
Rewriting in Practice∗

Ashish Tiwari1

1 SRI International
Menlo Park, CA 94025
tiwari@csl.sri.com

Abstract
We discuss applications of rewriting in three different areas: design and analysis of algorithms,
theorem proving and term rewriting, and modeling and analysis of biological processes.

1998 ACM Subject Classification F.4.2 [Mathematical Logic and Formal Languages] Gram-
mars and Other Rewriting Systems–Decision problems; I.6.5 [Simulation and Modeling] Model
Development–Modeling Methodologies; I.1.2 [Symbolic and Algebraic Manipulation] Algorithms–
Algebraic Algorithms

Keywords and phrases Rewriting, Polynomial constraints, Biochemical reaction networks

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

Category Regular Research Paper

1 Introduction

The field of rewriting has contributed some fundamental results within the computer science
discipline. Here, we explore a few impactful applications of rewriting. Any article that
describes applications of a field has to be necessarily incomplete. We limit our focus on the
use of rewriting technology in the following three areas.
1. Design of algorithms
2. Formal modeling and analysis
3. Term rewriting and theorem proving
We discuss the influence of the theory of rewriting in the above areas by identifying specific
concrete instances of algorithms, tools, or techniques that have, or can, be impacted by
rewriting.

The field of rewriting is broadly concerned with manipulating representations of objects
so that we go from a larger representation to a smaller representation. Clearly, rewriting is
concerned with three important entities: objects, representations, and orderings. We give a
few examples below.

In term rewriting, the objects are equivalence classes of terms, representations of these
objects are the terms themselves, and orderings are certain binary relations on terms.
In polynomial rings, objects are polynomials and representations are algebraic expressions
constructed using the arithmetic (ring) operators.
In theorem proving, objects are proofs and orderings are proof orderings on some repres-
entation of the proofs.

A significant part of the theory of rewriting abstracts away from the objects and/or their
representations, and just studies properties of binary relations.

∗ Research supported in part by the National Science Foundation under grant CSR-EHCS-0834810 and
CSR-0917398.

© Ashish Tiwari;
licensed under Creative Commons License NC-ND

submitted to 22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß Editor; pp. 1–7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Rewriting in Practice

2 Rewriting in the design of algorithms

The theory of rewriting can be used as a basis to study the design and analysis of algorithms.
There are at least two distinct ways in which rewriting helps in algorithmic development.

2.1 Rewrite-based Descriptions
An algorithm can often be viewed as a set of rewrite rules. This rewrite-based description
cleanly separates the logical part of an algorithm from its implementation details. Rewrite-
based views of algorithms can be very helpful especially from an educational perspective.

Consider, for example, the problem of sorting a sequence of numbers, which is one of the
most commonly studied problems in a first course in Algorithms. A description of a sorting
procedure can be given by a single rewrite rule

X, a, Y, b, Z → X, b, Y, a, Z if a > b

where , is an associative operator. This rewrite rule simply says that we can swap two
elements in the current list if they are not in order. This rewrite rule describes a whole class
of comparison-based sorting algorithms: different concrete sorting algorithms, such as bubble
sort, are obtained by applying (specific instances of) the above rewrite rule using different
strategies. The correctness – soundness, completeness, and termination – of comparison-based
sorting algorithms just depends on properties of the rewrite system containing the above rule.
The strategy (and the data structures used to represent the terms) is only an implementation
detail (although an important detail since it determines the final time and space complexity).
Graph algorithms can be similarly presented abstractly using rewrite rules.

2.2 General Paradigm
Rewriting provides a general paradigm for the design of algorithms. The (abstract) critical-
pair completion algorithm is a generic procedure that can be instantiated in different domains
to yield very important algorithms, such as,

the algorithms implementing the union-find data structure [9],
congruence closure [24, 8] and associate-commutative congruence closure [6],
Gröbner basis algorithm [11, 3, 7], and
Simplex algorithm for satisfiability of linear constraints [14, 15].

The completion-based rewriting view of these algorithms yield simpler proofs of correctness
of these complex algorithms.

There is, however, an additional benefit of taking the completion-based view. It becomes
possible to inherit certain optimizations. Consider the Gröbner basis algorithm. It involves
adding equations arising from critical overlap of polynomial equations. If we have the
following two equations in the current set of equations

x2 (1)→ p xy
(2)→ q

where x2 is the maximal monomial in the polynomial x2−p and xy is the maximal monomial
in the polynomial xy − q (assume some ordering, say a total degree lexicographic ordering
with precedence x � y), then the procedure for computing Gröbner basis adds the new
equation py

(3)= qx (arising from the cricial pair between the two rules above) to the current
set of polynomial equations. Efficiency of Gröbner basis algorithms is determined by the
number of such critical equations generated. Hence, deletion is important: if we can delete an
equation or rule, we compute fewer inferences subsequently. In the above example, we note



A. Tiwari 3

that we cannot delete any of the two original rules. However, we can delete the instances
x2yX → pyX of the first equation, where X is an arbitrary power product. The reason why
we can delete these instances is that they all have a proof that does not use the first rule

x2yX
(2)→ qxX

(3)= pyX

Moreover, in a suitably defined proof ordering, this new proof of x2yX = pyX can be
shown to be smaller than the old proof that uses Rule (1). Thus, in the new optimized
Gröbner basis procedure, rules are associated with a list of monomials called forbidden,
with the interpretation that instances of a rule obtained by multiplying that rule with a
monomial in the ideal generated by forbidden are assumed to have been deleted. This
optimization has been mentioned before [1, 33], and it appears to be related to some of the
new signature-based algorithms for Gröbner basis [16]. An exciting future work would be to
study the signature-based algorithms using the rewriting framework.

3 Rewriting in Term Rewriting and Theorem Proving

The essence of the theory of rewriting, and in particular of the critical-pair completion
procedure, can be described as
1. add facts that make proofs of provable facts smaller and
2. delete facts that already have smaller proofs
Here, by facts we mean equations, or clauses, or formulas (ground or non-ground), or any
representation of the known object of interest. This more general view of completion inspires
the design of several other algorithms; most notably the algorithms used in saturation-based
theorem proving [4].

In equational reasoning, proofs have a certain nice structure that enables one to define
interesting proof orderings, which leads to algorithms such as standard and ordered comple-
tion [2]. When considering non-equational theories, proofs do not necessarily have a very
nice structure. So, complexity of a proof is often just the complexity of the facts used in the
proof. Consider the resolution inference rule, where given the two (propositional) clauses

x ∨ C1 ¬x ∨ C2

the resolution inference rule adds the new clause C1 ∨ C2 to the set of clauses. Inspired by
the theory of rewriting, if we restrict addition of facts to only those facts that make proofs of
provable facts smaller, then C1 ∨ C2 must be smaller than the two facts that were used to
derive it. Restricting resolution inference in this way leads to the ordered resolution calculus.

Note that a set of facts is unsatisfiable if the empty clause, ⊥, is provable. The ordering
on facts is defined such that ⊥ is the minimal element in the ordering. Since proof calculi
inspired by rewriting are designed to generate all “small” facts, then if ⊥ is provable, then
it is explicitly generated. If it is not explicitly generated, then the set of generated (small)
facts can be used to construct a model for the facts. This argument can be used to prove
refutational completeness of ordered resolution. Several first-order proof calculi are designed,
and proved refutationally complete, based on this same principle [5].

The theory of rewriting can be seen as a paradigm for saturating a set of facts with new
facts, guided by an ordering on the universe of facts, such that certain minimal facts (such as
⊥) are generated. This view is very helpful when developing heuristics for searching the space
of (provable) facts for a particular one. As remarked above, the field of theorem proving
is concerned with deriving ⊥ to obtain a refutation. Now, as a second example, consider
the problem of deciding if a conjunction of polynomial equality and inequality constraints is

RTA’11



4 Rewriting in Practice

satisfiable in the theory of reals. First, consider the case when there are only linear equations
and nonnegativity constraints on certain slack variables,

A

[
~x

~u

]
= ~b, ~u > 0

where A is a l × (m + n) matrix, ~x is a m × 1 vector, ~u is a n × 1 vector, and ~b is a l × 1
vector. We can prove that the above constraint is unsatisfiable over the reals if (and only if)
we can find a linear expression ~cT ~u such that
(i) ~cT ~u can be written as a linear combination of the l linear expressions A[~x; ~u], and
(ii) ~c ≥ ~0 and ~c 6= ~0.
Such a linear expression can be thought of as the witness for unsatisfiability of the original
set of constraints. If we find an ordering in which the witness, ~cT ~u, is a minimal element
in the set of all expressions that can be written as a linear combination of the l linear
expressions A[~x; ~u], then a rewriting-based saturation procedure will explicitly generate this
linear expression. This is the idea behind the Simplex algorithm for linear constraints [15].

When the constraints are not necessarily linear, then there again exists a witness for
unsatisfiability. This is stated by the Positivstellensatz [26, 31, 10]. Specifically, let P , Q,
and R be sets of polynomials over Q[~x]. The constraint

{p = 0 : p ∈ P} ∪ {q ≥ 0 : q ∈ Q} ∪ {r 6= 0 : r ∈ R}

is unsatisfiable iff there exist polynomials p, q, and r such that p + q + r2 = 0 where
p ∈ Ideal(P )
r ∈ [R] := {Πi∈I ri : ri ∈ R for all i ∈ I}
q ∈ Cone[Q] := {Σi∈I p2

i qi : qi ∈ [Q], pi ∈ Q[~x] for all i ∈ I}

If we find an ordering in which the witness, p, which is equal to −q− r2, is a minimal element
in the set of all elements in the ideal generated by P , then a rewriting-based saturation
procedure will explicitly generate this witness. This is the idea behind the procedure for
unsatisfiability checking based on Gröbner basis computation [34].

A crucial aspect in the above applications is the flexibility provided by the choice of
ordering. The choice of ordering decides which facts are generated, and hence it determines
if we will ever find a particular desired fact. This observation can be used to generate
(equational) invariants of a continuous dynamical system. Consider the differential equations
for circular motion: dx

dt = y, dy
dt = −x. A constant-of-motion, or an equational invariant, for

this system would be a polynomial p over variables x, y such that dp/dt = 0. Let us order
the above two equations backwards and write them as

y → d(x) x→ −d(y)
We also have (infinite) rewrite rules that come from the definition of the derivative operator
d. Consider the following two rules

yd(y)→ d(y2)/2 xd(x)→ d(x2)/2
Doing a critical-pair completion and computing a Gröbner basis for this system will yield an
equation d(x2) + d(y2) = 0, which is the equational invariant for circular motion.

The rewriting philosophy is also used extensively in proving results about rewrite systems.
Several decidable criterion have been recently developed for checking confluence of restricted
classes of term rewriting systems [19, 21, 22, 20]. The characterizations of confluence are
proved correct by showing that (a) if there is a counter-example to the characterization, then
there will be a smaller counter-example and (b) all minimal counter-examples are explicitly
checked.



A. Tiwari 5

4 Rewriting in Formal Modeling and Analysis

Rewriting provides both a language for formal modeling of systems, as well as a tool for
simulating and analyzing the formal models.

The system Maude [12] is an example of a modeling and analysis tool based on rewriting
logic. Maude is being extensively used to formally represent knowledge about biological
processes. This knowledge is captured in the form of a Petrinet (represented in Maude).
A Petrinet is a set of ground rewrite rules over a signature containing an associative and
commutative (AC) symbol. A biochemical reaction is naturally a Petrinet transition [13, 23,
32]. Elaborate models of cell signaling pathways have been formalized in the Pathway Logic
tool [32] that is built over Maude.

The rewrite-rule based models of biological processes pose several interesting analysis
questions. Apart from questions about reachability, one is also interested in characterizing
certain kinds of steady state behaviors. A steady state behavior is a rewrite derivation with
certain properties. Flux balance analysis (FBA) is a commonly used technique for finding
such steady state behaviors of Petrinets [29, 28]; see also [35] for an adaptation of FBA.

Biology also motivates a study of probabilistic rewrite systems. Again, a special case of
(timed) stochastic Petrinets has been extensively studied [17, 18] and the same ideas can be
possibly applied to stochastic extensions of general rewriting systems too.

The biology domain is an extremely rich source of challenging problems and extensions
for the theory of rewriting. One such challenge is learning rewrite rules or models from
available data on rewrite derivations. One could use it to learn models of disease propagation
in humans and develop therapeutics based on the learned model.

5 Conclusion

The theory of rewriting is an important part of the foundation of computer science. It provides
an important paradigm for algorithmic design and correctness and a uniform high-level view
of several intricate algorithms and techniques. It also provides a useful modeling language,
especially for the emerging discipline of Systems Biology [25, 27, 30].

References
1 W.W. Adams and P. Loustaunau. An Introduction to Gröbner Bases, volume 3 of Graduate

Studies in Mathematics. American Mathematical Society, 1994.
2 L. Bachmair. Canonical Equational Proofs. Birkhäuser, Boston, 1991.
3 L. Bachmair and H. Ganzinger. Buchberger’s algorithm: A constraint-based completion

procedure. In CCL, volume 845 of LNCS. Springer, 1994.
4 L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection

and simplification. J. of Logic and Computation, 4:217–247, 1994.
5 L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated

Reasoning. Elsevier, 2001.
6 L. Bachmair, I.V. Ramakrishnan, A. Tiwari, and L. Vigneron. Congruence closure modulo

AC. In Proc. FroCoS, volume 1794 of LNAI, pages 245–259. Springer, 2000.
7 L. Bachmair and A. Tiwari. D-bases for polynomial ideals over commutative noetherian

rings. In RTA, volume 1103 of LNCS, pages 113–127. Springer, 1997.
8 L. Bachmair and A. Tiwari. Abstract congruence closure and specializations. In Conf. on

Automated Deduction, CADE 2000, volume 1831 of LNAI, pages 64–78. Springer, 2000.
9 L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. J. of Automated

Reasoning, 31(2):129–168, 2003.

RTA’11



6 Rewriting in Practice

10 J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer, 1998.
11 B. Buchberger. A critical-pair completion algorithm for finitely generated ideals in rings.

In Proc. Logic and Machines: Decision Problems and Complexity, volume 171 of LNCS,
pages 137–161, 1983.

12 M. Clavel et al. Maude: Specification and Programming in Rewriting Logic. http://maude.-
csl.sri.com/manual/, SRI International, Menlo Park, CA, 1999.

13 V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling of
cellular signalling. In Proc. CONCUR, volume 4703 of LNCS, pages 17–41, 2007.

14 D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking.
J. of the ACM, 52(3):365–473, 2005.

15 B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In CAV 2006,
volume 4144 of LNCS, pages 81–94, 2006.

16 C. Eder and J. Perry. Signature-based algorithms to compute groebner bases. In ISSAC,
2011. arXiv:1101.3589v2.

17 D. T. Gillespie. A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. J. Comp. Physics, 22:403–434, 1976.

18 D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting sys-
tems. J. of Chemical Physics, 115(4):1716–1733, 2001.

19 G. Godoy, R. Nieuwenhuis, and A. Tiwari. Classes of Term Rewrite Systems with Polyno-
mial Confluence Problems. ACM Trans. on Comp. Logic (TOCL), 5(2):321–331, 2004.

20 G. Godoy and A. Tiwari. Confluence of shallow right-linear rewrite systems. In CSL 2005,
volume 3634 of LNCS, pages 541–556. Springer, 2005.

21 G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow term rewrite
systems. In STACS 2003, volume 2607 of LNCS, pages 85–96. Springer, 2003.

22 G. Godoy, A. Tiwari, and R. Verma. Characterizing confluence by rewrite closure and right
ground term rewrite systems. AAECC, 15(1):13–36, June 2004.

23 W. S. Hlavacek et al. Rules for modeling signal-transduction systems. Sci STKE, 344, 2006.
PMID: 16849649.

24 D. Kapur. Shostak’s congruence closure as completion. In Rewriting Techniques and Ap-
plications, RTA 1997, volume 1103 of LNCS, pages 23–37, 1997.

25 H. Kitano. Systems biology: A brief overview. Science, 295:1662–1664, 2002.
26 J. L. Krivine. Anneaux preordonnes. J. Anal. Math., 12:307–326, 1964.
27 P. Lincoln and A. Tiwari. Symbolic systems biology: Hybrid modeling and analysis of

biological networks. In HSCC, volume 2993 of LNCS, pages 660–672, 2004.
28 J.D. Orth, I. Thiele, and B.O. Palsson. What is flux balance analysis? Nature Biotechnology,

28:245–248, 2010.
29 B.O. Palsson. Systems Biology: Properties of Reconstructed Networks. Cambridge Univer-

sity Press, 2006.
30 C. Priami. Algorithmic systems biology. CACM, 52(5):80–88, 2009.
31 G. Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math.

Ann., 207, 1974.
32 C. L. Talcott. Pathway logic. In Formal Meth. for Comp. Sys. Bio., SFM, volume 5016 of

LNCS, pages 21–53, 2008. http://pl.csl.sri.com.
33 A. Tiwari. Decision procedures in automated deduction. PhD thesis, State University of

New York at Stony Brook, 2000.
34 A. Tiwari. An algebraic approach for the unsatisfiability of nonlinear constraints. In CSL

2005, volume 3634 of LNCS, pages 248–262. Springer, 2005.
35 A. Tiwari, C. Talcott, M. Knapp, P. Lincoln, and K. Laderoute. Analyzing pathways using

SAT-based approaches. In AB, volume 4545 of LNCS. Springer, 2007.

http://pl.csl.sri.com

	Introduction
	Rewriting in the design of algorithms
	Rewrite-based Descriptions
	General Paradigm

	Rewriting in Term Rewriting and Theorem Proving
	Rewriting in Formal Modeling and Analysis
	Conclusion

