
'

&

$

%

Computing Summaries

for Interprocedural Analysis

Ashish Tiwari
Tiwari@csl.sri.com

Computer Science Laboratory

SRI International

Menlo Park CA 94025

http://www.csl.sri.com/˜tiwari

Joint work with Sumit Gulwani, Microsoft Research

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 1

'

&

$

%

Outline of this Talk

• The Assertion Checking Problem

• Example

• Interprocedural Analysis

• A methodology for interprocedural backward analysis

• Special Cases: Abstract domains defined by

◦ Linear Arithmetic

◦ Uninterpreted Symbols

• Conclusion

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 2

'

&

$

%

Assertion Checking Problem

Given a program P annotated with an assertion φ

verify that φ evaluates to true in every run of P

P ∈ P, P := set of all programs in some programming model

φ ∈ Φ, Φ := set of all assertions in some assertion language

This problem is undecidable for even simple P and Φ

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 3

'

&

$

%

An Example

P() { // inputs: u,v

x := u ;

y := v ;

while (*) {

x := x + 1 ;

y := y - 1 ;

}

// return x,y

}

x := u

y := v

x := x + 1

y := y − 1

*

P :

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 4

'

&

$

%

An Example

main() {

u := 0 ;

v := n ;

Call P() ;

u := x + 1 ;

v := y ;

Call P() ;

assert(x + y == n+1)

}

v := n

Call P()

u := 0

Call P()

assert(

v := y

 u := x + 1

x + y = n+1)

main :

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 5

'

&

$

%

Program Model

Programming Model in the example:

• Assignments: x := e, x := ?

• Nondeterminisitic conditionals: if (*)

• Join: Control flow merge

• Procedure call node: Call P()

(a) Assignment
Node

x := e

0

(d) Join Node

21

(c) Non-deterministic
Conditional Node

*True False

1 2

(b) Non-deterministic
Assignment Node

x := ?

0

(e) Procedure
Call Node

Call P0()

0

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 6

'

&

$

%

Known Results on Assertion Checking

Nodes Expr. Lang. Complexity Ref.

(a)-(d) Lin Arith PTime [Karr 77,...]

(a)-(d) UFS PTime [(Gulwani,Necula 04),

(Müller-Olm, Rüthing, Seidl)]

(a)-(d) UFS + LA co-NP-hard [Gulwani,T. 06]

(a)-(d)* UFS + LA decidable [Gulwani,T. 06]

For generalizations of above results to other abstract domains and program

models, see [Gulwani, T. VMCAI 07]

What about program models with procedure calls?

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 7

'

&

$

%

New Results

Present a general framework for interprocedural analysis

Nodes Expr. Lang. Complexity Ref.

(a)-(e) Lin Arith PTime [Müller-Olm and Seidl ’04,

this paper]

(a)-(e) Unary UFS PTime [this paper]

(a)-(e) UFS Open

Some results on interprocedural analysis on UFS abstraction, but under

restrictions, given by Müller-Olm, Seidl, and Steffen (ESOP’05)

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 8

'

&

$

%

Interprocedural Analysis

Two approaches for interprocedural analysis:

1. Inlining

2. Computing Summaries

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 9

'

&

$

%

Interprocedural Analysis: Inlining

P() {

[u + v == n+1]

x := u;

y := v;

[x + y == n+1]

while (*) {

x++;

y--;

}

[x + y == n+1]

}

main() {

u := 0;

v := n;

Call P();

[x + 1 + y == n+1]

u := x + 1;

v := y;

[u + v == n+1]

Call P();

[x + y == n+1]

assert(x + y == n+1)

}

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 10

'

&

$

%

Interprocedural Analysis: Inlining

P() {

[u + v == n]

x := u;

y := v;

[x + y == n]

while (*) {

x++;

y--;

}

[x + y == n]

}

main() {

[n + 0 == n]

u := 0;

v := n;

[u + v == n]

Call P();

[x + 1 + y == n+1]

u := x + 1;

v := y;

[u + v == n+1]

Call P();

[x + y == n+1]

assert(x + y == n+1)

}

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 11

'

&

$

%

Interprocedural Analysis

Inlining: Re-analyzes P()

Summary Computation: Compute a summary of a procedure just once and

use it to backward propagate across Call P() nodes

In the example, we required:

[?] Call P() [x+ y = n+ 1]

[?] Call P() [x+ y = n]

Main idea: Propagate back a set of generic assertions

For example: αx+ βy = γ

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 12

'

&

$

%

Generic Assertions

Assertion that involves context-variables apart from regular program

variables.

Examples of context-variables and their possible instantiations:

α() 7→ f(f()), 2(), + 1

β(1, 2) 7→ 2(1) + 2, f(1, f(2))

A generic term: α(x) + β(y)

A generic assertion: α(x) + β(y) = γ

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 13

'

&

$

%

Complete Set of Generic Assertions

A is a complete set of generic assertions if,

for any generic assertion A1, there exists A2 ∈ A s.t.

A1 = A2σ

Expr. Lang. Complete Set

Lin. Arith. {
∑

i∈V αixi = α}

Unary UFS {α(x1) = β(x2) | x1, x2 ∈ V, x1 6≡ x2}

We need a finite complete set of generic assertions

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 14

'

&

$

%

Computing Procedure Summaries

Summary := {(ψi, Ai) | [ψi] Call P() [Ai] , Ai ∈ A}

Method to compute procedure summaries:

1. WP based backward propagation over generic assertions

2. For procedure call nodes: requires matching current ψ with an assertion in

A and using its current summary

[

∧

i

ψ′

iσi

]

Call P()

[

∧

i

Bi

]

if (ψ′

i, Ai) is in current summary of P() and Bi = Aiσi.

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 15

'

&

$

%

Computing Summaries: Linear Arithmetic

P() {

[true]

x := u;

y := v;

[α(x+ 1) + β(y − 1) == γ,

αx+ βy == γ]

while (*) {

x+ +;

y −−;

}

[αx+ βy == γ]

}

P() {

[α− β == 0, αu+ βv == γ]

x := u;

y := v;

[α− β == 0,

αx+ βy == γ]

while (*) {

x+ +;

y −−;

}

[αx+ βy == γ]

}

Summary: {(α == β ∧ αu+ βv == γ, αx+ βy == γ)}

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 16

'

&

$

%

Computing Summaries: Linear Arithmetic

• Termination: There can be at most k2 + k + 1 independent facts over the

variables {αixj , αi, γ} where i, j ∈ {1, . . . , k}

• Since every fact is a linear equation over these k2 + k + 1 variables

• Complexity of interprocedural assertion checking: O(nk10)

where n = number of program points and k = live variables

• Assuming arithmetic operations take O(1) time

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 17

'

&

$

%

Using Summaries: Linear Arithmetic

main() {

[0 + n == n]

u := 0;

v := n;

[1 − 1 == 0, u+ v == n]

Call P(); // α 7→ 1, β 7→ 1, γ 7→ n

[x+ 1 + y == n+ 1]

u := x+ 1;

v := y;

[1 − 1 == 0, u+ v == n+ 1]

Call P(); // α 7→ 1, β 7→ 1, γ 7→ n+ 1

[x+ y == n+ 1]

assert(x+ y == n+ 1)

}

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 18

'

&

$

%

Computing Summaries: Unary UFS

The same general idea works.

• Complete Set of Generic Assertions: {α(x) == β(y) | x, y ∈ V },

α and β are strings over the unary symbols

• Backward propagation gives generic assertions: {α(C(x)) == β(D(y))}

• Termination: Any finite set of such assertions is essentially equivalent to a

set containing at most two equations

• Summary:

{(ψxy, α(x) == β(y)) | x, y ∈ V, [ψxy] Call P() [α(x) == β(y)]}

where ψxy contains at most k(k − 1)/2 + 1 equations

• All this takes polynomial number of string operations

However, programs can succinctly represent really large strings

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 19

'

&

$

%

Computing Summaries: Unary UFS: Large Strings

Consider the n procedures P0, . . . , Pn−1:

Pi(xi) { t := Pi−1(xi); yi := Pi−1(t); return(yi); }

P0(x0) { y0 := fx0; return(y0); }

The summary of procedure Pi is:

(α == f2
i

∧ β = ε, αxi == βyi)

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 20

'

&

$

%

Computing Summaries: Unary UFS: Representation

• SCFGs: singleton context-free grammars

A CFG where each nonterminal represents exactly one (terminal) string.

• An SCFG can represent strings in an exponentially succinct way

• We use SCFGs to represent strings during our interprocedural analysis

• Plandowski (1994) showed that equality (largest common prefix) checking

of two strings represented as SCFGs can be done in PTime

• Summaries can be computed in time O(nk6Tbase(n)) on the abstraction of

unary symbols.

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 21

'

&

$

%

Computing Summaries: General Case

Interprocedural analysis on a logical lattice defined by Th:

• Finite complete set of generic assertions

• Finite essential ascending chain property: Every increasing sequence of

generic assertions (over k regular variables) finitely essentially converges

What is essential equivalence?

In case of non-deterministic programs, do not need to distinguish between φ

and Unif (φ)

ψ is essentially equivalent to ψ′ if ψσ and ψ′σ have the same set of unifiers

for every σ that assigns context variables to a ground term with holes

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 22

'

&

$

%

Conclusion

Presented a general framework for interprocedural analysis

Nodes Expr. Lang. Complexity Ref.

(a)-(e) Lin Arith PTime [Müller-Olm and Seidl ’04,

this paper]

(a)-(e) Unary UFS PTime [this paper]

(a)-(e) UFS Open

Main ideas:

• Summary computation requires dealing with context variables

• Context unification can be used to simplify assertions to essentially

equivalent assertions for non-det programs

Ashish Tiwari, SRI Computing Procedure Summaries for Interprocedural Analysis: 23

