
Classes of Term Rewrite Systems with
Polynomial Confluence Problems

Guillem Godoy1, Robert Nieuwenhuis2, and Ashish Tiwari3

1 Technical University of Catalonia, Barcelona
ggodoy@lsi.upc.es

2 Technical University of Catalonia, Barcelona
roberto@lsi.upc.es

3 SRI Internaltional, Menlo Park, CA 94025
tiwari@csl.sri.com

Abstract. The confluence property of ground (i.e., variable-free) term
rewrite systems (TRS) is well-known to be decidable. This was proved
independently in [DTHL87,DHLT90] and in [Oya87] using tree automata
techniques and ground tree transducer techniques (originated from this
problem), yielding EXPTIME decision procedures (PSPACE for strings).
Since then, and until last year, the optimality of this bound had been a
well-known longstanding open question (see, e.g., [RTA01]).
In [CGN01]) we gave the first polynomial-time algorithm for deciding
the confluence of ground TRS. Later in [Tiw02] this result was extended,
using abstract congruent closure techniques, to linear shallow TRS, i.e.,
TRS where no variable occurs twice in the same rule nor at depth greater
than one. Here, we give a new and much simpler proof of the latter result.

1 Introduction

The fields of rewriting theory, formal language theory (and in particular
automata theory), and algebra have provided many useful tools to each other
[BO93,Ott99]. The theory of rewriting also contributes with fundamental re-
sults to programming languages (semantics, implementation, static analysis) and
automated deduction (symbolic computation, decision procedures, combination
procedures, constraint solving, parallel deduction), see, e.g., [DJ90,DP01] and
their references.

Rewriting essentially consists of the application of rules to expressions, re-
placing subexpressions by other ones (usually equivalent ones, in some sense).

Example 1. A (bottom up) tree automaton essentially consists of a ground term
rewrite system, like

a→ qa
g(qa)→ qg

f(qg, qf )→ qaccept

g(qg)→ qg
f(qa, qa)→ qf

for an automaton recognizing the regular tree language f(g+(a), f(a, a)).



2 Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari

String rewrite systems or Thue systems are a particular case of term rewrite
systems, restricted to the language of unary function symbols and constants. A
fundamental property of term rewrite systems is the confluence or Church-Rosser
property: it essentially says that if some irreducible expression is reached by
successive rewrite (or reduction) steps, then this is also the case independently of
which subexpression is rewritten first and by which rule, i.e., confluence converts
nondeterminism from “don’t know” into “don’t care”, thus avoiding the need
for backtracking. Therefore, confluence ensures the uniqueness of expressions in
normal (i.e., irreducible) form. For instance, the tree automaton of Example 1
can be regarded as deterministic since the rewrite system is confluent.

Confluence is, of course, a well-studied property for different classes of rewrite
systems. It is undecidable in general (see e.g., [KNO90] and its references), it
is decidable for terminating systems [KB70], and, interestingly, it is also de-
cidable for arbitrary ground systems. This latter result was proved indepen-
dently in [DTHL87,DHLT90] and in [Oya87] using tree automata techniques
and ground tree transducer techniques (originated from this problem), yielding
in both cases EXPTIME decision procedures. The basic idea is that one can build
a polynomial-size tree automaton A1 accepting the triples 〈t, u, v〉 such that u
and v are reachable from t, and another one A2 accepting the triples 〈t, u, v〉
such that u and v are joinable. Then, roughly, deciding confluence amounts to
checking the inclusion A1 ⊆ A2, which is in EXPTIME.

Since these ideas were developed, it has been a well-known open question
whether this bound is optimal (see, e.g., [RTA01]), but until last year no algo-
rithms better than PSPACE and EXPTIME had been found for ground string
and term rewrite systems, respectively, and no hardness results for these com-
plexity classes were found either.

In [CGN01] we gave the first polynomial-time algorithm for deciding the
confluence of ground term rewrite systems. Later, in [Tiw02], this result was
extended using abstract congruence closure techniques to linear shallow term
rewrite systems, i.e., TRS where no variable occurs twice in the same rule nor
at depth greater than one. Here, we present a new and much simpler proof of
the latter result, by combining the concept of top-stabilizability from [CGN01]
with other ideas from [Tiw02].

2 Basic Notions

Let F be a (finite) set of function symbols with an arity function arity :F →
IN . Function symbols f with arity(f) = n are called n-ary symbols (when n = 1,
one says unary and when n = 2, binary). If arity(f) = 0, then f is a constant
symbol. Let X be a set of variable symbols. The set of terms over F and X ,
denoted by T (F ,X ), is the smallest set containing all constant and variable
symbols such that f(t1, . . . , tn) is in T (F ,X ) whenever f ∈ F , arity(f) = n,
and t1, . . . , tn ∈ T (F ,X ). A position is a sequence of positive integers. If p is a
position and t is a term, then by t|p we denote the subterm of t at position p: we
have t|λ = t (where λ denotes the empty sequence) and f(t1, . . . , tn)|i.p = ti|p



Classes of Term Rewrite Systems with Polynomial Confluence Problems 3

if 1 ≤ i ≤ n (and is undefined if i > n). We also write t[s]p to denote the
term obtained by replacing in t the subterm at position p by the term s. For
example, if t is f(a, g(b, h(c)), d), then t|2.2.1 = c, and t[d]2.2 = f(a, g(b, d), d).
By |s| we denote the size (number of symbols) of a term s: we have |a| = 1 if
a is a constant symbol or a variable, and |f(t1, . . . , tn)| = 1 + |t1| + . . . + |tn|.
The height (or depth) of a term s is denoted by height(s) and is defined as:
height(a) = 1 if a is a constant symbol or a variable and height(f(t1, . . . , tn)) =
1 +max(height(t1), . . . , height(tn)).

If→ is a binary relation on a set S, then→+ is its transitive closure and→∗
is its reflexive-transitive closure. Two elements s and t of S are called joinable
by →, denoted s ↓ t, if there exists a u in S such that s→∗ u and t→∗ u.

The relation→ is called confluent or Church-Rosser if the relation←∗ ◦ →∗
is contained in →∗ ◦ ←∗, that is, for all s, t1 and t2 in S, if s →∗ t1 and
s →∗ t2, then t1 ↓ t2. An equivalent definition of confluence of → is that ↔∗ is
contained in →∗ ◦ ←∗, that is, all s and t in S such that s↔∗ t are joinable. (If
→ is confluent by the latter definition, then it is trivially also confluent by the
former one; the reverse implication follows by a simple induction on the number
of ←∗ ◦ →∗ patterns in the proof s↔∗ t.)

A substitution σ is a mapping from variables to terms. It can be extended
to a function from terms to terms in the usual way: using a postfix notation,
tσ denotes the result of simultaneously replacing in t every x ∈ Dom(σ) by xσ.
Substitutions are sometimes written as finite sets of pairs {x1 7→ t1, . . . , xn 7→
tn}, where each xi is a variable and each ti is a term. For example, if σ is
{x 7→ f(b, y), y 7→ a}, then g(x, y)σ is g(f(b, y), a).

A rewrite rule is pair of terms (l, r), denoted by l → r, with left-hand side
(lhs) l and right-hand side (rhs) r. A term rewrite system (TRS) R is a finite
set of rewrite rules. We say that s rewrites to t in one step at position p (by
R) if s|p = lσ and t = s[rσ]p, for some l → r ∈ R and subsitution σ. If p = λ,
then the rewrite step is said to be applied at the topmost position. The rewrite
relation →R induced by R on T (F ,X ) is defined by s→R t if s→R,p t for some
position p.

A (rewrite) derivation from s is a sequence of rewrite steps starting from s,
that is, a sequence s →R s1 →R s2 →R . . .. A TRS R is said to be confluent
if the relation →R is confluent. The size |R| of a TRS R of the form {l1 →
r1, . . . , ln → rn} is |l1|+ |r1|+ . . .+ |ln|+ |rn|.

Definition 1. A term t is called:

– linear if no variable occurs more than once in t.
– shallow if no variable occurs in t at depth greater than 1, i.e., if t|p is a

variable, then p is a position of length zero or one.
– flat if t is a non-constant term of the form f(s1, . . . , sn) where all si are

variables or constants.

Definition 2. A term rewrite system R is called shallow if all its sides are
shallow and is called flat if all its sides are either flat or constants. It is called



4 Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari

linear if for all its rules l→ r, the term f(l, r) is linear, i.e., no variable occurs
more than once in each rule.

Definition 3. let R be a TRS.
A term s is reachable from t by R if t→∗R s.
Two terms s and t are equivalent by R if s↔∗R t.
Two terms s and t are joinable by R if s ↓R t.

Theorem 1 (see, e.g., [Nie98], Theorem 4.4). The following problem is
decidable in polynomial time:

Input: a shallow TRS R and two terms s and t
Question: are s and t equivalent by R?

Theorem 2 (see, e.g., [CDG+01]). The following two problems are decidable
in polynomial time:

Input: a linear TRS R and two terms s and t
Question: is t reachable from s by R?

Input: a linear TRS R and two terms s and t
Question: are s and t joinable by R?

3 Confluence of Linear Shallow TRS

In this section we first give a polynomial-time confluence-preserving proce-
dure that transforms any linear shallow TRS into a linear flat TRS R such that
each rule of R has at least one constant side. It is based on the transformation
of Section 3.2 of [CGN01].

Lemma 1. Any linear shallow term rewrite system R (over T (F ,X )) can be
transformed in polynomial time into a linear flat term rewrite system R′ over
T (F ∪ K,X ), where K is a finite set of constants disjoint from F , such that

– if l→ r ∈ R′, then either l or r is a constant,
– R is confluent over T (F ,X ) if and only if R′ is confluent over T (F ∪ K,X ).

Proof. First, one can flatten R by repeatedly applying the following transforma-
tion step:

R1 ⇒ R2 ∪ {c→ t, t→ c} (Constant introduction and replacement)

where t is a non-constant term occurring in R1 at depth 1 or more, c is a new
constant symbol not occurring anywhere in R1, and R2 is obtained by replacing
all occurrences of t in R1 by c. Similar transformations are used as well in fast
algorithms for congruence closure [DST80,NO80,Sho84].

In order to see that such steps preserve confluence, first consider only in-
troducing the rules c → t and t → c, and note that if c is a new constrant,
for any R we have that T (F ,X ) with the relation →∗R is isomorphic to the



Classes of Term Rewrite Systems with Polynomial Confluence Problems 5

congruence classes generated by {s→ t, t→ c} on T (F ∪ {c}, X) with the rela-
tion →∗R ∪ {c→t,t→c}. Second, for all terms s and t we have →∗R1 ∪ {s→t,t→s} =
→∗R2 ∪ {s→t,t→s} if R2 is obtained from R1 by replacing somewhere s by t, and
hence confluence is preserved as well. By considering a polynomial sequence of
such constant introduction and replacement steps we can obtain a flat TRS.

By a similar transformation process, one can enforce the condition that at
least one side of each rule is a constant:

R ∪ {l→ r} ⇒ R ∪ {l→ c, c→ r} (Rule splitting)

where l and r are non-constant flat terms and c is a new constant symbol not
occurring anywhere in R, l or r. By similar reasoning as before, again each such
steps preserve confluence. ut

As a consequence of the previous lemma, in the following we can restrict our
attention to flat linear TRS where every rule has at least one constant side. We
can also assume that no side of the TRS is a variable: a variable lhs makes it
trivially confluent; and if there is some variable rhs, but no variable lhs, then it
is trivially non-confluent.

Definition 4. Let R be a TRS. A term t is top-stable w.r.t. R if there exists
no derivation from t containing a rewrite step at the top, i.e., there exists no
derivation of the form t→R . . .→R t

′ →R,λ t
′′.

Definition 5. Let R be a TRS.

1. A non-constant term f(s1, . . . , sn) is top-stabilizable w.r.t. R if there exist
terms s′1, . . . , s

′
n such that si ↔∗R s′i and f(s′1, . . . , s

′
n) is top-stable.

2. A constant c is top-stabilizable w.r.t. R if there exists a top-stable non-
constant term s such that c↔∗R s.

Theorem 3. Let R be a linear flat TRS where each rule of R has at least one
constant side. The set of constants and flat terms that are top-stabilizable w.r.t.
R is computable in polynomial time.

Proof. In the following fixpoint construction, which is based on the polynomial
tests for reachability and equivalence, c denotes a constant, and s, t, and l denote
flat terms of the form f(s1, . . . , sn), f(t1, . . . , tn), and f(l1, . . . , ln), respectively:

S0 = ∅
Sj+1 = Sj

∪{ c | ∃ s ∈ Sj s.t. c↔∗R s } (FP1)
∪{ s | ∃ t ∈ Sj s.t. si ↔∗R ti for all i in 1..n } (FP2)
∪{ s | ∀ l→ r ∈ R ∃ i s.t. li constant, and si ∈ Sj or si 6→∗R li } (FP3)

For a given (fixed; see the next section) signature there are polynomially many
constants and flat terms. Hence a fixpoint Sk is reached after polynomially many
iterations.



6 Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari

We first show, by induction on the index j, that every term in Sk is top-
stabilizable. Suppose Sj contains only top-stabilizable terms. Terms added to
Sj+1 by rules (FP1) and (FP2) are clearly top-stabilizable. Now, let s be added
to Sj+1 by (FP3). By induction hypothesis, for each si that is in Sj there is a
top-stable, non-constant s′i such that si ↔∗R s′i. Consider the term s′ of the form
f(s′1, . . . , s

′
n) obtained from s by replacing all such si by its corresponding s′i, and

not replacing the remaining si. Now s is top-stabilizable since s′ is top-stable:
no rule is applicable at the top to any term reachable from s′, because for each
rule f(l1, . . . , ln) → r in R there is an i in 1..n such that li is a constant, and
either s′i is a top-stable non-constant, or else s′i 6→∗R li.

We next prove, by contradiction, that Sk contains all top-stabilizable con-
stants and flat terms in T (F ,X ). Assume that there exists some top-stable (not
necessarily flat!) non-constant term u of the form f(u1, . . . , un) such that (i) for
some c not in Sk we have c↔∗R u or (ii) for some flat term s ∈ T (F ,X ) not in
Sk, for all i we have si ↔∗R ui. We choose such a u to be minimal in size, and,
in case we have a choice between cases (i) and (ii) with the same minimal size
of u, we choose case (ii).

We first deal with case (i). We can split c ↔∗R u into two parts c ↔∗R
f(v1, . . . , vn)↔∗R u, where the second part is the maximal suffix with no step at
the top. Hence there exists a side of a rule f(l1, . . . , ln) of which f(v1, . . . , vn)
is an instance. Now consider the term u′ of the form f(u′1, . . . , u

′
n) where each

u′i is li if li is a variable and where u′i is ui if li is a constant. Then we have
c ↔∗R f(l1, . . . , ln) ↔∗R u′ where u′ is top-stable and |u| ≥ |u′|. By our assump-
tion on the choice of u and c, it follows that f(l1, . . . , ln) is in Sk. But then by
(FP1) c ∈ Sk.

For case (ii), we can assume that each constant or variable ui is equal to the
corresponding si (otherwise, after replacing all such si by ui in s the resulting s
is top-stabilizable with the same u and is not in Sk due to (FP2)). Since u is top-
stable, for every rule f(l1, . . . , ln)→ r there is some constant li such that (a) ui is
a variable or a constant s.t. ui 6→∗R li, or (b) ui is top-stable (otherwise, since each
rule has a constant side, it can be rewritten into a constant, producing a smaller
top-stable counterexample u). In case (b), by our minimality assumptions, si is
a constant in Sk. In both cases si is in Sk or si 6→∗R li. Then by (FP3), s is in
Sk: contradiction. ut

Together with Theorems 1 and 3 and Lemma 1, the following theorem shows
that the confluence of linear shallow TRS is decidable in polynomial time. This
result was proved for the first time in [Tiw02]. The proof we give here combines
the ideas about top-stabilizability from [CGN01] with other ideas from [Tiw02].

Theorem 4. Let R be a linear flat TRS such that each rule of R has at least one
constant side. Then R is confluent if, and only if, the following four conditions
hold:

1. All constants c and d with c↔∗R d are joinable.
2. If s is a top-stabilizable side of R, then s is ground.



Classes of Term Rewrite Systems with Polynomial Confluence Problems 7

3. If f(s1, . . . , sn) and g(t1, . . . , tm) are top-stabilizable sides of R such that
f(s1, . . . , sn)↔∗R g(t1, . . . , tm), then f = g (and hence n = m) and si ↔∗R ti
for all i in {1, . . . , n}.

4. If c is a top-stabilizable constant then c →∗R f(s1, . . . , sn) for some top-
stabilizable side f(s1, . . . , sn) of R.

Proof. The left-to-right implication is straightforward:

1. If R is confluent then all terms s and t with s↔∗R t are joinable.
2. Let s be a non-ground top-stabilizable side of R, c be the constant on the

other side of s in the rule in R, and s′ be the top-stable term corresponding
to s. Clearly, s′ is non-ground (otherwise, by definition of top-stabilizability,
some variable in s would be congruent to a ground subterm of s′). Therefore,
let x be a variable in s′. Then, the terms s′ and s′σ, where σ renames x to
a new variable y, are top-stable terms equivalent by R (both are equivalent
to c). If R is confluent, then x and y are joinable by R, a contradiction.

3. The terms f(s1, . . . , sn) and g(t1, . . . , tm) are top-stabilizable, i.e., there exist
top-stable terms f(s′1, . . . , s

′
n) and g(t′1, . . . , t

′
m) such that si ↔∗R s′i and

ti ↔∗R t′i for all i. Since R is confluent and f(s′1, . . . , s
′
n) ↔∗R g(t′1, . . . , t

′
m),

the top-stable terms f(s′1, . . . , s
′
n) and g(t′1, . . . , t

′
m) are joinable. This can

only be the case if f = g and if the s′i and t′i are pairwise joinable for all i.
This implies that si ↔∗R ti for all i in {1, . . . , n}.

4. The constant c is top-stabilizable, i.e., there exists a top-stable f(t1, . . . , tn)
such that c↔∗R f(t1, . . . , tn). By confluence, c and f(t1, . . . , tn) are joinable:
they both rewrite into a term u. Since f(t1, . . . , tn) is top-stable, u must
be of the form f(u1, . . . , un). Then the last topmost step in the derivation
c→∗R f(u1, . . . , un) must be with a rule of the form l→ f(s1, . . . , sn), where
f(s1, . . . , sn) is the top-stabilizable side of R we were looking for.

For the right-to-left implication, assume that the four conditions hold but R
is not confluent. Let (s, t) be a counterexample to confluence, i.e. s ↔∗R t but
s 6↓R t, where height(s) + height(t) is minimal. We have the following cases:

– Either s or t is a variable.
This cannot happen since variables are only congruent to themselves by R.

– Both s and t are constants.
Then case 1 leads to a contradiction.

– s is a constant c and t is of the form f(t1, . . . , tn).
Then t must be top-stable, since otherwise (because all rules have a constant
side) t could be rewritten into some constant, which would contradict the
minimality assumption.
Then c↔∗R t can be written c↔∗R f(t′1, . . . , t

′
n)↔∗R f(t1, . . . , tn), where the

second part is the longest possible suffix with no steps at the top. Hence
f(t′1, . . . , t

′
n) is a top-stabilizable instance of a side f(l1, . . . , ln) of R. In

fact, w.l.o.g. we can assume that f(t′1, . . . , t
′
n) is itself a side of R: other-

wise, some li is a variable, and we can replace this t′i by li in f(t′1, . . . , t
′
n)

and also ti by li in t and omit all steps of the subderivation t′i ↔R ti in



8 Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari

f(t′1, . . . , t
′
n)↔∗R f(t1, . . . , tn). Note that this replacement in t does not make

the counterexample any larger, and that it does not affect the non-joinability
of c and t, nor the top-stability of t.
Hence we have c ↔∗R f(t′1, . . . , t

′
n) ↔∗R f(t1, . . . , tn), and we can assume,

using additionally condition 2, that f(t′1, . . . , t
′
n) is a ground top-stabilizable

side of R such that c ↔∗R f(t′1, . . . , t
′
n) and t′i ↔∗R ti for all i in {1, . . . , n}.

Since c is top-stabilizable, by conditions 2 and 4, we have c→∗R g(s1, . . . , sm)
for some ground top-stabilizable side g(s1, . . . , sm).
By condition 3 we have f = g and si ↔∗R t′i, and hence si ↔∗R ti, for all i
in {1, . . . , n}. This contradicts our minimality assumption: f(s1, . . . , sn) 6↓R
f(t1, . . . , tn) implies that si 6↓R ti for some i in {1, . . . , n} where height(si) =
1 and height(ti) < height(t).

– s and t are of the form f(s1, . . . , sn) and g(t1, . . . , tm).
Either f 6= g or for some i we have si 6↔∗R ti, since otherwise we would
have sj ↔∗R tj for some non-joinable sj and tj , contradicting our minimality
assumption. Therefore f(s1, . . . , sn) ↔∗R c ↔∗R g(t1, . . . , tm) for some con-
stant c. Moreover, both terms are top-stable (as in the previous case, because
all rules have a constant side: otherwise they could be rewritten into some
constant, which would contradict the minimality assumptions).
Considering the leftmost step at the top in f(s1, . . . , sn) ↔∗R c, we have
f(s1, . . . , sn)↔∗R f(s′1, . . . , s

′
n)↔λ↔∗R c. Doing similarly with g(t1, . . . , tm),

we know that there exist top-stabilizable f(s′1, . . . , s
′
n) and g(t′1, . . . , t

′
m) that

are instances of sides, such that f(s′1, . . . , s
′
n) ↔∗R c ↔∗R g(t′1, . . . , t

′
m) and

si ↔∗R s′i and ti ↔∗R t′i for all i in {1, . . . , n}. Reasoning as in the previous
case, w.l.o.g. we can assume that f(s′1, . . . , s

′
n) and g(t′1, . . . , t

′
m) are not

only instances of sides, but that they are the sides themselves, which are
also ground.
Then, by condition 3, f = g and s′i ↔∗R t′i, which is a contradiction with the
fact that either f 6= g or si 6↔∗R ti for some i. ut

Theorem 5. The confluence of linear shallow term rewrite systems is decidable
in polynomial time.

4 We need to consider a fixed signature

All along this article, we have assumed that all terms and the TRS R are
built over a fixed signature F , which is not part of the input of the confluence
problem. Indeed, if the arities of the input symbols are not bounded, we have
the following result.

Theorem 6. The following problem is NP-hard:
Input: a signature F , a shallow TRS R over F , and two terms s and t
Question: is s reachable from t by R?
Similarly, the joinability and confluence problems are NP-hard when F is part
of the input.



Classes of Term Rewrite Systems with Polynomial Confluence Problems 9

Proof. By reducing the 3-SAT problem. Here we only give the proof for the
reachability case. Given a 3-SAT instance P with variables x1, . . . , xn and clauses
c1, . . . , cm, we create a TRS RP built over an m-ary symbol f , an n-ary symbol
g, and constants a, b, c, 0, 1, c1, . . . , cm.

The TRS RP contains the rules a → f(c1, . . . , cm), c → 0, c → 1, and
f(x, . . . , x) → b, and, for each clause ci of P , for each negative (positive)
variable xj in it there is a rule ci → g(c, . . . , c, 0, c, . . . , c) (repectively ci →
g(c, . . . , c, 1, c, . . . , c) ) where the 0 or 1 is at position j in the rhs. It is not hard
to see that P is satisfiable iff b is reachable from a by RP . ut

5 Conclusions and further work

We have given an –in our opinion surprisingly simple– polynomial-time de-
cision procedure for the confluence of linear shallow TRS. Our result striclty
subsumes the previous work of [CGN01] on variable-free TRS, which was al-
ready a longstanding open problem [RTA01].

We also believe that our simpler proof techniques will open the door to poly-
nomial algorithms for more general classes of TRS. In particular, the restriction
that both sides of the rules do not share any variables could perhaps be dropped,
i.e., our techniques could perhaps deal with shallow TRS where in each rule both
sides are linear terms. In the other direction, one could consider arbitrary shallow
TRS where both sides do not share any variables.

Finally, using the techniques introduced here, it might be possible to prove
the decidability of confluence for arbitrary TRS where both sides do not share
any variables; this includes the so-called right ground TRS, another well-known
open problem.

References

[BO93] R. Book and F. Otto. String Rewriting Systems. Springer-Verlag Inc., New
York, NY, USA, 1993.

[CDG+01] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. This elec-
tronic book is available at http://www.grappa.univ-lille3.fr/tata, 2001.

[CGN01] Hubert Comon, Guillem Godoy, and Robert Nieuwenhuis. The confluence of
ground term rewrite systems is decidable in polynomial time. In 42nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2001.

[DHLT90] Max Dauchet, Thierry Heuillard, Pierre Lescanne, and Sophie Tison. De-
cidability of the confluence of finite ground term rewrite systems and of other
related term rewrite systems. Information and Computation, 88(2):187–201,
October 1990.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan
van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B:
Formal Models and Semantics, chapter 6, pages 244–320. Elsevier Science
Publishers B.V., Amsterdam, New York, Oxford, Tokyo, 1990.



10 Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari

[DP01] Nachum Dershowitz and David Plaisted. Rewriting. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science
Publishers and MIT Press, 2001.

[DST80] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the com-
mon subexpressions problem. J. of the Association for Computing Machinery,
27(4):758–771, 1980.

[DTHL87] Max Dauchet, Sophie Tison, Thierry Heuillard, and Pierre Lescanne. De-
cidability of the confluence of ground term rewriting systems. In Proceedings,
Symposium on Logic in Computer Science, pages 353–359, Ithaca, New York,
22–25 June 1987. The Computer Society of the IEEE.

[KB70] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras.
In J. Leech, ed., Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, Oxford, 1970.

[KNO90] Deepak Kapur, Paliath Narendran, and Friedrich Otto. On ground confluence
of term rewriting systems. Inform. Comput., 86(1):14–31, 1990.

[Nie98] Robert Nieuwenhuis. Decidability and complexity analysis by basic paramod-
ulation. Information and Computation, 147:1–21, 1998.

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures bases on congru-
ence closure. Journal of the Association for Computing Machinery, 27(2):356–
364, April 1980.

[Ott99] F. Otto. On the connections between rewriting and formal language theory.
In P. Narendran and M. Rusinowitch, editors, Tenth International Conference
on Rewriting Techniques and Applications (RTA), LNCS 1631, pages 332–355,
Trento, Italy, July 2–4, 1999. Springer-Verlag.

[Oya87] M. Oyamaguchi. The Church-Rosser property for ground term-rewriting sys-
tems is decidable. Theoretical Computer Science, 49(1):43–79, 1987.

[RTA01] RTA-LOOP. Problem #12, posed by Wayne Snyder in 1991. Int. Conf.
on Rewriting Techniques and Applications, The list of open problems, 2001.
Maintained at http://www.lri.fr/~rtaloop/ (by R. Treinen).

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1–12, January 1984.

[Tiw02] A. Tiwari. Deciding confluence of certain term rewriting systems in polynomial
time. In Gordon Plotkin, editor, IEEE Symposium on Logic in Computer
Science, LICS 2002, volume xxx of xxx, page xxx. IEEE Society, July 2002.


