
EOLC: Efficiently Modelling Inconsistency for
Commonsense Reasoning

Rajesh Kumar1, Ashish Tiwari2, and Bruce H. Krogh1

1 Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA

rajeshk@ece.cmu.edu, krogh@ece.cmu.edu
2 SRI International

Menlo Park, CA 94025-3493, USA
tiwari@csl.sri.com

Abstract. This paper presents EOLC, a declarative rule language for
commonsense reasoning incorporating non-monotonicity using a four-
valued logic, to explicitly model overspecified information, priorities among
rules using an overrides predicate, arithmetic constraints, and optimiza-
tion through an ordering operator rank. EOLC also supports the recur-
sive definition of rules. We give the declarative semantics of EOLC and
present results about the models of EOLC programs and the complexity
of inferencing in EOLC.

1 Introduction

In 1959, McCarthy said a program would exhibit “commonsense” if it “auto-
matically deduces for itself a sufficiently wide class of immediate consequences
of anything it is told and what it already knows” [1]. The formalism used for
knowledge representation determines the extent to which a class of programs
can perform such reasoning. Efforts towards commonsense reasoning began with
work on different forms of negation [2, 3], circumscription [4], default logic [5],
prioritized logic programs [6] and defeasible logic [7], one of the most recent being
courteous logic programs [8]. Priorities handle conflicts between rules and make it
possible to use naturally available prioritization information. This paper presents
EOLC, a rule language with a rich set of knowledge representation primitives.3

EOLC extends features of previous languages formalisms, with four-valued logic,
priorities, and rank-ordered rules to support commonsense reasoning in a large
number of applications.

EOLC works in a four-valued logic explicitly modeling inconsistency in
knowledge. Inconsistencies arise naturally in an evolving knowledge base. Knowl-
edge representation formalisms that do not work in four-valued logic cannot dis-
tinguish between: (i) neither a nor ¬a have supporting evidence – a is unknown;
and (ii) both a and ¬a have supporting evidence – a is overspecified. General

3 EOLC stands for Epistemic Ontology Language with Constraints, since EOLC is
meant to specify the reasoning or epistemic part of a knowledge base.

and extended logic programs work in two-valued logic [9] while formalisms like
courteous logic programs and defeasible logic combine the cases (i) and (ii) [8, 7].
Paraconsistent logics distinguish between (i) and (ii) [10], but EOLC supports
this distinction in the presence of rule priorities, arithmetic constraints and a
form of aggregation constraints. Section 3 illustrates why explicitly modelling
such overspecification is necessary for commonsense reasoning.

Courteous logic programs [8], which support explicit and implicit negation
and priorities among rules, control complexity by working in a domain without
function symbols or circular dependencies among atoms – the acyclic, Datalog-
restricted domain. In many scenarios, recursion, however, arises naturally. Gen-
eral logic programs and variants such as extended logic programs support recur-
sive definitions [9], but no priorities, while prioritized and defeasible logics have
severe complexities [11]. The language proposed in this paper, EOLC, removes
the acyclicity restriction and efficiently supports recursion in the presence of
explicit negation, priorities, and constraints.

Many applications require support for arithmetic constraints [12]. EOLC
supports arithmetic constraints under some restrictions. An aggregation opera-
tor, rank, in EOLC enables the selection of a particular (optimal) solution from
among a set of possible solutions based on arithmetic expressions. Aggregation
operators has been studied in the work on constraint logic programs with op-
timization [13, 14] and preference logic programming [15]. EOLC goes beyond
the capabilities of these formalisms by supporting multiple levels of selection
through the use of the rank operator in different rules.

EOLC has a simple declarative semantics, to enable non-experts to com-
fortably specify rule sets, and an efficient inferencing algorithm. By removing
the acyclicity assumption, using a four-valued logic, and supporting constraints
with aggregation to select desirable solutions, EOLC is ideally suited to sup-
port commonsense reasoning in many application domains, including verification
management [16], which motivated EOLC.

This paper is organized as follows. Section 2 gives the syntax of EOLC and
the semantics of EOLC programs in terms of models. Section 4 shows that each
EOLC program has a unique maximal model under the restrictions on recursion
and constraints that we assume, describes the algorithm to compute models and
presents the complexity of inferencing in EOLC. We conclude the paper with a
summary of the contributions of EOLC and directions for future work.

2 The EOLC Language

Mutually disjoint sets of symbols specify the object constants (O), variables (V)
that range over object constants, and predicates (P) in an EOLC program. We
adopt the Prolog convention in that variables start with a capital letter and
constants are in small case. An assignment maps variables to object constants.

An atom has the form Pn(t1, t2, . . . tn) where Pn is an n-ary predicate and
t1, t2, . . . , tn are variables or constants. Atoms in which there are no occurrences
of variables are called ground atoms. A literal is of the form p or ¬p, where p

is an atom. A literal of the form p (¬p) is called a positive (negative) literal.
Ground literals evaluate to one of four truth values true, false, unknown (⊥),
overspecified (>), determined by the semantics defined in section 4.

For EOLC, the constraint domain includes functions ∗, +,−, and predicates
PEOLC = {=, <,≤, >,≥} with their usual arithmetic meanings. Constraints are
formulas with predicates PEOLC and without quantifiers. Formulas in which
only ∗, +,− occur and PEOLC do not occur are called expressions. Satisfiability
in this constraint domain of arithmetic over integers is undecidable [17]. The
restrictions we put on variables in constraints and expressions ensures that only
ground constraint atoms in this constraint domain need to be evaluated. Ground
constraints evaluate to true or false (and never to ⊥ or >). Ground atoms of
only un-interpreted predicates, P\PEOLC , may evaluate to >,⊥.

Labelled rule: A labelled rule (R) is of the form:
〈lab〉L0 : L1, L2, . . . Ln; notLn+1, . . . , notLm;

c1, c2, . . . , ck; rank(c).
where each Li, i ∈ {1, . . . , m} is a literal, ci are constraints and ‘c’ within the
scope of rank is an expression. When the variables in c are instantiated, c eval-
uates to a numeric value. A ground instance of a labelled rule is one in which
all variables have been assigned to object constants. Ground instances of rule
R are ordered or ranked according to the value of the expression c and this
ordering is used in defining the semantics of the EOLC program. 〈lab〉 is an
optional string label. All rules without labels are treated as having a default
label “empty label”.

A rule that has no constraints on the right hand side is called constraint-
free. labels(l, R) will denote that ‘l’ is the label of a rule R. For a rule R, we
shall refer to {L1, . . . , Ln} as pos body(R) (the positive part of the body of R),
and {Ln+1, . . . , Lm} as neg body(R) (the negative part of the body of R). For a
rule R, head(R) will denote the literal L0 and body(R) will denote the literal(s)
{L1 . . . Lm}.

Priority Ordering: A priority ordering among rules is a set of declarations of
the form overrides(lab1, lab2) where labi are labels of some rules. overrides
must satisfy a strict partial ordering relation, i.e., overrides is irreflexive and
transitive.

EOLC program: An EOLC program E consists of a set of labelled rules and
a priority ordering between the rules. The set of all ground atoms constructed
using predicates and constants in E, is called its Herbrand base, HE . For EOLC
program E, the instantiated EOLC program, Einstd, is the set of all the in-
stantiations of rules in E along with the prioritization predicates of E. For an
EOLC program E, Einstd is bounded (details in [18], Section 7).

Interpretation: A tuple 〈S, X〉, where S and X are sets of literals, gives a 4-
valued interpretation to all ground literals in an EOLC program. S defines the
true and false literals, literals in X are interpreted as > and the remaining literals
are interpreted as ⊥.

Enabled ground rule instance: Consider a ground rule R̂
〈lab〉L0 : L1, L2, . . . Ln; notLn+1, . . . , notLm;

c1, c2, . . . , ck; rank(c).
Let posR = {a|a,¬a ∈ pos body(R̂)}. R̂ is enabled in an interpretation 〈S,X〉,

iff, (pos body(R̂) − posR) ⊆ S, neg body(R̂) ∩(S ∪X) = ∅ , c1 . . . ck evaluate
to true, and posR ⊆ X.

Intuitively, a rule is enabled when every literal in its body evaluates to true
or >. Here not has the semantics of “negation by failure” whereby not(>) = ⊥
(hence ∀b ∈ neg body(R̂), b 6∈ X) and not(true) = false.
Well-grounded rule instances: A rule instance R̂ in EOLC program E, is well-
grounded if, (i) body(R̂) is empty, i.e., R̂ is an asserted atom, OR (ii) each literal
in pos body(R̂) occurs as the head of some well-grounded rule instance R̂′.

From now on we will use ground instance of a rule to mean well-grounded
instance of a rule, i.e., we’re only interested in well-grounded instances.
Ordering: Let GR be the set of all ground instances of rule R that are enabled
in an interpretation 〈S, X〉. An ordering is defined on the elements of GR as: for
R1, R2 ∈ GR, if cR1 ≥ cR2 then R1 ≥ R2 in the ordering, where cR1 , cR2 are the
values of the expression c within the scope of rank in R1, R2.
R̂ ∈ GR lies at the top of its ordering, denoted by R̂ ∈ RT iff (i) for all rule
instances R̂′ ∈ GR, R̂ ≥ R̂′, OR, (ii) R does not have a rank-constraint in which
case ∀R̂ ∈ GR, R̂ ∈ RT . Since RT ⊆ GR, each rule instance in RT is enabled in
〈S,X〉.

We only need to compare ground instance of the same rule with each other
and each rule R has a set RT in an interpretation 〈S, X〉, as defined above. The
following restrictions are imposed on labelled rules.

1. Variables in constraints ci and expression c must occur in L1 through Lm as
terms.4

2. For any rule R, s.t., head(R) corresponds to a predicate with integer valued
arguments, the body of R cannot be empty. Further, variables corresponding
to integer valued attributes of head(R) must occur in the body of R.

The above restrictions ensure that when the variables in L0 . . . Lm in R are
assigned, all variables in the constraint expressions in R also get assigned and
the constraints can be evaluated. Under the restrictions one cannot define unary
predicates over integers in EOLC; for example, the rule “even(x): even(y), y
= x-2.” violates condition 1. Since the number of constants that occur in the
EOLC program is finite, the above restrictions ensure that the number of possi-
ble satisfiable instantiations of each rule is finite. Hence, for a rule R, RT 6= ∅ if
GR 6= ∅. Thus, constraints in EOLC support arithmetic statements on numeric
attributes of entities. 5

4 These terms occur in literals corresponding to predicates that are integer valued
attributes of entities in the asserted part of the knowledge base

5 This is not a major restriction since we may have a separate “constraints library”
with definitions of predicates such as “even”. We can then use predicates defined in
the library is rule bodies in an EOLC program.

most reliable(Mdl, Sys) : implements(Mdl, Sys),
reliability(Mdl, X); rank(X).

〈l1〉 satisfies(M, C): satisfies fact(M, C).
〈l1〉 satisfies(M, C): submodel(M ′, M), satisfies(M ′, C).
submodel(M , M ′): submodel fact(M , M ′).
submodel(M , M ′): submodel fact(M , M ′′),

submodel(M ′′, M ′), M 6= M ′′.
satisfies fact(m2, c2).
submodel fact(m1, m3).
〈l2〉¬satisfies(M, C): failtest(M, C).
failtest(m1, c1).
implements(m1, s1).
overrides(l2, l1).

Fig. 1. Example EOLC program.

The above definitions are clarified with the EOLC program E1 (example
1). E1 states that a model satisfies a constraint if it is known to do so or if a
submodel of it satisfies that constraint. No model can be a submodel of itself, a
model is a submodel of another if the fact is known and the submodel relation is
transitive. Rules labelled with l2 have higher priority than rules labelled with l1.
The predicates submodel and satisfies have been recursively defined. The defi-
nition of most reliable(Mdl, Sys) using rank states that the model of a system
with the highest reliability index is the most reliable model.

An atom-dependency graph of an EOLC program E has all ground atoms in
HE as nodes and for two nodes A and B, there is a directed edge from A to B if
there is a ground rule with head as A or ¬A, and the body contains B or ¬B ([9],
page 8). A topological sort of a directed graph is a sequence of nodes n1 . . . nm,
s.t., 6 ∃ edge(ni, nj), i > j. Our inferencing algorithm works bottom up, consid-
ering literals according to a stratification order, which intuitively means that a
literal is considered only after its dependencies have already been considered.

Definition 1. (Stratification of atoms) A sequence of all the ground atoms in E,
ρ = p1, p2, . . . pn, is a stratification of the atoms in E if ρ is a reverse topological
sort of the atom dependency graph of E.

A stratification exists if the atom-dependency graph is acyclic. When there
are recursively defined predicates, we will use a stratification of a modified atom-
dependency graph, where the cliques involving the recursive predicates are re-
placed by supernodes. The notation p < q (p > q) in ρ will denote that p is
before (after) q in stratification ρ. For a literal p, we will use the term level of p
to mean the maximum length of a path from the atom in p to a node without
children in the modified atom-dependency graph of the EOLC program. A set of
literals, S, is consistent if there is no atom p, s.t., both p,¬p ∈ S. The semantics
of EOLC are defined in terms of models of EOLC programs.

Definition 2. (Model of EOLC program E) An interpretation, 〈S,X〉, is a
model of E, if:

∀p ∈ S: (condition (a))
(i) ∃ ground instance R̂ of some rule R, s.t., head(R̂) = p, and R̂ ∈ RT

(ii) ∀ instances, R̂′ of any rule R′, s.t., head(R̂′) = ¬p and R̂′ ∈ R′T , ∃
instance R̂′′ of a rule R′′, s.t., R̂′′ ∈ R′′T and head(R̂′′) = p, s.t., R̂′′ overrides
R̂′

∀x ∈ X: (condition (b))
(i) ∃R̂1 ∈ RT

1 , head(R̂1) = x, 6 ∃ rule instance R̂2 ∈ RT
2 with head(R̂2) =

¬x, s.t., R̂2 overrides R̂1

(ii) ∃R̂1 ∈ RT
1 , head(R̂1) = ¬x, 6 ∃ rule instance R̂2 ∈ RT

2 with head(R̂2) =
x, s.t, R̂2 overrides R̂1

Recall that by definition of RT for any rule R, all R̂ ∈ RT are enabled in
〈S,X〉. Intuitively, whether a literal p is true depends on whether the rules with
head p that are enabled are able to defeat the rules with head ¬p. This is in the
spirit of argumentative semantics for non-monotonic reasoning [19].

Definition 3. (Maximal model) 〈S, X〉 is a maximal model of an EOLC pro-
gram E iff, ∀p in Herbrand base of E (i) if condition (a) holds on p in 〈S, X〉
then p ∈ S, and (ii) if condition (b) holds on p in 〈S, X〉 then p ∈ X.

Well-grounded rule instances are used to define a model is so that literals in
S are derived from ground facts in the program and the model is supported is
the sense of Apt et al. [20]. The EOLC program consisting of the rules “A(a) :
c, A(b).”, “A(b) : c, A(a).” and “c.” has the maximal model: M1 = 〈{c},∅〉. M2 =
〈{A(a), A(b), c},∅〉 is not a model since the two rule instances with A(a), A(b)
are not well-grounded. For program E, all well-grounded rule instances in Einstd

may be computed in O(lmax) passes over Einstd using the definition of well-
grounded rule instances. The definition of a maximal model above captures the
notion of stability (Gelfond [21]).

Lemma 1. If 〈S,X〉 is a model of an EOLC program E then S is consistent.

Proof: Follows from the definition of a model ¤
The condition on X, where literals in X evaluate to >, intuitively states

that there was conflicting information and the prioritization was insufficient to
resolve the conflict.

3 EOLC as a Knowledge Representation Language

We illustrate the usefulness of EOLC for representing knowledge in common-
sense reasoning applications. In EOLC explicit negative information is repre-
sented using ¬. For example, in a verification scenario ¬ satisfies(system model,
constraint) is quite different from not satisfies(system model, constraint); the for-
mer implies that the property has been refuted while the latter implies that not
enough information is present to decide whether the model satisfies the property.

allow(X, fileServer): system administrator(X).
...

¬ allow(X, fileServer): outside carnegie mellon(X).
...

ask for maintenance password(X, fileServer):
allow(X, fileServer), ¬ allow(X, fileServer) .
...

permit maintenance(X, fileServer):
maintenance password verifies(X, fileServer).

Fig. 2. Access control.

...
resolve(Mdl, C): satisfies(Mdl, C), ¬ satisfies(Mdl, C).

...

Fig. 3. Overspecification in a verification scenario.

EOLC works in a four-valued logic and makes the distinction between: (i)
neither a nor ¬a have supporting evidence – a is unknown; and (ii) both a, ¬a
have supporting evidence – a is overspecified. To see how this is useful consider
the example in figure 3.

Figure 3 shows a part of an EOLC program for controlling access to a file
server. A user that is a system administrator should be allowed access but a user
trying to login from outside the campus should be denied access, since this is
a highly secured machine. These rules may be added incrementally, maybe by
different people, as the knowledge base evolves. Now there is an inconsistency in
the rule specification since a system administrator trying to login from outside
the campus network will not have access. Since allow(X, fileServer) would be
overspecified, the system administrator is asked for the maintenance password
to gain access.

Similarly, in a verification scenario, as in figure 1, one could have a rule
(see figure 3) saying that if satisfies(Mdl, C) is overspecified then a verification
engineer needs to step in and resolve the issue. A literal may become overspecified
in a continuously evolving knowledge base and one needs the logic value > in
the logic to model such situations.

The rank construct in EOLC may be used to pick out a desirable solution
from among a set of solutions that fulfill a criteria. Figure 1 shows how a com-
ponent model with the greatest reliability index may be picked from among the
models that implement a particular component of a system architecture. EOLC
goes beyond current capabilities [13, 22, 14, 15] by supporting multiple levels of

...
select(Mdl, Sys) : most reliable(Mdl, Sys), cost(Mdl, C);

rank(−C).
...

most reliable(Mdl, Sys) :
implements(Mdl, Sys), reliability(Mdl, X);

rank(X).

Fig. 4. Multiple levels of selection.

selection using rank in different rules. Figure 3 shows how the least cost model
may be selected from among those that have the greatest reliability index.

EOLC also supports a partially ordered prioritization among rules (Figure 1
shows an illustration). The need for priorities is well-established in the literature
[5–8]. Section 5 presents a more rigorous comparison of EOLC with other recent
non-monotonic formalisms.

4 Inferencing in EOLC

We consider the problem of deciding if a query, which is a ground literal p, is
true in a given EOLC program. We impose the following restrictions
R1: Recursively defined predicates are partially ordered – predicate A comes
before B if a definition of B uses A. We disallow mutual recursion, such as

A(X, Y) : B(X, Z), A(Z, Y).

B(X, Y) : A(X, Z), B(Z, Y).

R2: We disallow recursive definitions of the form
A(X, Y) : . . . ; . . . not A(Z, Y).

A(X, Y) : . . . , ¬ A(Z, Y)

R3: The definition of recursive predicates do not involve aggregation constraints
using the rank operator since such a definition is counterintuitive.

R1 implies that cycles in the atom dependency graph involve ground in-
stances of the same predicate and ground instances of recursively defined predi-
cates form cliques. If each clique is collapsed to a ‘super-node’ then the resulting
graph is acyclic

R2 implies that literals involving recursively defined predicates can be mono-
tonically added to the model, i.e., the truth (falsity) of one instance of a predicate
P, will not cause an earlier deduced instance to become false (true)

In EOLC program E1 (figure 1), the predicates satisfies and submodel
are recursively defined but there is no circular recursion. Figure 5 shows a part
of the atom-dependency graph for program E1. The graph has been drawn with
connectors (circles labelled with letters A, B, . . .) for the sake of clarity. For
example, the connector ‘B’ denotes that there is an edge from ‘submodel(m1,

satisfies_fact(m1, c1)

satisfies(m1, c1)

satisfies(m3, c1)

satisfies(m2, c1)

submodel(m3, m1)

submodel(m2, m1)

failtest(m1, c1)

submodel_fact(m2, m1)

submodel_fact(m2, m3)

failtest(m3, c1)

failtest(m2, c1)

satisfies_fact(m3, c1)

satisfies_fact(m2, c1)
submodel(m3, m2)

submodel(m1, m2)submodel_fact(m3, m2)

submodel_fact(m3, m1)
submodel_fact(m1, m2)

submodel_fact(m1, m3)

submodel(m2, m3)

submodel(m1, m3)

A

A

B

B

C

C

D

D

E

E

F

F

Fig. 5. A part of the atom dependency graph for the EOLC program E1. Note the
cliques involving the recursive predicates ‘satisfies’ and ‘submodel’.

m3)’ to ‘submodel fact(m1, m3)’. The darker ovals mark the cliques of recursive
atoms which when collapsed to super-nodes result in an acyclic graph.

Stratified logic programs also assume restrictions R1 and R2. The algorithm
for EOLC model computation is similar in spirit to the iterated fixpoint algo-
rithm for computing the perfect (or well-founded or stable) model of stratified
logic programs [23]. We however have two different kinds of negation, explicit
and default, in EOLC, and we perform the fixpoint iteration over a 4-valued
interpretation; in addition to the rule ranks and rule priorities.

Let ρ be a stratification of the EOLC program E, s.t., all overrides atoms
come before all other atoms. ρ is a reverse topological sort of the modified atom
dependency graph of E, where cliques have been replaced by super-nodes. In
words, the model, 〈S,X〉, is computed iteratively by a series of partial models.
The ith step considers pi, the ith element in the stratification. If pi is not a
super-node, the ith iteration involves a contest between rule instances with head
pi at the top of their ordering, and the rule instances with head ¬pi at the top
of their ordering, whose bodies are enabled in the current partial model. Since
the atoms are considered in the order of the stratification, when a ground atom
pi is considered, all ground atoms in the bodies of rules with pi in the head,
have already been considered earlier. In case pi is a super-node, the ith iteration
computes a least fix-point of ground instances of the recursively defined predicate
entailed in the current partial model.

Theorem 1. Every EOLC program has a unique maximal model under the
restrictions R1–R3.

Proof. Suppose that EOLC program E, has distinct maximal models 〈S, X〉
and 〈S′, X ′〉. Unless S′ = S in which case both models are the same (using
maximality), both S′\S and S\S′ are non-empty. Let A be the set of ground
atoms that occur in Y = S′\S.
Case 1: let q ∈ Y be a literal, s.t., no atom in A is reachable from the atom in
q in the atom dependency graph of E,

By definition 2 of a model, condition (a) holds on q. Let R̂ be the ground
rule in condition (a) on q.

Since no atom in A is reachable from the atom in q in the atom depen-
dency graph, R̂ is also enabled in 〈(S′\Y), X ′′〉, (where X ′′ is obtained from X ′

by removing those atoms that no longer satisfy condition (b), definition 2 in
〈(S′\Y), X ′〉). All elements in pos body(R̂) ∈ S, S′ occur as the head of some
well-grounded rule instances and hence R̂ is well-grounded. Since (S′\Y) ⊂ S,
R̂ is enabled in 〈S, X〉, and 6 ∃ rule instance, R̂′ of a rule R′, s.t. head(R̂′) = ¬p

which is enabled in 〈S, X〉 and R̂′ ∈ R′T , s.t., R′ is not overridden by some
rule instance R̂′′ of a rule R′′ that is enabled in 〈S,X〉, s.t, head(R̂′′) = q and
R̂′′ ∈ R′′T . Hence q ∈ S, meaning that 〈S, X〉 is not maximal, which is a con-
tradiction.
Case 2: 6 ∃q ∈ Y , s.t., no atom in A is reachable from the atom in q.

In this case, ∀y ∈ Y , there is no well-grounded rule instance that does not
include some other y′ ∈ Y in pos body. By definition of well-grounded-ness these
rule instances cannot be well-grounded. This implies that there are no well-
grounded rule instances with head y ∈ Y that are enabled in 〈S′\Y,X ′′〉 where
X ′′ is some subset of X ′ obtained by removing those literals that no longer
satisfy condition (b) in the definition of a model (definition 2). Hence we get a
contradiction in that 〈S′, X ′〉 cannot be a model. ¤
Theorem 2. (Tractability of inferencing) The maximal model of an EOLC pro-
gram, E, is computed in time O(n2(v+1)) where n = size(E) and v is the upper
bound on the number of variables that occur in rules in E.

The algorithm for computing the maximal model of an EOLC program along
with complete proofs and detailed complexity analysis may be found in [18].

5 Relationship to other Approaches

This section compares EOLC with some other relevant non-monotonic for-
malisms, especially those with explicit rule prioritization. A more elaborate dis-
cussion is in [18].
Courteous Logic Programs: These were introduced recently as a form of de-
fault reasoning useful for intelligent agents [8]. Courteous logic program have
unique answer sets in the acyclic Datalog-restricted domain. A courteous logic
program can, however, be translated into an equivalent EOLC program. The in-
ferences drawn from a courteous logic program may be drawn from the translated
EOLC program. Courteous logic programs do not support recursive concepts,
constraints or the ability to select a desirable solution as the rank construct does
in EOLC.

Logic Programming without Negation as Failure (LPwNF): LPwNF (Kakas et al.
[24]) is an alternative way of default reasoning with an explicit priority relation
among rules. LPwNF, however, considers conflicts between single rules while
EOLC considers sets of rules with complementary heads at the same time. In the
example in figure 5, intuitively it should be possible to infer mammal(platypus)
since for every reason for ¬mammal(platypus) there is a stronger reason for
mammal(platypus). This intuitive inference is allowed in EOLC but not in
LPwNF. Brewka’s form of prioritized extended logic programs is also unable to
handle this example [25]. The well-founded semantics given by Brewka target
cyclic dependencies including those involving negation (which EOLC does not
do).

lays eggs(platypus).
has fur(platypus).
monotreme(platypus).
has bill(platypus).
〈l1〉 mammal(X): monotreme(X).
〈l2〉 mammal(X): has fur(X).
〈l3〉 ¬mammal(X): lays eggs(X).
〈l3〉 ¬mammal(X): has bill(X).
overrides(l1, l3).
overrides(l2, l4).

Fig. 6. Platypus.

LPwNF also does not support the selection of desirable solutions, as the rank
construct allows one to (refer to figure 3). To our knowledge, there is no other
non-monotonic reasoning formalism with priorities that supports such a feature.
Prioritized Logic Programs: (Sakama et al. [6]) It supports an explicit prioritiza-
tion among literals in an extended logic program to define a preference relation
among answer sets. Prioritized logic programs, however, do not support features
of EOLC regarding selection of a desirable solution using rank and also do not
have the computational simplicity of EOLC.
Other Approaches for Non-monotonic reasoning: Grosof shows that courteous
logic programs are more expressive than default inheritance systems such as
Touretzky [26], e.g., support for negation, multiple conditions in rule bodies,
which also applies to EOLC. Zhang and Foo [27] introduce priorities but their
formalization considers individual rules and is unable to handle situations like
figure 5, and also the features of EOLC regarding constraints and rank. Their
approach is however more general in that it supports arbitrary recursion as in
extended logic programs. Brewka’s prioritized default logic [28] allows variables
to be quantified in both rule heads and bodies. In this sense it is more expressive
that EOLC, but it does not support features of EOLC regarding constraints
and rank and also does not have the computational simplicity of EOLC.

Courteous logic programs, LPwNF, prioritized logic programs, prioritized
default logic and other approaches discussed above, do not distinguish the cases
when a literal a is overspecified (>) and unknown (⊥) and hence cannot deal
with situations as in figure 3.

6 Conclusions and Future Work

This paper presents a formalism for commonsense reasoning, EOLC, that gives
a non-monotonic rule framework extending prioritized defaults and supports re-
cursively defined rules in a four-valued logic. EOLC also supports constraints
along with an aggregation operator rank. We present a simple declarative se-
mantics and an efficient inferencing algorithm for EOLC and contrasted EOLC
with other non-monotonic formalisms. EOLC is thus a simple formalism compu-
tationally and conceptually, but rich expressively. We are currently integrating a
Java implementation of the EOLC model computation algorithm into a knowl-
edge management system using the Protégé tool from Stanford. We are also
working on abduction with explicit rule priorities in the context of EOLC.
Acknowledgements: We thank Frank Pfenning at Carnegie Mellon University for
helpful discussions.

References

1. McCarthy, J.: Programs with common sense. In: Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, London, Her Majesty’s
Stationary Office (1959) 75–91

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4) (1991) 365–386

3. Clark, K.L.: Negation as failure. In: Logic and Data Bases. (1977) 293–322
4. McCarthy, J.: Circumscription: a form of non-monotonic reasoning. Artificial

Intelligence 13 (1980) 27–39
5. Reiter, R.: On reasoning by default. In: TINLAP-2: Proceedings of the theoretical

issues in natural language processing-2. (1978) 210–218
6. Sakama, C., Inoue, K.: Prioritized logic programming and its application to com-

monsense reasoning. Artif. Intell. 123(1-2) (2000) 185–222
7. Antoniou, G., Billington, D., Maher, M.: Sceptical logic programming based de-

fault reasoning - Defeasible logic rehabilitated. Formalization of Commonsense
Reasoning (1998)

8. Grosof, B.: Courteous logic programs: Prioritized conflict handling for rules. IBM
Research Report RC20836 (1997)

9. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal
of Logic Programming 19/20 (1994) 73–148

10. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Com-
put. Sci. 68(2) (1989) 135–154

11. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3) (2001) 374–425

12. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic
Programming 19/20 (1994) 503–581

13. Marriott, K., Stuckey, P.J.: Semantics of constraint logic programs with optimiza-
tion. ACM Lett. Program. Lang. Syst. 2(1-4) (1993) 197–212

14. Fages, F.: From constraint minimization to goal optimization in CLP languages.
In: Principles and Practice of Constraint Programming. (1996) 537–538

15. Govindarajan, K., Jayaraman, B., Mantha, S.: Preference logic programming. In:
International Conference on Logic Programming. (1995) 731–745

16. Kumar, R., Krogh, B.H., Feiler, P.: An ontology-based approach to heterogeneous
verification of embedded control systems. Hybrid Systems Computation and Con-
trol (HSCC) (2005) 370–385

17. Matiyasevich., Y.: Enumerable sets are diophantine. In: English translation in
Soviet Mathematics. Doklady. Volume 11. (1970)

18. Kumar, R., Tiwari, A., Krogh, B.: EOLC: A Knowledge Representation Framework
for Commonsense Reasoning. Technical report, ECE Department, Carnegie Mellon
Univ. (2006)

19. Dung, P., Kowalski, R., Toni, F.: Argumentation-theoretic proof procedures for
default reasoning. Technical report, Imperial College, London, UK (1997)

20. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In
Minker, J., ed.: Foundations of Deductive Databases and Logic Programming.
(1988) 89–148

21. Gelfond, M.: The stable model semantics for logic programming (1988)
22. Ross, K.A., Srivastava, D., Stuckey, P.J., Sudarshan, S.: Foundations of aggregation

constraints. In: Principles and Practice of Constraint Programming. (1994) 193–
204

23. van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM 38(3) (1991) 620–650

24. Dimopoulos, Y., Kakas, A.: Logic programming without negation as failure. In:
5th. International Symposium on Logic Programming. (1995) 369–384

25. Brewka, G.: Well-founded semantics for extended logic programs with dynamic
preferences. Journal of Artificial Intelligence Research 4 (1996) 19–36

26. Touretzky, D.S.: The mathematics of inheritance systems. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1986)

27. Zhang, Y., Foo, N.Y.: Answer sets for prioritized logic programs. In: International
Logic Programming Symposium. (1997) 69–83

28. Brewka, G.: Reasoning about priorities in default logic. In: AAAI National Con-
ference on Artificial Intelligence. Volume 2. (1994) 940–945

