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Abstract. Invariants are a crucial component of the overall correctness
of programs. We explore the theoretical limits for doing automatic in-
variant checking and show that invariant checking is decidable for a large
class of programs that includes some recursive programs. The proof uses
known results like the decidability of Presburger arithmetic and the semi-
linearity of the Parikh image of a regular language. Removing some of the
restrictions on the program model leads to undecidability of the invariant
checking problem.

1 Introduction

The ability to generate reliable and correct software depends crucially on the
development of tools for automatically verifying the correctness of programs.
Modern software development tools support automatic program analysis, but
only to a limited extent. Extending these analyses to richer and deeper properties
of programs is an active area of research.

Invariants are a crucial component of the overall correctness of programs.
An invariant is simply an expression that evaluates to “true” on all executions
(paths) of the program. The problem of checking whether a given expression is an
invariant is undecidable in general. However, there are simplified program models
for which invariant checking is decidable, even efficiently. These decidability
results are important in two respects: they help in developing efficient analysis
engines and understanding the causes of undecidability, which in turn is useful
for identifying places where any analysis engine will necessarily be incomplete.

There are several results on the decidability of invariant checking for re-
stricted program models. These decidability results are parameterized by three
choices: (a) the program model, (b) the theory of the expression language used
in the program model, and (c) the form of the assertion. A common assump-
tion on the program model is that there are no procedure call nodes [6, 11, 12,
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7, 8]. When procedure call nodes are allowed, it is commonly assumed that vari-
ables can take only finitely many values [4, 3, 1]. When (restricted) procedure call
nodes are allowed, and also infinite domains for data values are allowed [16, 13,
14, 10, 9], then, it is assumed that assertions are always equality of two program
expressions. In other words, there are no results for the case when procedure call
nodes, infinite data values, and disequality assertions are all allowed. However,
note that checking invariance of disequalities is equally important; for example,
for alias analysis.

In this paper, we show that invariant checking is decidable in a setting which
allows (a) recursive procedure call nodes in the program model, (b) infinite
domains for values of variables, and (c) any Boolean combination of equality
and disequality of program expressions as the assertion. Specifically, we define
a programming model in which a program contains a finite number of program
variables, but each variable takes values over the infinite domain of (uninter-
preted first-order) terms. The program variables are updated by assignments
and the control flow structure consists of non-deterministic conditionals, loops,
and (possibly recursive) procedure calls. We identify a subclass of programs in
this programming model for which the problem of checking if an equality or
disequality (or any Boolean combination thereof) is an invariant is decidable.

In the process of obtaining the main result, we also show that the following
problem is solvable: given N +M substitutions, σ1, . . . , σN , β1, . . . , βM , N +M
integer variables, n1, . . . , nN ,m1, . . . ,mM , and terms x, y, determine if there is
a value for the N +M integer variables in a given semilinear set such that

σnN

N . . . σn1
1 (x) = βmM

M . . . βm1
1 (y).

This result can be of independent interest.

2 Preliminaries

Let T (Σ, {X}) be the set of all the terms constructed over a fixed finite signature
Σ and a set of variables X. The root symbol of a term t is denoted by root(t).
The positions Pos(t) in a term t are sequences of positive integers (ε, the empty
sequence, is the root position). A subterm of t at position p is written t|p. The
concatenation of the positions p and q is denoted as p.q. A substitution is a
mapping from a set of variables X to T (Σ, {X}). We denote substitutions by
σ, θ and σ(t) denotes the term obtained by replacing every variable in t by
its image by σ. Given substitutions σ and θ, their composition is denoted by
juxtaposition σθ, and is defined by σθ(x) := σ(θ(x)).

A linear set is any subset of Nk that can be written in the form {c0 +∑n
i=1 αici | αi ∈ N} for some fixed n+ 1 vectors c0, . . . , cn in Nk. A semilinear

set is a finite union of linear sets.
The Parikh image of a word w ∈ Σ∗ is a vector in N|Σ| that contains the

number of occurrences in w of each symbol in Σ. For example, if Σ = {a1, a2}
and w = a1a2a1a1, then the Parikh image of w is 〈3, 1〉. It is well known that
Parikh image of a regular (even context-free) language is semilinear [15].
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if (*) then

〈x, y〉 := 〈x + x, x〉;
else

while (*) do

〈x, y〉 := 〈sin(y) + sin(y), sin(y)〉;
endwhile

endif

assert(x = 2y)

if (*) then

〈x, y〉 := 〈f(x, x), x〉;
else

while (*) do

〈x, y〉 := 〈f(g(y), g(y)), g(y)〉;
endwhile

endif

assert(x = f(y, y))

Fig. 1. A simple program (left) and its abstracted version (right). The abstract version
is obtained by replacing the interpreted symbols +, sin by uninterpreted symbols f, g
respectively.

A Presburger arithmetic formula is a (possibly quantified) first-order for-
mula over predicate symbols = and >, and with terms constructed using the
binary symbol + and constant symbols N (that is, linear arithmetic expressions
are allowed). Presburger arithmetic formulas are interpreted over the natural
numbers in the standard way. If φ is a sentence in Presburger arithmetic, then
|=N φ denotes validity of φ. We will use |= to denote validity in the pure theory
of equality over uninterpreted symbols (occasionally, this theory combined with
Presburger arithmetic).

Every semilinear set can be represented using a Presburger formula. Hence,
it follows that for every regular language L, there exists a Presburger formula
φL whose solutions coincide with the Parikh image of L. In fact, the size of the
formula φL can be bounded using the following result from Seidl et. al. [17].

Theorem 1 (Seidl et. al. [17], Theorem 1). For any nondeterministic finite
automaton A, an existential Presburger formula φA for the Parikh image of the
language L(A) of A can be constructed in time O(|A|), where |A| is the number
of states plus the number of transitions in A.

3 Invariant Checking and Related Work

We illustrate the main ideas related to invariant checking via a simple example.
Consider the program in Figure 1 (left). Given an assertion, say x = 2y, at the
end of the program, the problem of invariant checking seeks to find out if the
assertion is an invariant of the program, that is, if it evaluates to true for all
executions of the program.

Since invariant checking is undecidable for general programs, often the pro-
gram is abstracted and invariants are checked on the abstracted program. The
program in Figure 1 (left) has already abstracted away the actual conditions
(that were present in some original program) and replaced them with nonde-
terministic choices (*). This new program has more behaviors, and hence if an
expression is an invariant for this new program, it will be an invariant of the orig-
inal. For the above example, it is easy to see that the assertion at the end of the
program holds under all possible executions of this nondeterministic program.
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The left program can be abstracted further by replacing the interpreted func-
tions, + and sin, by uninterpreted functions, say f and g. Again, this is a sound
abstraction – the new abstracted program, shown on the right-hand side of Fig-
ure 1, has more behaviors. The process of abstraction is attractive since it can
give a program that lies in a class of programs for which invariant checking is
decidable.

The decidability of the assertion checking problem is parameterized by three
choices: (a) the program model, (b) the theory of the expression language used
in the program model, and (c) the form of the assertion. We briefly describe the
common choices made for obtaining decidability and point to related work.
(a) The program model: First note that including conditional branches in pro-
grams quickly leads to undecidability of invariant checking [12, 11]. Hence, a
commonly studied program model is one that contains only assignments, non-
deterministic conditionals and non-deterministic loops. The two programs in
Figure 1 fall into this category. Since interprocedural analysis is more difficult,
procedure call nodes are often disallowed in the program model [6, 11, 12, 7, 8].
For this program model, invariant checking is decidable when the expressions
are terms over uninterpreted symbols and assertions are term equalities [6, 8].
For example, the invariant checking problem for the program in Figure 1 (right)
falls into this class. However, the invariant checking problem becomes undecid-
able if we consider disequality assertions, such as x 6= y, rather than equality
assertions [18]. It remains decidable when the assertion is a disjunction of con-
junctions of equalities [8]. For the same program model, the above results also
generalize to several other expression languages; the reader is referred to [8] for
details.
A useful extension of the program model is obtained by including procedure
calls. If the procedure calls are not recursive, the problem can be reduced to the
original one by just inlining the procedures. When recursive procedure calls are
allowed, the problem becomes more complex, and there are very few results on
the decidability of invariant checking [9].
(b) The expression language: It is commonly assumed that infinite data types
have been abstracted into finite types and this assumption forms the starting
point for several investigations, especially when the program model allows recur-
sive procedure calls [4, 3, 1]. Our work, however, takes a complementary path.
We focus on restricted and simpler control flow paths, but keep the data type
domains infinite.
(c) The form of assertion: There are some results for the case when procedure
calls and infinite data types are both allowed [16, 13, 14, 10, 9], but in all these
cases, as well as in most of the other works, assertions are restricted to equality
between program expressions.

In contrast to all the above mentioned works, we consider equality and dis-
equality assertions in the presence of recursive procedure calls and infinite data
types. Since the Post Correspondence Problem (PCP) can be reduced to checking
a disequality assertion in a non-deterministic loop containing non-deterministic
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main () {
〈x, y〉 := 〈f(x, x), x〉;
call P ;

y := f(y, y);
assert(x = y);

}

P() {
if (*) then // do nothing

else

x := g(x); call P ; y := g(y);
endif

}

Fig. 2. A simple program containing a main procedure (left) and a subprocedure
(right).

conditionals (see Figure 3 and [18]), we have to restrict the program model – by
disallowing conditionals within loops – to achieve decidability.

Summary of the Main Ideas and Results.

Consider the recursive program in Figure 2. We will view an assignment block
〈x1, . . . , xn〉 := 〈s1, . . . , sn〉 as the substitution σs = {x1 7→ s1, . . . xn 7→ sn}. In
the program in Figure 2, the five assignment blocks correspond to the following
five substitutions:

σ1 = {x 7→ f(x, x), y 7→ x} σ2 = {x 7→ x, y 7→ f(y, y)} σ3 = {x 7→ x, y 7→ y}
σ4 = {x 7→ g(x), y 7→ y} σ5 = {x 7→ x, y 7→ g(y)}

The assertion x = y holds at the end of procedure main iff x and y have equal
values at that point on all program paths. This is equivalent to deciding whether

σ1σ
N
4 σ3σ

N
5 σ2(x) = σ1σ

N
4 σ3σ

N
5 σ2(y), for every N ≥ 0 (1)

Note that the underlined composition of substitutions capture the effect of the
recursive procedure P, and N represents the total number of recursive calls to P
in a certain execution.

Consider the negation of Condition 1:

σ1σ
N
4 σ3σ

N
5 σ2(x) 6= σ1σ

N
4 σ3σ

N
5 σ2(y), for some N ≥ 0 (2)

We view the above literal as an instance of the general dis-unification problem:
find all numerical values for the variables i1, . . . , in, j1, . . . , jm such that

σi11 . . . σinn (x) 6= βj11 . . . βjmm (y). (3)

where σi, βj ’s are given substitutions. We prove that the solutions for this dis-
unification problem can be expressed with a Presburger arithmetic formula with
free variables i1, . . . , in, j1, . . . , jm. As a consequence, we prove decidability of
any Boolean formula whose atoms are of Form 3, and in particular, we prove
decidability of our original invariant checking problem.

In our example, we construct the Presburger sentence equivalent to Equa-
tion 1 by constructing a Presburger formula φ for the following “more general”
set:

{〈i1, . . . , i5, j1, . . . , j5〉 ∈ N10 | σi11 σ
i4
4 σ

i3
3 σ

i5
5 σ

i2
2 (x) 6= σj11 σ

j4
4 σ

j3
3 σ

j5
5 σ

j2
2 (y)}
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The Presburger formula φ is obtained in two steps. In the first step, we construct
a non-deterministic finite automaton A on an alphabet with 10 symbols such that
the Parikh image of the language accepted by A is equal to the above set. This
construction is given in Section 5. In the second step, we construct a Presburger
formula representing the Parikh image of A.

We characterize the class of programs for which the invariant checking prob-
lem can be decided using our approach. A program is in this class if the effect
of all its execution paths can be described as a finite union of expressions of the
form σi11 . . . σinn , with linear conditions relating the ij ’s. We also define a general
program model and a syntactic subclass, called Sloopy Programs, that falls in
the decidable class. An important restriction is that Sloopy Programs disallow
conditionals within loops.

The outline for the rest of the paper is as follows. In Section 4 we define
the notion of parameterized substitutions, present our program model and the
subset of Sloopy Programs. We show that parameterized substitutions are suffi-
cient to finitely represent the semantics of Sloopy Programs. Thus, the invariant
checking problem is reduced to deciding conditions of the form of Equation 1. In
Section 5 we show that these conditions are decidable. Finally, we put forward
our conclusions in Section 7 and discuss avenues for future research.

4 Program Model, Semantics, and Parameterized
Substitutions

The programs considered in this paper do not have input and are non-deterministic.
The semantics of a concrete execution of a program is the final value of its vari-
ables, which can be viewed as a substitution σ. The semantics of a program can
then be defined as the set of substitutions corresponding to all its possible exe-
cutions. We are interested in programs whose semantics is finitely representable
in some formalism. In this setting, the following definition will be useful.

Definition 1. A parameterized substitution, θ(n1, . . . , nN ), or θ(n) in short,
is an expression of the form

σnN

N · · ·σn3
3 σn2

2 σn1
1

where each ni is a variable (ranging over the natural numbers) and each σi is a
substitution. A parameterized substitution is succinctly written as σn.

An instance of θ(n) is a substitution obtained by fixing the valuation for the
variables n. If Θ is a set of parameterized substitutions, then the set Instances(Θ)
is defined as

Instances(Θ) := {σ | σ := θ(c), c ∈ NN , θ(n) ∈ Θ}

An extended parameterized substitution is a pair (θ(n);χ(n)) where θ(n) is
a parameterized substitution and χ(n) is a Presburger formula with free vari-
ables n. If Θ is a set of extended parameterized substitutions, then the set
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Instances(Θ) is defined as

Instances(Θ) := {σ | σ := θ(c), c ∈ NN , |=N χ(c), (θ(n);χ(n)) ∈ Θ}

For a given class of programs, we say that its semantics is effectively repre-
sentable with extended parameterized substitutions if, for every program P in
the class, a finite set Θ of extended parameterized substitutions can be computed
such that the semantics, [|P |], of P is equal to Instances(Θ).

Note that a parameterized substitution θ can be written as an extended
parameterized substitution (θ; true).

Program Model. We define a general class of programs syntactically and then
identify its subclass that is effectively representable with extended parameterized
substitutions. Let X be a finite set of variables, called program variables. A
program is a finite ordered list of procedures, 〈P0, P1, . . . , Pk〉, where a procedure
is a string defined by the following grammar:

P ::= X := t | P ; P |
if (∗) P else P endif | while (∗) P endwhile | call n

where n ∈ {0, . . . , k} is an index (referring to the procedure at the n-th position
in the ordered list above) and t is a vector of terms (of size exactly equal to
|X|).

We next define a subclass of programs called Sloopy Programs that only
contain simple loops. A Sloopy Procedure is defined as follows:

Intrn ::= X := t | while (∗) X := t endwhile | Intrn ; Intrn |
if (∗) Intrn else Intrn endif | call m where m > n

SProcn ::= Intrn | if (∗) Intrn else X := t; call n; X := t′ endif

A Sloopy Program is an ordered list of procedures, 〈P0, P1, . . . , Pk〉, where each
Pi is generated by SProci. We assume that P0 is the main procedure.

The class of Sloopy Programs has two main restrictions compared to the
class of general programs defined above. First, it restricts what can occur inside
a nondeterministic while loop. Specifically, it disallows conditionals inside while.
If this is allowed, then invariant checking (of disequality assertions) becomes
undecidable as shown by the program in Figure 3. The second restriction in
Sloopy Programs concerns mutual recursion. Recursive calls are not allowed
inside code generated by Intrn, but Procedure Pn (generated by SProcn) can
recursively call itself.

Semantics. The semantics of the program constructs if else endif and
while endwhile are standard, with the condition (∗) meaning that the con-
trol can flow in either direction in a nondeterministic way. The construct call n
denotes a procedure call where control flows to the procedure with index n —
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SolvePCP((u1, v1), . . . , (uk, vk)):
x := u1(ε); y := v1(ε);
while (*) {

if (*) { x := u1(x); y := v1(y); }
if (*) { x := u2(x); y := v2(y); }
...

if (*) { x := uk(x); y := vk(y); }
} assert(x 6= y)

The assertion x 6= y is not an
invariant of program SolvePCP

iff u1ui1 . . . uim = v1vi1 . . . vim

for some i1, . . . , im ∈ {1, . . . , k}.
Thus, we can solve PCP by
checking if certain disequalities
are invariants.

Fig. 3. Undecidability of invariant checking for general programs.

with the understanding that all variables X are global variables. Thus, a pro-
gram essentially represents a (possibly infinite) collection of paths, where a path
is a sequence of assignments.

Definition 2 (Semantics of a program). The semantics of a path X :=
e1;X := e2; · · · ;X := ek; is the substitution obtained by composing the k sub-
stitutions as follows: 〈X 7→ e1〉〈X 7→ e2〉 · · · 〈X 7→ ek〉. The semantics of a
program [|P |] is the collection of the semantics of all its paths.

The following lemma says that the semantics of the class of Sloopy Programs
is effectively representable with extended parameterized substitutions.

Lemma 1. For any Sloopy Program P , a finite set Θ of extended parameterized
substitutions can be computed such that [|P |] = Instances(Θ).

Since the semantics of a Sloopy Program P is, by definition, the semantics
of the main procedure P0, the proof of Lemma 1 follows immediately from the
same claim for Sloopy Procedures generated by SProcn stated and proved in Ap-
pendix A. The intuition behind the proof is that each basic block corresponds to
a substitution and the parameters in the parameterized substitution represent
the number of times a basic block (which is part of a loop or procedure) is ex-
ecuted. The relationship between these numbers is encoded in the constraint in
the extended parameterized substitution. The restrictions on Sloopy Programs
ensure that its semantics are representable by extended parameterized substitu-
tions in this way (Lemma 1).

5 Invariant Checking

We define the invariant checking problem for programs as follows. Given a pro-
gram P and a postcondition ψ, we are interested in testing whether

|= σ(ψ), for all σ ∈ [|P |],

where σ(ψ) denotes the formula obtained by applying σ to all the terms in ψ, and
|= denotes validity in the pure theory of equality. The postcondition formula ψ is
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a (quantifier-free) formula built using equalities t1 = t2 as the atomic formulas,
where t1, t2 are terms over T (Σ, {X}). Without loss of generality, we can assume
that t1 and t2 are variables, since the program P can always introduce two new
variables, say x, y, and assignments, x := t1; y := t2, and instead check for
x = y.

For programs whose semantics is effectively representable with extended pa-
rameterized substitutions, the invariant checking problem reduces to the follow-
ing problem. Given a formula ψ and one extended parameterized substitution
(θ(u);χ(u)), determine whether

|= θ(c)(ψ), for all c ∈ NN s.t. |=N χ(c),

that is, determine whether all solutions c of χ are also solutions of θ(u)(ψ).
We solve this problem by mapping the formula θ(u)(ψ) to a formula in

Presburger arithmetic φ(u) such that the two formulas have the same set of
solutions; that is, for all c ∈ NN , |=N φ(c) iff |= θ(c)(ψ). We further simplify the
proof by first considering only a disequality, x 6= y, in place of ψ. We will show
that

Lemma 2. Given a parameterized substitution θ(u) and variables x and y, there
is a Presburger arithmetic formula φx,y,θ(u) such that for all c ∈ NN , it is the
case that |= θ(c)(x) 6= θ(c)(y) iff |=N φx,y,θ(c).

Parameterized Disequation to Automaton We prove Lemma 2 by solving
a more general problem. Given substitutions σ1, . . . , σN and β1, . . . , βM , all with
domain {x1, . . . , xk} and range T (Σ, {x1, . . . , xk}), we consider the problem of
characterizing the solutions of the disequation

σnN

N . . . σn1
1 (x) 6= βmM

M . . . βm1
1 (y),

where n1, . . . , nN ,m1, . . . ,mM are variables ranging over the natural numbers,
and x, y are variables in {x1, . . . , xk}. Our goal is to represent all the solutions of
this disequation, written in short as σn(x) 6= βm(y), as a Presburger arithmetic
formula with N + M free variables n,m. To this end, we first construct an
automaton A that accepts words over an alphabet of vectors {0, 1}N+M such
that the following property holds: σn(x) will be different from βm(y) iff there
exists a word w := v1 . . .vl in the language accepted by A such that Sum(w) :=
v1 + . . . + vl is equal to the vector 〈n,m〉 ∈ NN+M . In fact, only the vector
0 and the unit vectors of the canonical basis e1, . . . ,eN+M will appear in the
definition of A. (Here, ej ∈ {0, 1}N+M is a vector that has 1 in the j-th position
and 0’s elsewhere.)

Intuitively, the automaton non-deterministically searches for the position in
the terms σn(x) and βm(y) where the two terms are different. Informally, call
this position the point of difference. We use the notation N to denote the set
{1, . . . , N}. The non-deterministic automaton A = (Q,ΣA, qinit, QF , T ) is de-
fined as follows:
(1) The alphabet ΣA is {0, e1, . . . ,eN+M}. Informally, when the automaton A
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makes a transition on symbol ei, for i ∈ N , then it means that the automaton
A decided to use one more application of σi in its search for the “point of dif-
ference”. Analogously, when it makes a transition on symbol eN+j , for j ∈ M ,
it decided to use one more application of βj .
(2) The set of states Q of the automaton A is

Q = Q1 ∪QF
Q1 = {〈i, s, j, t〉 | i ∈ N , s is a subterm of {x1, . . . , xk} ∪ {σi(x1), . . . , σi(xk)},

j ∈ M , t is a subterm of {x1, . . . , xk} ∪ {βj(x1), . . . , βj(xk)}}
QF = {qij | i ∈ N + 1, j ∈ M + 1}

Here QF is the set of accepting states, and qinit = 〈1, x, 1, y〉 is the initial state.
Intuitively, when A is in the state 〈i, s, j, t〉, then it means that A is currently
applying σi and βj , respectively, and currently matching s and t, in its search
for the “point of difference”.
(3) The transitions T of A are given in Table 1. Informally speaking, in its
search for the “point of difference” from state 〈i, s, j, t〉, the non-deterministic
automaton A does the following: (a) if the top function symbols are different,
then it moves into an accept state (T ′

1), (b) if the top function symbols are iden-
tical, then it guesses under which subterms the “point of difference” may lie,
and moves into the state with these subterms (T1), (c) if the search reaches a
variable, then it non-deterministically chooses to either apply the current sub-
stitution (T2, T

′
2) and continue the search, or it moves to the next substitution

(T3, T
′
3), (d) if the search reaches the last substitutions, then it moves into an

accepting state if it finds the “point of difference” (T4, T
′
4, T5), and (e) if A is

in an accepting state (that is, it has found the “point of difference”), but it has
not used up all the available substitutions, then it accepts all possible choices
for the remaining substitutions (T6, T

′
6).

The next two lemmas will capture the intuition behind the construction of
A. The first lemma states that every run of A corresponds to some instance of
x and y and some path on those instances.

Lemma 3. Let A be an automaton constructed from x, y, σ and β as before.
Let w be a word in Σ∗

A. Let 〈1, x, 1, y〉 w−→〈i, s, j, t〉 be a run of the automaton A.
Let Sum(w) = 〈n,m〉, u = σn(x) and v = βm(y). Then, there is a position p
such that s = u|p, t = v|p, and root(u|p′) = root(v|p′) for all positions p′ < p.

Proof. We generate the required position p by annotating each state in the given
run with a position. The initial state is annotated with position ε. If p is the
annotation on the current state, then (a) if the next state is obtained using a
transition from the set T1, then the next state is annotated with p.l, and (b)
if the next state is obtained using any other transition, then the next state is
annotated with p.

Now, the lemma follows by induction on the length of the run. In the base
case, the claim is clearly true for the initial state. It is easily verified that the
claim is preserved on every transition that does not lead to some qij state. ut
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T = T1 ∪ T ′
1 ∪ T2 ∪ T ′

2 ∪ T3 ∪ T ′
3 ∪ T4 ∪ T ′

4 ∪ T5 ∪ T6 ∪ T ′
6

T1 = {(〈i, fs1 . . . sn, j, ft1 . . . tn〉,0, 〈i, sl, j, tl〉) | i ∈ N , j ∈ M , l ∈ n}
T ′

1 = {(〈i, fs1 . . . sn, j, gt1 . . . tm〉,0, qij) | i ∈ N , j ∈ M , f 6≡ g}
T2 = {(〈i, x, j, t〉, ei, 〈i, σi(x), j, t〉) | i ∈ N , j ∈ M}
T ′

2 = {(〈i, t, j, x〉, eN+j , 〈i, t, j, σj(x)〉) | i ∈ N , j ∈ M}
T3 = {(〈i, x, j, t〉,0, 〈i + 1, x, j, t〉) | i ∈ N − 1, j ∈ M}
T ′

3 = {(〈i, t, j, x〉,0, 〈i, t, j + 1, x〉) | i ∈ N , j ∈ M − 1}
T4 = {(〈N, x, j, t〉,0, qN+1,j) | j ∈ M , t 6∈ X}
T ′

4 = {(〈i, t, M, x〉,0, qi,M+1) | i ∈ N , t 6∈ X}
T5 = {(〈N, s, M, t〉,0, qN+1,M+1) | s, t ∈ X, s 6≡ t}
T6 = {(qij , el, qij) | i ∈ N , j ∈ M + 1, i ≤ l ≤ N}
T ′

6 = {(qij , eN+l, qij) | i ∈ N + 1, j ∈ M , j ≤ l ≤ M}

Table 1. Transitions of the automaton encoding solutions of a parameterized disequa-
tion.

Conversely, we can show that given an instance of x and y and a position p
on these instances, we can find a corresponding run of A.

Lemma 4. Let A be an automaton constructed from x, y, σ and β as before.
Let n,m be N + M natural numbers and let u be σn(x) and v be βm(y).
If p is a position in u and v such that root(u|p′) = root(v|p′) for all p′ <
p, then there is a run of A, 〈1, x, 1, y〉 w−→ 〈i, s, j, t〉 such that Sum(w) =
〈n1, . . . , ni−1, n

′, 0, . . . , 0,m1, . . . ,mj−1,m
′, 0, . . . , 0〉, n′ ≤ ni, m′ ≤ mj, s :=

(σn
′

i σ
ni−1
i−1 . . . σn1

1 (x))|p, and t := (βm
′

j β
mj−1
j−1 . . . βm1

1 (y))|p.

Proof. We construct the required run of automaton A by following the path p on
terms u and v. We need to keep three auxiliary variables – two indices n′,m′, and
a position p′ – to guide this run of A. We just append the 3 auxiliary variables
to the state to simplify presentation. The starting state is 〈〈1, x, 1, y〉, 0, 0, ε〉.

Suppose that the current (extended) state of A is 〈〈i, s, j, t〉, n′,m′, p′〉. The
auxiliary variables will satisfy the invariant that 0 ≤ n′ ≤ ni, 0 ≤ m′ ≤ mj ,
ε ≤ p′ ≤ p, s = (σn

′

i σ
ni−1
i−1 . . . σn1

1 (x))|p, and t = (βm
′

j β
mj−1
j−1 . . . βm1

1 (y))|p. Now,
the next state in the required run will be:

(1) 〈〈i, s|l, j, t|l〉, n′,m′, p′.l〉 (using a transition from T1), if neither s nor t is
a variable and p′.l ≤ p. Note that, by assumption, in this case, root(s) =
root(t) and hence a transition from T1 will be enabled.

(2) 〈〈i, σi(s), j, t〉, n′ + 1,m′, p′〉 (using a transition from T2), if s is a variable
and n′ < ni.

(2’) 〈〈i, s, j, βj(t)〉, n′,m′ + 1, p′〉 (using a transition from T ′
2), if t is a variable

and m′ < mj .

11



(3) 〈〈i+1, s, j, t〉, 0,m′, p′〉 (using a transition from T3), if s is a variable, i < N ,
and n′ = ni.

(3’) 〈〈i, s, j+1, t〉, n′, 0, p′〉 (using a transition from T ′
3), if t is a variable, j < M ,

and m′ = mj .

Using induction on the length of position p, it is easy to prove that the above
run has all the desired properties (stated in the lemma). ut

We can now state the correctness of the construction of A, but leave the
proof to Appendix A.

Lemma 5. Let A be an automaton constructed from x, y, σ and β as before.
Let n,m be N +M natural numbers.

Then σn(x) is different from βm(y) iff there exists a word w accepted by A
such that Sum(w) = 〈n,m〉.

For an automaton A, let L(A) denote the language accepted by A and let
Sum(L(A)) denote the set {Sum(w) | w ∈ L(A)}. Lemma 5 gives us the
following result on representing solutions of parameterized disequations.

Theorem 2. Let X be a finite set of variables and σ,β be N +M substitutions
mapping X to the set of terms T (Σ,X). Given x, y ∈ X, there is a finite
automaton A such that

Sum(L(A)) = {〈c,d〉 ∈ NN+M | σc(x) 6= βd(y)}

The number of states in A is bounded by O(InputSize4) and the number of
transitions is bounded by O(InputSize8), where InputSize is the size of the input
σ,β.

Automaton to Presburger Formula Let A be a finite automaton over the
alphabet {0, e1, . . . ,eN+M}. If we treat 0 as the ε-symbol, then it is obvious
that Sum(L(A)) is simply the Parikh image of L(A). It follows from Theorem 1
that we can represent Sum(L(A)) by a Presburger formula φA.

Disequation to Arbitrary Formula We can put together Theorems 2 and 1
to immediately get a proof of Lemma 2. In fact, Lemma 2 can now be easily
generalized to arbitrary formulas ψ whose atomic formulas are equations between
variables.

Theorem 3. Given an extended parameterized substitution (θ(u);χ(u)) and a
quantifier-free equality formula ψ, there is a Presburger formula φψ,(θ;χ)(u) such
that for all c ∈ NN , it is the case that |= χ(c) ⇒ θ(c)(ψ) iff |=N φψ,(θ;χ)(c).

Proof. We proceed by structural induction on ψ. The base case is when ψ is
x = y. By Lemma 2, we know there is a formula φx6=y,θ corresponding to x 6= y.

12



Thus, for all c ∈ NN , we have the following inference:

|= θ(c)(x) 6= θ(c)(y) iff φx6=y,θ(c) Lemma 2
∴, |= θ(c)(x) = θ(c)(y) iff ¬φx6=y,θ(c)
∴, |= χ(c) ⇒ θ(c)(x) = θ(c)(y) iff χ(c) ⇒ ¬φx6=y,θ(c)
∴, φψ,(θ;χ) := φx=y,(θ;χ) := χ(u) ⇒ ¬φx6=y,θ(u)

For the inductive step, if ψ is ψ1 ∨ ψ2, then it is easy to see that φψ,θ is φψ1,θ ∨
φψ2,θ, and similarly for the cases when ψ is ¬ψ1 and when ψ is ψ1 ∧ ψ2. ut

Note that φψ,θ is always an existentially quantified Presburger formula (with
free variables). We can test the validity of the (universal closure) of φψ,θ and
thus decide the invariant checking problem for Sloopy Programs.

Theorem 4. Let P be a Sloopy Program and ψ be an assertion. The problem
of checking if ψ is an invariant for P is decidable.

Proof. Using Lemma 1, we first get a finite set Θ of extended parameterized
substitutions that represent [|P |], that is, [|P |] = Instances(Θ). For each param-
eterized substitution (θ;χ) ∈ Θ, we use Theorem 3 to construct a Presburger
formula φψ,(θ;χ) and test the validity of (the universal closure of) φψ,(θ;χ). If all
such Presburger formulas are valid, then ψ is an invariant of P ; otherwise, it is
not. The correctness follows from the following reasoning:

ψ is an invariant of P
iff |= σ(ψ) for each σ ∈ [|P |] By definition of invariant
iff |= σ(ψ) for each σ ∈ Instances(Θ) Lemma 1
iff |= χ(c) ⇒ θ(c)(ψ) for each (θ;χ) ∈ Θ, c ∈ Nl Definition of Instances
iff ∀u(φψ,(θ;χ)(u)) is valid Theorem 3

This completes the proof. ut

6 Discussion

The class of Sloopy Programs has some severe restrictions compared to the
class of general programs defined in Section 4. It disallows procedure calls and
loops inside a loop and it supports only a limited form of recursion. If we allow
arbitrary loops and recursive procedure calls (that is, use the general program
model P from Section 4), but restrict to (positive) equations as assertions, then
the decidability is not known, although it is known for some subcases [9, 5]. If
linear arithmetic is the expression language, then disequality checking remains
undecidable (similar proof as Figure 3), but equality checking is known to be
decidable [13, 9].

The decidability result for the class of Sloopy Programs actually works more
generally. It works for any program in which the mapping that maps a run of
that program to the vector of the number of times a basic block is executed in
that run is injective. In other words, given the number of times a basic block
has executed in a run, it should be possible to extract the exact run of the
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program. For any such program, the decidability arguments given in this paper
are applicable.

The proof of decidability given here performs two steps. The first step com-
putes the semantics of the program using extended parameterized substitutions.
Fixing the parameters fixes a program path. The second step constructs an
automaton that characterizes all solutions for the parameters that make an as-
sertion true. We can get a direct proof by merging these two steps. Note that
applying a substitution (corresponding to a basic block) to an assertion is the
same as computing the weakest precondition of the assertion with respect to the
basic block.

Techniques used for deciding equality assertions do not directly apply for
deciding disequality assertions. Decidability for equality assertions often relies
on the fact that there can be only finitely many non-redundant equations. This
is mostly not true for disequalities.

7 Conclusions

We presented two decidability results in this paper. First, we showed decidability
of the following problem: given substitutions σ1, . . . , σN , β1, . . . , βM and terms
x, y, is there a vector (c1, . . . , cN , d1, . . . , dN ) of natural numbers in a given semi-
linear set such that σcN

N . . . σc11 (x) 6= βdM

M . . . βd11 (y)? We also showed decidability
of the above problem when the disequality is replaced by an equality or any
Boolean combination of equalities and disequalities. Using the above result, we
established decidability of invariant checking for a large class of programs with
recursion. Our decidability result is valid for any class of programs whose se-
mantics is effectively representable with extended parameterized substitutions,
and Sloopy Programs are just a particular case. It would be interesting to study
alternative classes of programs satisfying this property. Moreover, note that our
assertions are just quantifier-free boolean formulas. Adding quantification to the
assertions will be interesting, since the first order theory of term algebras is
known to be decidable [2]. Other variants of the problem can also be consid-
ered for future research, such as allowing local variables or parameters in the
procedures, and incorporating interpreted symbols in the signature.

Acknowledgments. We thank the reviewers for their helpful comments.
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A Supplementary Lemmas and Proofs

Lemma 6. For any Sloopy Procedure SPn, there is a finite set Θ of extended
parameterized substitutions such that [|SPn|] = Instances(Θ).

Proof. We prove this by structural induction on the structure of the Sloopy
Procedure SPn. By assumption programs are finite, and hence the structural in-
duction process is well defined. The following equations define the set of extended
parameterized substitutions that capture the semantics of Sloopy Procedure SPn
in terms of the the semantics of its components.

[|X := t|] = {(〈X 7→ t〉n;n = 1)}
[|while (∗) X := t endwhile|] = {(〈X 7→ t〉n; true)}

[|Intrn ; Intrn′|] = {(θθ′;χ ∧ χ′) | (θ;χ) ∈ [|Intrn|],
(θ′;χ′) ∈ [|Intrn′|]}

[|if (∗) Intrn else Intrn′ endif|] = [|Intrn|] ∪ [|Intrn′|]
[|call m|] = [|Pm|]

[|if (∗) Intrn; else X := t; call n; X := t′ endif|]
= {(〈X 7→ t〉n1θ〈X 7→ t′〉n2 ;χ ∧ n1 = n2) |

(θ;χ) ∈ [|Intrn|]}

15



where n, n1 and n2 are always new variables ranging over the natural numbers.
Recall that the side condition, m > n, guarantees that the above inductive
way of obtaining parameterized representation of semantics is well defined. The
correctness of the above definition is obvious. ut

Proof (Lemma 5). ⇒: Assume that u = σnN

N . . . σn1
1 (x) is different from v =

βmM

M . . . βm1
1 (y). Then, there exists a position p ∈ Pos(u) ∩ Pos(v) such that

root(u|p) 6= root(v|p). Among all choices for such a p, we choose one with the
minimal size/length. Hence, root(u|p′) = root(v|p′) for all p′ < p.

Using Lemma 4 on this choice of position p, we infer that there is a run of
automaton A, 〈1, x, 1, y〉 w−→ 〈i, s, j, t〉, such that

Sum(w) = 〈n1, . . . , ni−1, n
′, 0, . . . , 0,m1, . . . ,mj−1,m

′, 0, . . . , 0〉,

with n′ ≤ ni,m′ ≤ mj , s = (σn
′

i σ
ni−1
i−1 . . . σn1

1 (x))|p, and t = (βm
′

j β
mj−1
j−1 . . . βm1

1 (y))|p.
Among all the runs satisfying these conditions, we choose a run r maximum in
length. Because of the choice of p, one of the following conditions is satisfied:
(a) Neither s nor t is a variable: In this case, a transition from set T ′

1 is applicable
and we can complete the current run to get the following accepting run:

〈1, x, 1, y〉 w−→ 〈i, s, j, t〉 0−→
T ′1

qij
w′−→

T6,T ′6

qij

where w′ is the word eni−n′
i e

ni+1
i+1 . . . enN

N e
mj−m′

N+j e
mj+1
N+j+1 . . . e

mM

N+M . By construc-
tion, we have Sum(w0w′) = 〈n1, . . . , nN ,m1, . . . ,mM 〉 in this accepting run.
(b) Either s or t is a variable: Suppose s is a variable, say x′, and t is not a
variable. If i 6= N or n′ < ni, then we can apply a transition of T2 or T3 to
obtain a larger run than r and with the same conditions, contradicting then the
election of r. Hence, i = N and n′ = nN . Thus, we can complete the current run
as follows:

〈1, x, 1, y〉 w−→ 〈i, x′, j, t〉 = 〈N,x′, j, t〉 0−→
T4

qN+1,j
w′−→
T ′6

qN+1,j

where w′ is the word emj−m′

N+j e
mj+1
N+j+1 . . . e

mM

N+M . Again, by construction, we have
Sum(w0w′) = 〈n1, . . . , nN ,m1, . . . ,mM 〉 in this accepting run. Finally, the other
cases, when either t or both s and t are variables can be handled similarly and
we get the desired accepting run in each case.

⇐: Suppose that A accepts w and Sum(w) = 〈n1, . . . , nN ,m1, . . . ,mM 〉. Thus,
we have an accepting run of A that can be written in the following form:

〈1, x, 1, y〉 w′−→ 〈i, s, j, t〉 0−→
T1,T4,T ′4,T5

qIJ
w′′−→
T6,T ′6

qIJ

It holds that Sum(w′) = 〈n1, . . . , ni−1, n
′, 0, . . . , 0,m1, . . . ,mj−1,m

′, 0, . . . , 0〉
for some n′ ≤ ni andm′ ≤ mj . Let u := σn

′

i σ
ni−1
i−1 . . . σn1

1 (x) and v := σn
′

i σ
ni−1
i−1 . . . σn1

1 (x).

Using Lemma 3 on the run 〈1, x, 1, y〉 w′−→ 〈i, s, j, t〉, we conclude that there is a
position p such that s is u|p, t is v|p, and root(u|p′) = root(v|p′) for all p′ < p.
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We can now complete the proof depending on whether we used T1, T4, T ′
4,

or T5 in the accepting run above:

T1 : In this case, u and v are different at a non-leaf position p. Hence, σnN

N . . . σn1
1 (x)

and βmM

M . . . βm1
1 (y), which are just instances of u and v, will also differ at

position p.
T4 : In this case, s is a variable and t is not a variable. Furthermore, I is nec-

essarily N + 1 in this case. Consequently, the only transitions applicable on
qI,J are those in T ′

6, and hence w′′ cannot contain ei for i ≤ N . Hence, at
position p, the term σnN

N . . . σn1
1 (x) contains the variable s, whereas the term

βmM

M . . . βm1
1 (y)|p will not be a variable.

T ′
4 : This case is similar to the previous case.
T5 : In this case, I = N +1, J = M +1, and hence, at position p, the two terms

– σnN

N . . . σn1
1 (x) and βmM

M . . . βm1
1 (y) – have distinct variables.

Thus, in all cases, the terms σnN

N . . . σn1
1 (x) and βmM

M . . . βm1
1 (y) are different. ut
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