Confluence of Shallow Right-Linear Systems

Guillem Godoy Technical University of Catalonia Co Jordi Girona 1

Barcelona, Spain

<u>Ashish Tiwari</u> Computer Science Laboratory SRI International Menlo Park, CA

Ashish Tiwari, SR I

Confluence of Shallow Right-Linear TRSs: 1

0.5 setgray 0.5 setgray 1

Rewrite Systems

Define a binary relation over a set of terms

Two main interpretations:

• Model of some dynamical system:

set of terms \mapsto state space

rewrite relation \mapsto dynamics

• Defining an equational theory

set of terms \mapsto elements in the model of the theory

rewrite relation \mapsto equational identities in the theory: simplification

Ashish Tiwari, SR I

Confluence

Two main properties of rewrite systems: confluence and termination Confluence: Interpretations–

- Model of some dynamical system: a general definition of determinism
- Equational reasoning: decide word problem, assuming termination

Ashish Tiwari, SR I

Known Results

Reachability	Confluence	Comment
undecidable	undecidable	Turing-complete
undecidable	?	[Jacquemard 2003]
undecidable	?	
decidable	?	[Takai, Kaji, Seki 2000]
decidable	decidable	This work
decidable	decidable	[Godoy, T, Verma 2003]
decidable	decidable	PTime [Godoy+ 00, T 01]
	undecidable undecidable undecidable decidable decidable decidable	undecidableundecidableundecidable?undecidable?decidable?decidabledecidabledecidabledecidable

Ashish Tiwari, SR I

Shallow Right Linear Rewrite Systems

- Shallow: All variables occur at depth at most one
- Right Linear: Variables are not repeated on the RHS terms

Example of a shallow right-linear rewrite system:

 $R = \{ x \lor x \to x, \ x \lor y \to y \lor x, \ x \lor 0 \to x, \ x \lor 1 \to 1 \}.$

Results for shallow right-linear systems:

- Word problem is decidable [Comon+94, Niu96]
- Reachability and joinability are decidable [Takai+00]

Ashish Tiwari, SR I

Approach

R is confluent if

$$\forall s,t:s \leftrightarrow_R^* t \ \Rightarrow \ \exists u.s \rightarrow_R^* u \leftarrow_R^* t$$

Instead of checking for all s, t, we reduce the check to terms s, t from a finite set, but with respect to a slightly modified \overline{R} .

Key Idea 1: Finite set consists of constants, variables and top-stable flat terms

Ashish Tiwari, SR I

Top Stable Terms

A term is top-stable if it cannot be rewritten to a constant/variable. Example: $x \lor y$ is top-stable, whereas $x \lor 1$ is not.

Why are top-stable terms important for confluence?

If s, t are not top-stable, then $\exists \alpha, \beta$ s.t.

 $s \to_R^* \alpha, \ t \to_R^* \beta.$

If s, t are equivalent, then so are α, β . But we explicitly check for joinability of all equivalent α, β .

Problem: There are infinitely many top-stable terms.

Ashish Tiwari, SR I

Top Stabilizable Constants

A constant that is R-equivalent to a top-stable term.

Why are top-stabilizable constants important for confluence?

Sup. c is top-stabilizable and top-stable s is equivalent to c:

Given	Need to check
$u[c] \leftrightarrow^* v$	$u[c]\downarrow v$
$u[s] \leftrightarrow^* v$	$u[s] \downarrow v$
$u[\overline{c}] \leftrightarrow^*_{\overline{R}} v$	$u[\overline{c}]\downarrow_{\overline{R}} v$

Top-stabilizable c should not be used in the joinability proof. Why?

Ashish Tiwari, SR I

Shallow Right-Linear TRSs

Confluence preserving transformation:

Shallow right-linear \mapsto Flat right-linear

Flat TRSs can only <u>use</u> depth zero terms or non-top-stable terms in rewrite derivations.

Example. Unused subterms can be generalized:

Example: Useless positions can be generalized:

 $1 \quad \rightarrow \quad (x \lor y) \lor 1 \qquad \longmapsto \qquad 1 \quad \rightarrow \quad z \lor 1$

Ashish Tiwari, SR I

Extending R to \overline{R}

Fixpoint computation: Incrementally add \overline{c} for constants c that can be detected to be top-stabilizable.

$$R_{0} = R$$

$$R_{i+1} = R_{i} \cup \{c \to \overline{d} : c, d \in \Sigma_{0}, \exists \text{ flat term } t \in \mathcal{T}(\Sigma \cup \overline{\Sigma}_{0}, \mathcal{V}) :$$

$$t \leftrightarrow_{R_{i}}^{*} c \leftrightarrow_{R}^{*} d, t \text{ is top-stable wrt } R_{i}\}$$

$$\overline{R} = \bigcup_{i} R_{i}$$

If $c \to \overline{d} \in \overline{R}$, then d is top-stabilizable.

Ashish Tiwari, SR I

Detecting Top-Stabilizable Constants

Key Idea 2: The detection of top-stabilizable constants is related to the "confluentness" of R.

Let R be confluent upto height h:

—i.e., any set of equivalent terms with height $\leq h$ is joinable.

Then, if t is a top-stable term with height $\leq h + 1$ and equivalent to c, then t is detected:

—i.e., $c \to \overline{d} \in \overline{R}$ for some $\overline{d} \in \overline{\Sigma_0}$.

Ashish Tiwari, SR I

R is confluent iff the following two conditions hold:

(i) Every R-equivalent set of constants is R-joinable.

(ii) Let $\{\alpha_1, \ldots, \alpha_k, t_1, \ldots, t_n\}$ be an \overline{R} -equivalent set of terms, where $-\alpha_i \in \Sigma_0 \cup \mathcal{V}$, and $-t_i$ are top-stable flat terms wrt \overline{R} . Then, $\exists t'_1, \ldots, t'_n$ s.t. - every t'_i is either t_i or \overline{c} or x, - some t'_i coincides with t_i , and - the set $\{\alpha_1, \ldots, \alpha_k, t'_1, \ldots, t'_n\}$ is \overline{R} -joinable.

Ashish Tiwari, SR I

Example

- $R = \{ x \lor x \to x, \ x \lor y \to y \lor x, \ x \lor 0 \to x, \ x \lor 1 \to 1 \}.$
- $0 \nleftrightarrow^* 1$ and $0 \nleftrightarrow^* x$ and $1 \nleftrightarrow^* x$. Hence, condition (i) is vacuously true.
- Any term equivalent to 0 rewrites to 0. Same for 1 and x. Hence, none of 0, 1, and x are top-stabilizable.
 ∴ R = R.
- The set {x ∨ y, y ∨ x} is the only equivalent set of flat top-stable terms. But, this is joinable. Hence, condition (ii) is also true.
- Hence, R is confluent.

Ashish Tiwari, SR I

Proof Idea

- $\Leftarrow:$ If conditions (i) and (ii) are true, then
- -R is confluent and
- all top-stabilizable constants are detected.
- Pick the minimal witness; it is either witness for
 (a) to nondetection of top-stable term.
 (b) to nonconfluence, or
- If (a), then we can get a smaller witness for nonconfluence. \perp .
- If (b), then it can be mapped to a set of the form covered by condition (ii).
- \Rightarrow : Project derivation of *R*-joinability onto \overline{R} -joinability over flat terms.

Ashish Tiwari, SR I

Main Result

Confluence of shallow and right-linear term rewrite systems is decidable.

- Flatten R into a flat right-linear system
- Detect top-stabilizable constants and construct \overline{R}
- Check all equivalent constants are *R*-joinable
- Compute all sets of equivalent flat top-stable terms. Test if they are joinable, according to condition (ii)
- All above steps are possible because equivalence, reachability, and joinability are decidable for R and \overline{R}

Ashish Tiwari, SR I

Reflections

- Decidability of confluence for shallow right-linear systems is very surprising
- Proof is technical, but the high-level proof is similar to those for the special cases

Each generalization is getting exponentially harder

- Crucial points for confluence of a TRS class:
 - Is equivalence decidable?
 - Reachability and joinability used as black-box?
 - Is the class asymmetric?
- Open problem: Confluence of RL-FPO systems.

Ashish Tiwari, SR I