputs

 \vec{z} : 3 × 1 trim state vector of angle of attack, angle of sideslip, and engine throttle

A, B, G are known matrices in $\Re^{3 \times 3}$

f represent the unknown term (uncertainty or damage)

Adaptive Flight Control: Modeling

We built a continuous dynamical system model

State space: x_m , $intx_e$, x, L, β , f

$$\dot{x_m} = A_m(x_m - r)$$

$$in\dot{t}x_e = x_m - x$$

$$\dot{x} = A_m(x_m - r) + K_p(x_m - x) + K_iintx_e - L'\beta + f$$

$$\dot{L} = -\Gamma\beta(intx_e^T K_i^{-1} + (x_m - x)^T K_p^{-1}(I + K_i^{-1}))$$

$$\dot{\beta} = \dots$$

$$\dot{f} = \dots$$

Constants : $\Gamma, K_p, K_i, A_m,$
Unknown/Symbolic Parameters : r, f, \dot{f}

Ashish Tiwari, SRI Intl.

Adaptive Flight Control: Analysis

Goal: Show that the error eventually falls below a certain threshold Assume boundedness of certain expression

The $\exists \vec{a} : \forall \vec{x} : \phi$ formula says that there exists a Lyapunov function (of a given form)

- $|\vec{a}| = 5$
- $|\vec{x}| = 5$
- degree = 4

Output of virtual substitution not simplified by slfq

If certain \exists variables are instantiated, then slfq successfully simplifies output of virtual substution (48 subformulas, depth 10, 1081 atomic formulas) in 27s using 1897 qepcad calls to the required answer

Inverted Pendulum

Maintain an inverted pendulum around its unstable equilibrium by controlling the force on the cart on which the pendulum is mounted

$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = \frac{(F - ml\omega^2 \sin(\theta) + mg\cos(\theta)\sin(\theta))}{(M + m - m\cos(\theta)\cos(\theta))}$$

$$\frac{d\theta}{dt} = \omega$$

$$\frac{d\omega}{dt} = (g\sin(\theta) + \cos(\theta)\frac{dv}{dt})/l$$

where $F \in \{2, -2, 0\}$

Goal: Synthesize switching controller to maintain safety

Inverted Pendulum: Analysis

Replace trigonometric functions by Taylor approximations Formula statistics:

- $|\vec{a}| = 2$
- $|\vec{x}| = 2$
- degree = 7

virtual substitution + slfq simplification + partial instantiation + qepcad generates a controlled invariant:

$$-\theta^2 - (300/4801)\omega^2 + (1/100) \ge 0$$

Ashish Tiwari, SRI Intl.

PI Controller

PI controller: A generic controller for driving an unknown plant to some setpoint

Controller:

$$\frac{d \text{interr}}{dt} = \begin{cases}
\text{err if interr}^2 = 1 \land \\
\text{err * interr} < 0 \\
\text{err if interr}^2 < 1 \\
0 & \text{otherwise} \\
u = K_p * \text{err} + K_i * \text{interr} \\
\frac{dx}{dt} = \beta - \alpha * u \\
\alpha \in [a, b] \\
\beta \in [a_1, b_1]
\end{cases}$$

What plants can the PI controller successfully control?

Ashish Tiwari, SRI Intl.

PI Controller: Analysis

Formula:

- $|\vec{a}| = 6$
- $|\vec{x}| = 4$
- degree = 2

Virtual substitution is usually fast slfq takes about 200 seconds, 9000 qepcad calls

Theorem: Suppose the controller gains satisfy:

 $K_p \ge 500 \land K_p \ge K_i \land K_p + K_i \ge 500$

and suppose a > 0, $b = +\infty$, $a_1 = -500 * a$ and $b_1 = 500 * a$. Then, the PI feedback control system always eventually reaches a state where $err^2 \le 1$.

Ashish Tiwari, SRI Intl.

QE procedure:

- Virtual substitution + slfq + qepcad is a potent combination of tools for solving hard QE problems
- Virtual substitution often takes negligible time
- But it generates huge formulas
- slfq is crucial for simplifying the large formulas

Verification + benchmarks:

- Verification + synthesis of hybrid systems can be reduced to to $\exists \forall$ formulas
- Maintaining an active webpage of benchmarks
- Apart from Certificate-based methods, constructing relational abstraction also generates ∃∀ formulas

Future work: numeric methods, combining with SMT solvers