
Lifting Abstract Interpreters to Quantified Logical Domains

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Bill McCloskey
Microsoft Research/UC Berkeley

billm@cs.berkeley.edu

Ashish Tiwari
SRI International
tiwari@csl.sri.com

Abstract
Today, abstract interpretation is capable of inferring a wide vari-
ety of quantifier-free program invariants. In this paper, we describe
a general technique for building powerful quantified abstract do-
mains that leverage existing quantifier-free domains. For example,
from a domain that abstracts facts like a[1] = 0, we automatically
construct a domain that can represent universally quantified facts
like ∀i(0 ≤ i < n ⇒ a[i] = 0).

The principal challenge in building such a domain is that, while
most domains supply over-approximations of operations like join,
meet, and variable elimination, working with the guards of quan-
tified facts requires under-approximation. A crucial component
of our approach is an automatic technique to convert the stan-
dard over-approximation operations provided with all domains into
sound under-approximations.

The correctness of our abstract interpreters is established by
identifying two lattices–one that establishes the soundness of the
abstract interpreter and another that defines its precision, or com-
pleteness. Despite the computational intractability of inferring
quantified facts in general, we prove that the analyses we gener-
ate are complete relative to a very natural partial order.

Using our generic construction, we build a number of abstract
interpreters on top of domains for linear arithmetic, uninterpreted
function symbols (used to model heap accesses), and pointer reach-
ability. Our experiments on a variety of programs using arrays and
pointers (including several sorting algorithms) demonstrate the fea-
sibility of the approach on challenging examples.

1. Introduction
Proving the correctness of software almost always requires the use
of universal quantifiers, since program invariants often need to con-
strain unbounded segments of a data structure. However, abstract
interpreters are typically designed to constraint only a bounded set
of program variables; they cannot express quantified facts. In this
paper, we describe a general method of transforming a quantifier-
free abstract domain into a universally quantified domain. Since
there already is a huge variety of quantifier-free domains available,
our technique can be readily instantiated in many areas. For exam-
ple, in our experiments we were able to reason about unbounded
numbers of array locations and heap objects using some fairly sim-
ple base domains (difference constraints and reachability predi-
cates, respectively).

We began our research by considering many potentially useful
quantified invariants. Ultimately, we were able to express all of
them in the following form.

E ∧
n̂

j=1

∀Uj(Fj ⇒ ej) (1)

Microsoft Technical Report TR-2007-87.ps, July 2007

Here, E, Fj and ej are quantifier-free facts from three potentially
different domains, Da, Db, and Dc, respectively. These domains
are the parameters to our universally quantified domain; we call
them the base domains. The abstract element E, called the environ-
ment, contains quantifier-free facts about program variables. With-
out any quantified facts, our domain reduces to Da. Elements Fj

are the guards to the quantified facts ej , which are quantified over
variables Uj .

This universal domain, written D∀, represents common quan-
tified facts quite naturally. To constrain array values, we use
the domain of difference constraints for the guards and uninter-
preted functions to represent array access in the quantified facts:
∀i(0 ≤ i < n ⇒ A[i] = 0). In some cases, more complex do-
mains are required. The invariant ∀i, j(0 ≤ i < n ∧ 0 ≤ j <
size[i] ⇒ A[i][j] ≤ A[i][j + 1]) can be represented using the
combination of difference constraints and uninterpreted functions
for both the guards and the facts [10]. In our experiments section
we describe a reachability domain, allowing us to represent con-
straints like ∀n(n ∈ R(list) ∧ n 6∈ R(p) ⇒ n.data = 0). Here,
all elements reachable from the variable list up to the element
pointed to by p are required to have a data field containing zero.
Even some existential facts can be represented via Skolemization.
If our domain includes a function NLEN defined to be the length
of null-terminated C string (and undefined for non-strings), then
∀i(0 ≤ i < NLEN(s) ⇒ s[i] 6= ’!’) forbids the string s, regard-
less of its length, from containing exclamation points (facts like this
are useful for analyzing string sanitization routines for security).

To ensure adequate performance, we place some simple restric-
tions on the base domains. The fact ej must be a single atomic
fact—a predicate of the form p(t1, . . . , pm), such as < or =. Ele-
ments E and Fj must be finite conjunctions of atomic facts. There
is no way to represent disjunctions explicitly in any of these ele-
ments, which eliminates a possible source of exponential explosion
in the size of the element.

The abstract interpreters for the base domains are all supplied
with transfer functions for assignments, assume statements, and
control-flow joins. All of these functions are over-approximations
of the ideal result. However, the crux of this paper is that quantifi-
cation introduces extra complexity: in order to over-approximate
a function on a quantified abstract element, we need to under-
approximate its effect on the quantifier guard. Under-approximation
has been studied in the context of backward analysis, but it has
never been applied in this way before. The following example
demonstrates the importance of under-approximation.

Under-Approximation operators at work. The following exam-
ple initializes elements 0 to n of array A to 0.

for (i = 0; i < n; i++) A[i] = 0
We would like to prove that ∀k(0 ≤ k < n ⇒ A[k] = 0) when
the loop terminates. There are many ways to explore all the possi-
ble control-flow paths taken by this loop. For explanatory purposes,
we focus on the first two unrollings of this loop. We let Da be the
combined domain of difference constraints and uninterpreted func-

tions [10]. After the first iteration, this domain infers the following
quantifier-free fact in the environment E:

E1 : i = 1 ∧ A[0] = 0

We assume that no join occurs, so that the abstract interpreter con-
tinues to execute the second iteration, producing another quantifier-
free fact:

E2 : i = 2 ∧ A[0] = 0 ∧ A[1] = 0

At this time, we would like to join E1 and E2. Using the standard
join algorithm for the base domain does not yield a satisfying result;
the invariant we desire requires quantifiers, as n can be arbitrarily
large. Therefore, the join algorithm for our universally quantified
domain D∀ begins by introducing quantifiers in both elements.
(Throughout this paper, we call anything of the form ∀U(F ⇒ e)
a quantifier, while a domain element from domainq is called a
quantified fact.) The details of quantifier introduction are explained
later; the result is as follows:
E ′
1 : i = 1 ∧ ∀k(k = 0 ⇒ A[k] = 0)

E ′
2 : i = 2 ∧ ∀k(k = 0 ⇒ A[k] = 0) ∧ ∀k(k = 1 ⇒ A[k] = 0)

Before we join these two abstract elements together, it is use-
ful to merge similar quantifiers inside each element. Since the two
quantifiers in E2 have the same right-hand side, we merge them.
The tricky part is merging the guards. In general, given two quanti-
fied facts ∀U(F1 ⇒ e) and ∀U(F2 ⇒ e), it is safe to merge them
into ∀U(F ⇒ e) when F = F1 ∨ F2. However, our domain does
not represent disjunctions since they are a major source of ineffi-
ciency. The standard way of approximating disjunction in an ab-
stract domain is with the join operation. However, using join will
lead to unsoundness here. Consider the facts ∀i(i = 0 ⇒ e) and
∀i(i = 2 ⇒ e). The join of the guards in a typical numerical do-
main will yield 0 ≤ i ≤ 2. However, the fact ∀i(0 ≤ i ≤ 2 ⇒ e)
is not a sound over-approximation of the conjunction of the two
original facts.

The source of the problem is that the join algorithm for an ab-
stract domain is required to generate an over-approximation of the
disjunction of two elements. Since the guard of a quantifier ap-
pears in a negative position (in the antecedent of an implication), we
must under-approximate the disjunction of guards instead. Unfor-
tunately, most domains are not equipped with under-approximation
operators. This paper addresses the problem by constructing sound
under-approximations for each domain operation, given the corre-
sponding over-approximations. These under-approximations work
in fairly general circumstances, which allows us to parametrize our
universal domain with a wide variety of base domains.

We under-approximate disjunctions by taking the join in the
base domain Db of the two disjuncts (an over-approximation) and
then adding extra constraints to the result until it is a valid under-
approximation. Fortunately, the join of the two guards in E ′

1 and E ′
2,

0 ≤ k ≤ 1, is already a valid under-approximation, so there is no
need to refine it. Hence, we now are faced with joining these two
(now simplified) elements in D∀:

E ′′
1 : i = 1 ∧ ∀k(k = 0 ⇒ A[k] = 0)

E ′′
2 : i = 2 ∧ ∀k(0 ≤ k ≤ 1 ⇒ A[k] = 0)

The facts about i in the two environments can be joined using
the standard over-approximation in Da. Since the two quantifiers
have the same fact, A[k] = 0, we choose to join them together.
In general, given two quantifiers ∀U(F1 ⇒ e) and ∀U(F2 ⇒ e),
it is safe to join them into ∀U(F ⇒ e), where F = F1 ∧ F2.
However, doing such a simple conjunction will almost always lead
to imprecision. In this case, it simply yields the new fact ∀k(k =
0 ⇒ A[k] = 0), which is no better than if we had joined the
quantifier-free facts.

The key to solving this problem is to join quantifiers in the
presence of their environments. The i constraints in E ′′

1 and E ′′
2

offer natural upper bounds for k. So rather than generating F1 ∧
F2, we would like to produce F = (E1 ⇒ F1) ∧ (E2 ⇒
F2), where E1 and E2 are the respective environments of the
universally quantified elements to be joined. Unfortunately, we are
again faced with the problem of under-approximating a logical
formula that is essentially disjunctive (since implication is another
form of disjunction).

To solve this problem, we use a similar approach to the one
before: we use an over-approximation of the join algorithm in Db

to start with, and then refine this answer until it is a valid under-
approximation. The initial join takes the environments into account
by joining E1∧F1 with E2∧F2. In the array initialization example,
we must join i = 1 ∧ k = 0 with i = 2 ∧ 0 ≤ k ≤ 1.
The result, 1 ≤ i ≤ 2 ∧ 0 ≤ k < i, is a sound and precise
guard for the quantified fact A[k] = 0. Thus, there is no need to
refine the result, since it is already a valid under-approximation.
For simplicity, we can eliminate the constraints on i, since they are
already represented in the joined environment. Ultimately, we get
the following fact in the quantified domain, which is the one we
desired:

E : 1 ≤ i ≤ 2 ∧ ∀k(0 ≤ k < i ⇒ A[k] = 0)

The steps we took to arrive at this result may appear somewhat
ad-hoc. Perhaps if the loop had not been unrolled twice, or the ini-
tial quantifiers had been introduced differently, or if the join algo-
rithm had not always produced a valid under-approximation, our
approach would have been less successful? In powerful domains
like this one, the threat is ever-present that small changes to the
inputs can lead to a dramatic loss of precision. To alleviate this
fear, we prove that our domain is complete relative to a fairly in-
tuitive partial order in the quantified domain (although not relative
to the implication partial order, which is undecidable). Our under-
approximation operators are also complete for common domains.
Our implementation does perform “tricks” like loop unrolling, but
it does so only as a performance optimization. It would still arrive at
the desired invariant even without loop unrolling; however, doing
so forces it to consider many more possible quantified invariants,
most of which are spurious.

Contributions. The contributions of this paper are four-fold.
We describe a parametrized framework of universally quanti-
fied abstract domains. We describe a general technique to con-
struct under-approximation operations from their respective over-
approximations. We provide soundness proofs and restricted com-
pleteness proofs for both. Finally, we present benchmarks on com-
plex array- and pointer-based examples demonstrating that it is pos-
sible to construct practical abstract interpreters using our method-
ology.

2. Quantified Abstract Domain
The quantified domain, D∀, is parametrized by three (not neces-
sarily different) base abstract domains, Da, Db, and Dc. We as-
sume these are conjunctive domains, meaning that each domain el-
ement is a conjunction of atomic facts of the form p(t1, . . . , tk) or
¬p(t1, . . . , tk). p can be any predicate, such as =, <, or reachabil-
ity. Each ti is an arbitrary term. We assume that these domains are
equipped with a partial order �. However, since the domains are
conjunctive domains, we can think of domain elements as formulas
in some logical theory. As such, the partial order � should always
respect the standard logical implication relation T

⇒ for that theory
(i.e., � ⊆

T

⇒).

An abstract element E in quantified domain D∀ is of the form

E = E ∧
^

i

∀Ui(Fi ⇒ ei) (2)

where (a) E ∈ Da is the environment, (b) Fi ∈ Db and ei ∈ Dc

for each i, and (c) without loss of generality, for each i, Ui is a set
of variables disjoint from the program variables.

The semantics of the abstract element E is described in terms of
the semantics of the constituent abstract domains Da, Db, and Dc.
Let γDa , γDb

, and γDc , be the concretization functions of the base
abstract domains. The concretization function γD∀

of the quantified
abstract domain is defined as follows. A program state ρ ∈ γD∀

(E)
iff
• ρ ∈ γDa(E), and
• for every i, if ρ′ is an extension of state ρ with assignment to

variables in Ui such that ρ′ ∈ γDb
(Fi), then, ρ′ ∈ γDc(ei).

A special and important class of quantified abstract domains is
obtained when D := Da = Db = Dc. For simplicity and ease of
presentation throughout the rest of this paper we will only refer to
the base domain D and the quantified domain D∀.

2.1 Quantified Partial Order

The most obvious partial order for the quantified domain is logical
implication. However, given that the partial order for the base
domain may be weaker than logical implication, we have no hope
of deciding implication on the quantified domain.

A more tractable approach is to obtain a quantified partial order
whose power is relative to the partial order given for the base
domain. However, even this problem is quite tricky. Consider the
following two quantified abstract elements.

E1 : ∀j, k(0 ≤ j < n − 1 ∧ k = j + 1 ⇒ A[j] ≤ A[k])

E2 : ∀j, k(0 ≤ j < k < n ⇒ A[j] ≤ A[k])

E1 implies E2, but proving the implication requires induction. We
would like to avoid solving such hard problems. Therefore, we use
a simplified partial order defined as follows. We say

E ∧
n

^

i=1

∀Ui(Fi ⇒ ei) �∀ E′ ∧
n′

^

i=1

∀U ′
i (F

′
i ⇒ e′i)

when the following criteria are satisfied:
(i) The environments match up in the base domain: E � E′.

(ii) For each fact ∀U(F ′
i ⇒ e′i) on the right-hand side, there is a

fact ∀U(Fj ⇒ ej) on the left-hand side (assumed to have the
same set of variables, for simplicity) such that: (a) E∧F ′

i � Fj ,
and (b) E ∧ ej � e′i.
We choose this partial order because it is fairly natural and

because it is powerful enough that the examples presented later are
analyzable. We prove completeness relative to this partial order, but
we prove soundness with respect to the standard logical implication
partial order, T

⇒.
One important point to note is that, when completeness is de-

fined relative to this partial order of quantified elements, an anal-
ysis that never introduces any quantified facts is still considered
complete. This partial order only guarantees that, once a quantified
fact is introduced, it will be preserved as long as possible. Addi-
tionally, the partial order treats quantified facts as independent of
each other. Thus, for example, the partial order does not require an
analysis to transitively close quantified facts to achieve complete-
ness. We consider this property to be beneficial, since it allows us
to forgo transitive closure of quantified facts for efficiency while
still providing a measure of completeness.

2.2 Templates

A serious problem in implementing a quantified domain is know-
ing when to introduce quantifiers. For example, consider the
quantifier-free element whose environment is A[0] = 0. One valid
way of turning this fact into a quantified fact results in ∀k(k =
0 ⇒ A[k] = 0). However, there are many other ways, such as
∀k(k = 0 ⇒ A[k] = k) and even ∀k(k = 0 ⇒ A[A[k]] = A[k]).
According to the quantified partial order given above, these dif-
ferent quantified facts are independent of each other, since their
right-hand sides are not related by � in any environment. Introduc-
ing a greater number of quantifiers may improve precision, but it
incurs a cost in performance.

Therefore, we add extra structure to the Dc domain by requiring
that all atomic facts represented in it match one of a given set
of templates. A template is a formula such as a[α] = 0. An
atomic fact e matches a template t if there is a substitution σ over
the template’s variables such that e = tσ via syntactic equality.
We write this as e ∼σ t. In the examples above, we would not
introduce the quantified fact A[A[0]] = A[0] when using the
template a[α] = 0. We would introduce A[0] = 0, since there
is a substitution σ = {a = A, α = 0}.

Templates have three kinds of variables, Greek, Roman, and
fixed. Fixed variables are treated the same as constants—they can
only be matched with a program variable of the same name; Greek
and Roman variables can match arbitrary expressions. When in-
troducing quantifiers, we quantify over the Greek variables but
not the Roman ones. Greek variables are written α, Roman vari-
ables as a, and fixed variables as A. Thus, from the fact A[0] = 0
and the template a[α] = 0 we would create a single quantifier,
∀α(α = 0 ⇒ A[α] = 0).

3. Abstract Interpreter for D∀

This section presents the principal transfer functions for D∀, along
with soundness and completeness proofs:

• The join function computes an over-approximation of the log-
ical ∨ of two quantified abstract elements (essentially their
union), which involves under-approximating the ∧ of their
quantifier guards.

• The assignment transfer function eliminates any references to
the variable being assigned to. Then it adds a new equality rep-
resenting the assignment. Variable elimination is handled by
over-approximating ∃ quantifier elimination, which, in turn, re-
quires under-approximating ∀ quantifier elimination for quanti-
fier guards.

• Quantifier introduction uses templates to move facts from the
environment into a new quantified fact. Quantifier merging
combines the guards of two quantified facts with the same right-
hand sides. Guards are merged using an under-approximation
of ∨.

• A widening step ensures termination of abstract interpretation.

We discuss these basic operators in this section; the next sec-
tion describes the under-approximation operators that they depend
on. A common theme here is that over-approximating an oper-
ator for the quantified domain requires us to under-approximate
its dual for the guard. Since both under-approximation and over-
approximation are so important in this area, we use a special nota-
tion. An under-approximation of a formula F is denoted bF c, while
an over-approximation is written dF e. Similarly, operators like ∧
are written as either b∧c or d∧e.

d∨eD∀
(E ,E ′)

1 Let E be E ∧
Vn

i=1 ∀Ui(Fi ⇒ ei).
2 Let E ′ be E′ ∧

Vm

j=1 ∀U ′
j(F

′
j ⇒ e′j).

3 E′′ := d∨eD(E, E′);
4 result := E′′;
5 forall i ∈ {1, . . , n}, j ∈ {1, . . , m}:
6 e := d∨eDc((ei, E), (e′j , E

′));
7 if (e = ∅) continue;
8 F ′′

ij := b∧c((Fi, E), (F ′
j , E

′));
9 result := result ∧ ∀Ui, (F

′′
ij ⇒ e)

10 forall i ∈ {1, . . , n}:
11 F ′′

i0 := b∧c((Fi, E), (false, E′));
12 result := result ∧ ∀Ui(F

′′
i0 ⇒ ei)

13 forall j ∈ {1, . . , m}:
14 F ′′

0j := b∧c((false, E), (F ′
j , E

′));
15 result := result ∧ ∀U ′

j(F
′′
0j ⇒ e′j)

16 return result;

Figure 1. d∨eD∀
. The join algorithm for the quantified domain.

3.1 Quantified Join Algorithm

Consider two elements of D∀, E := E ∧
Vn

i=1 ∀U(Fi ⇒ ei) and
E ′ := E′ ∧

Vm

j=1 ∀U(F ′
j ⇒ e′j). The join algorithm is described

below; pseudo-code is shown in Figure 1.
Let L := (D,�) denote the base logical lattice. We assume

that we are given a procedure, d∨eD , that implements a sound
and complete join operator for the base domain with respect to the
lattice L. It takes as input two elements E1 and E2 from D and
returns an element E of D. The correctness of the join operator is
stated with respect to a partial order, �, on the domain D. A join
operator is correct with respect to an order � if the return value is
the least upper bound of the inputs. The following definition makes
this more precise.
DEFINITION 1 (Correctness of Join Operator d∨eD). Let L :=
(D,�) be a lattice. Let E := d∨eD(E1, E2). Then, with respect
to lattice L, we say that

• d∨eD is a sound join operator if E1 � E and E2 � E.
• d∨eD is a complete join operator if, for any E′ such that

E1 � E′ and E2 � E′, it is the case that E � E′.

The first step in joining two quantified facts is to join their
environments in the base domain, as shown on Line 3 of Figure 1.

Next consider the process of joining quantified facts. When
computing the join of, say, E∧∀U(F1 ⇒ e1) and E′∧∀U(F ′

1 ⇒ e′1),
we first need to “match” e1 and e′1—that is, make them identical.
To do so, we take advantage of the fact that all quantifiers are
generated from templates, so the right-hand side of each quanti-
fier matches some template. We say two quantifiers match if they
match the same template in the same way.

However, this matching can be tricky, as illustrated by an exam-
ple. Consider the following two quantified facts to be joined (facts
like these appear in practice when analyzing selection sort).

E1 : (x = min) ∧ ∀u(F1(u) ⇒ A[x] ≤ A[u])

E2 : (y = min) ∧ ∀u(F ′
1(u) ⇒ A[y] ≤ A[u])

When joining these facts, we would like to generate a quantifier
whose right-hand side is A[min] ≤ A[u]. Both these facts were
generated from a template t := a[v] ≤ a[α]. It is easy to see that
in E1, the right-hand side matches the template t with substitution
σ1 = {a = A, v = x, α = u}. In E2 the substitution is
σ2 = {a = A, v = y, α = u}. Somehow from these two
substitutions we must generate A[min] ≤ A[u].

To do so, we take advantage of the environments of the two
quantified elements using the join algorithm from the base domain.

We convert each substitution into a fact in the base domain. For
example, σ1 is converted to S1 := a = A ∧ v = x ∧ α = u
(templates are required to use fresh variables). Then we compute
the join of the substitutions: S := d∨eD(E ∧ S1, E

′ ∧ S2). In the
example, we get S = (a = A∧v = min∧α = u). If S implies that
each template variable is equal to some expression, then S can be
converted to a substitution σ, and σ applied to t yields the desired
right-hand side of the joined quantifier, A[min] ≤ A[u]. If S does
not imply a value for each template variable, then the quantifiers are
said not to match. The function d∨eDc ((e1, E), (e′1, E

′)) carries
out the algorithm just described. It returns either an atomic fact as
its result, or ∅ if the inputs do not match.

Now, suppose that we have made the right-hand sides of the
two quantified facts identical and we are left with the problem of
computing the join of E ∧ ∀U(F1 ⇒ e) and E′ ∧ ∀U(F ′

1 ⇒ e).
It is easy to see that the result of this join should contain a fact
∀U(F ⇒ e), where F satisfies the following property:

F ∧ E ⇒ F1 and F ∧ E′ ⇒ F ′
1

Hence F is an under-approximation of (E ⇒ F1) ∧ (E′ ⇒ F ′
1).

We need a function on the base domain that computes such an F .
Specifically, we assume that we have the procedure b∧c((F l

i , E
l),-

(F r
j , Er)) that under-approximates (El ⇒ F l

i) ∧ (Er ⇒ F r
j) in

D. It should have the following properties.

PROPERTY 1. (Soundness of b∧cD with respect to lattice L :=
(D,�)) If b∧cD((F l

i , E
l), (F r

j , Er)) returns F , then F uL El �
F l

i and F uL Er � F r
j .

(Completeness of b∧cD with respect to lattice L) If F ′ is such that
for some substitution σ (on variables in Vars(F l

i) ∩ Vars(F r
j) −

(Vars(El)∪Vars(Er))) it is the case that F ′ uL El � F l
i σ and

F ′uL Er � F r
j σ, then b∧cD((F l

i , E
l), (F r

j , Er)) returns F such
that F ′ � Fσ.

Section 4 presents an algorithm to compute this function, which
is sound and, in some cases, complete.

Given this algorithm, the pseudo-code in Figure 1 proceeds as
one would expect. Lines 6-9 match up quantified facts on either
side and relate their guards via b∧c. Lines 10-15 perform a simi-
lar function, but their job is to match up a fact ∀U(F ⇒ e) on one
side with a dummy fact ∀U(false ⇒ e) on the other. For exam-
ple, consider the following quantified elements (similar to the find
example in our experiments).

E1 : found = false

E2 : found = true ∧ ∀i(0 ≤ i < 10 ⇒ P (i))

The join of these two facts should not be simply >. We can arrive
at a more precise fact, namely:

E ′ : ∀i(found = true ∧ 0 ≤ i < 10 ⇒ P (i))

We produce this quantifier because E1 has an “implicit” quantifier
saying ∀i(false ⇒ P (i)). This implicit quantifier, when matched
with the quantifier in E2, yields the quantifier in E ′. This is true
because of the following fact:

b∧c((false, found = false), (0 ≤ i < 10, found = true))

= (found = true ∧ 0 ≤ i < 10)

Therefore, our join algorithm also tries to match each quantifier on
either side with false, as shown in Lines 10-15.

Correctness. We prove the soundness of the join with respect to
the strongest partial order possible: logical implication, T

⇒. How-
ever, we prove completeness using a weaker partial order, �∀, since
a complete algorithm with respect to logical implication is unde-
cidable. The soundness (completeness) proof requires that the base

domain operations, � and b∧c, are themselves sound (respectively
complete). The b∧c implementation we present later is sound, but
complete only in some circumstances.

LEMMA 1 (Soundness of Join wrt T
⇒). If E ′′ is the fact returned

by the function d∨eD∀
(E ,E ′), then E

T
⇒ E ′′ and E ′ T

⇒ E ′′.

PROOF: Let E and E ′ be as defined above. Let E ′′ := E′′ ∧
Vn

i=1 ∀U(F ′′
i ⇒ e′′i) be the result returned by d∨eD∀

(E ,E ′)
as described above. To prove the lemma, we will show that
(i) E � E′′ and E′ � E′′, and
(ii) for each universal fact ∀U(F ′′

k ⇒ e′′k), say generated using
facts ∀U(Fi ⇒ ei) and ∀U(F ′

j ⇒ e′j) in Line 9 or Line 12 or
Line 15 above, it is the case that EuDF ′′

k � Fi and EuD ei �
e′′k (respectively E′ uD F ′′

k � F ′
j and E′ uD e′j � e′′k).

We note here that, in the case of universal facts introduced by
Line 12 above, the second universal fact can be thought of to
be ∀U(false ⇒ ei). Similarly, in the case of universal facts
introduced by Line 12 above, the first universal fact can be
thought of to be ∀U(false ⇒ e′j).

Claim (i) follows from the soundness of the join algorithm for
the base abstract domain D with respect to the base logical
lattice lattice (D,�).

We now prove Claim (ii). Consider the universal fact ∀U(F ′′
k ⇒ e′′k)

in the answer generated from i-th universal fact on the left and
j-th universal fact on the right as above. By assumption, the
procedure d∨eD((ei, E), (e′j , E

′)) would have returned e′′k in
Line 6, or ei and e′j are the same and e′′k is equal to them
(Line 12 or Line 15).

By soundness of d∨eD , it follows that
E u ei � e′′k and E′ u e′j � e′′k .

(These claims are trivial for the case arising from Line 12 or
Line 15). By soundness of b∧cD , we have

F ′′
k uD E � Fi and F ′′

k uD E′ � F ′
j

Claim (i) and Claim (ii) together imply that E ′′ is a logical
implied by E (and by E ′) since the partial order � is, by
assumption that L2 is a logical lattice, contained in the T

⇒
relation. This completes the proof.

�

LEMMA 2 (Completeness of Join wrt �∀). Let E be the fact re-
turned by the function d∨eD∀

(E l, Er). If E ′ is another fact such
that E l �∀ E ′ and Er �∀ E ′, then E �∀ E ′.

PROOF: Let the facts E l, Er, E and E ′ be of the following form:

E l := El ∧
^

i

∀U(F l
i ⇒ el

i) , Er := Er ∧
^

i

∀U(F r
i ⇒ er

i)

E := E ∧
^

i

∀U(Fi ⇒ ei) , E ′ := E′ ∧
^

i

∀U(F ′
i ⇒ e′i)

We note that
E l �∀ E ′ and Er �∀ E ′ (given)

∴ El � E′ and Er � E′ (by defn.)
∴ d∨eD (El, Er) � E′ (completeness of d∨eD wrt �)

∴ E � E′ (defn of E)

To complete the proof of E �∀ E ′, we need to show that for any
universal fact ∀U(F ′

k ⇒ e′k) in E ′, we can find a corresponding

d∃e(`,E)
1 Let E be E ∧

Vn

i=1 ∀Ui(Fi ⇒ ei);
// Instantiate some quantified facts.

2 E′ := E ∧
V

{eiσ | E �D Fiσ; ` occurs in eiσ}
// Fix Fi 1: Remove affected instances

3 Ti := {t | t occurs in Fi, ei;Vars(t) ∩ Ui 6= ∅}
4 F ′

i := Fi ∧
V

t∈Ti
{NotEffect(〈`, E′〉, t)};

// Fix Fi 2: Remove ` from Fi

5 F ′′
i := b∀c(`, F ′

i , E
′);

// Fix ei: Remove ` from ei

6 e′i := d∃e(`, ei, E
′ ∧ F ′

i);
// Fix E: Remove ` from E

7 E′′ := d∃e(`, E′);
8 return E′′ ∧

Vn

i=1 ∀Ui(F
′′
i ⇒ e′i);

Figure 3. d∃e. Procedure for existential elimination in the quanti-
fied domain.

universal fact in E that is “stronger” than it. Hence, consider
any universal fact ∀U(F ′

k ⇒ e′k) in E ′. Since E l �∀ E ′, it
follows that there exists an i such that

F ′
k uD El � F l

i and el
i � e′k

Similarly, we have an j such that
F ′

k uD Er � F r
j and er

j � e′k

By completeness of d∨eD wrt�, we know that d∨eD ((el
i, E),-

(er
j , E

′)) returns e s.t.

e � e′k.

Let F be the result returned by b∧cD ((F l
i , E

l), (F r
j , Er)). By

completeness of b∧cD , it follows that F ′
k � F . By definition

of d∨eD∀
(E l, Er), we know that ∀U(F ⇒ e) is in E . This

completes the second part of the proof of E �∀ E ′.
�

3.2 Existential Elimination for Assignment

The transfer function for an assignment ` := r is shown on the left
side of Figure 2. Most of the machinery for this function is handled
by d∃e(`, E), which eliminates any reference to the lvalue ` from
the quantified domain element E . Once all references have been
eliminated, the equality created by the assignment is assumed. This
function assumes that assignments where ` appears in r have been
decomposed into the form “t := r; ` := t”, where t is a fresh
variable.

The difficult part of implementing assignment is delegated to
existential quantifier elimination, d∃e(`, E). This function elimi-
nates all references to ` from E . It is described throughout the re-
mainder of this subsection. When the assignment is to a program
variable (i.e., when ` = v for some v) then the goal is to generate
an under-approximation of the formula ∃`.E , with the complication
that ∃ cannot be represented directly in our domain.

When a heap location is being updated (say, ` = A[0]) then the
situation is more complicated. In this case, ` is a term F (t1, t2),
where F is an operator like array sub-scripting or field access. We
define the notion of existential quantification of the term F (t1, t2)
in a formula φ as follows:

∃(F (t1, t2), φ) ≡ ∃F ′([∀x, y(x 6= t1 ∨ y 6= t2) ⇒

F ′(x, y) = F (x, y)] ∧ φ[F ′/F]) (3)
The above definition is in terms of second-order existential quan-
tification (of a function symbol) applied on a specific form of a
universally quantified formula.

We require the base domain to supply an operator d∃e(`, E) that
returns an abstract element E′ that over-approximates the logical

PreCondition: ` is not a prefix of r.
PostAssign(E , ` := r)

1 E ′ := d∃e(`,E);
// Let E ′ be E′ ∧

Vn

i=1 ∀Ui(F
′
i ⇒ e′i)

// Add the new fact to the environment
2 E′′ := PostAssume(E′, ` = r);
3 return E′′ ∧

Vn

i=1 ∀Ui(F
′
i ⇒ e′i);

PreCondition: e is an atomic formula on the base domain
PostAssume(E , e)
// Let E be E ∧

Vn

i=1 ∀Ui(Fi ⇒ ei)
// Add the new fact to the environment

1 E′ := Ed∧ee;
2 return E′ ∧

Vn

i=1 ∀Ui(Fi ⇒ ei);

Figure 2. PostAssign and PostAssume. The procedures for computing post-conditions of assignment and assume statements are standard.

operator ∃(`,E) and that does not “contain” `. To formally define
the d∃e operator on the lattice, we need to define what it means for
a term ` to not occur in an abstract domain element E′.

DEFINITION 2 (Provably not in, 6 6∈E). A term t is provably not in
E assuming environment E′, denoted by t 6 6∈E′ E, if either
(a) t is a variable and t does not syntactically occur in E, or
(b) t is of the form F (t1, t2) and for every term F (t′1, t

′
2) that

(syntactically) occurs in E, it is the case that either E′ � t1 6= t′1
or E′ � t2 6= t′2.

We can extend this definition to a quantified domain element.

DEFINITION 3 (Provably not in, 6 6∈E E). A term t is provably not
in E assuming environment E′, denoted by t 6 6∈E′ E , where E =
E ∧

Vn

i=1 ∀Ui(Fi ⇒ ei), if
(a) t 6 6∈E′ E
(b) t 6 6∈E′ Fi

(c) t 6 6∈E′∧Fi
ei

Finally, we define t 6 6∈E′ E when t 6 6∈E′ E , where E′ is the
environment of E ′.

The basic job of d∃e(`,E) is to return an E′ so that ` 6 6∈ E′. It
is clear from this definition that the more disequalities we know,
the fewer terms will have to be eliminated. Thus, we define a
more refined operator d∃e(`,E, E′) that eliminates ` from E using
disequalities from the environment E′.

Given two abstract domain elements E and E1, and a term t,
we are now ready to define the overapproximation of existential
quantification of t in E1 in an environment E, which is denoted by
d∃e(t, E1, E).

DEFINITION 4 (d∃e). Let E, E1 be elements of the abstract do-
main. Let E′

1 := d∃e(t,E1, E). Then, we say

• d∃e is sound if (E1 u E) � E′
1 and t 6 6∈E1uE E′

1.
• d∃e is complete if for all E′′

1 s.t. (E1 uE) � E′′
1 and t 6 6∈E1uE

E′′
1 , it is the case that E′

1 u E � E′′
1 .

By definition, d∃e(t, E) is just d∃e(t, E, true).

EXAMPLE 4. In the logical lattice induced by the theory of unin-
terpreted function symbols, we have
(a) d∃e(F (x), x = y ∧ u = F (x)) is x = y,
(b) d∃e(F (x), F (x) = F (y)∧u = F (x)) is true, (note here that
soundness requires that u = F (y) not be in the result – because
it is not the case that F (x) 6 6∈F (x)=F (y)∧u=F (x) u = F (y) since
F (x) = F (y) ∧ u = F (x) does not imply y 6= x.)
(c) d∃e(F (x), x 6= y∧F (x) = F (y)∧u = F (x)) is x 6= y∧u =
F (y),
(d) d∃e(F (F (x)), F (x) = F (y) ∧ u = F (x) ∧ x 6= u) is
x 6= u ∧ u = F (x).

The d∃e(`, E, E′) operation can be used to eliminate ` from the
environment of a quantified fact E . Figure 3 shows the complete
algorithm for eliminating ` from E . Line 7 shows the elimination
from the environment. In the remainder of the section, we describe
what the other lines do.

NotEffect(〈x,E〉, x) = false

NotEffect(〈x,E〉, t) = true when t is not x

NotEffect(〈t,E〉, x) = true when t is not x

NotEffect(〈A[e], E〉, B[e′]) = e 6= e′ if E � A = B

NotEffect(〈A[e], E〉, B[e′]) = NotEffect(〈A[e], E〉, e′)

if E � A 6= B

NotEffect(〈A[e], E〉, B[e′]) = NotEffect(〈A[e], E〉, e′)

∧ e 6= e′ otherwise

Figure 4. NotEffect function for the Array Base Domain.

Elimination from Dc. A universal quantifier represents an infi-
nite conjunction over all possible instantiations of the quantified
variables. Some of these instances may be affected by a change to
` and others may not be. We would like to eliminate the affected
instances while leaving the others alone. This can be achieved by
strengthening the guard. Consider the following fact:

E := ∀i(0 ≤ i < 10 ⇒ A[i] = 0)

If the location A[0] is updated, then we can update the guard of this
quantifier, but otherwise leave it alone:

E ′ := ∀i(0 ≤ i < 10 ∧ i 6= 0 ⇒ A[i] = 0)

The general process of updating the guard is handled by Line 4
of Figure 3. For each term in the quantifier that includes a quantified
variable, it computes a condition under which the term will not be
affected by a change to the updated lvalue. In the example above, it
knows that the term A[i] appearing in A[i] = 0 will not be affected
by an update to A[0] as long as i 6= 0. This constraint is then added
to the guard.

Computing these constraints is the responsibility of the NotEffect
function. This function will be somewhat domain-specific, since it
depends on the semantics of the functions used to represent heap
access. In general, if NotEffect(〈`, E〉, t) generates a constraint
that is true, then ` does not affect t. An example NotEffect func-
tion that works for Java-style arrays is shown in Figure 4.

After adding extra constraints to the guard, Line 6 of the algo-
rithm eliminates any terms from the quantifier’s right-hand side that
may be affected by the update to `. The d∃e algorithm is allowed
to use disequalities from both the environment and from the guard,
some of which may have been introduced by NotEffect.

Elimination from guard. A common theme of this paper is
that performing an over-approximation operation on a quantified
domain element requires us to perform the dual of its under-
approximation on the guard. Consider the following example.

E := i ≥ n ∧ ∀k(0 ≤ k < i ⇒ P (i))

This is a typical situation after exiting a loop that establishes prop-
erty P . Imagine now that the programmer assigns to variable i so
it can be used for another loop. It is wrong to simply eliminate
facts from the guard involving i, since that would produce ∀k(0 ≤

k ⇒ P (i)), which is not a sound inference. Under-approximating
existential elimination on the guard is also a mistake, since that
would produce ∀k(false ⇒ P (i)), which is sound but useless.

Instead, we will under-approximate universal quantification. In
environment E, with guard F , we will find the weakest fact F ′ such
that F ′ ⇒ ∀`.(E ⇒ F). In the example above, our goal is to find
F ′ so that F ′ ⇒ ∀`.(i ≥ n ⇒ (0 ≤ k < i)). It is easy to verify
that F ′ := 0 ≤ k < n is such a fact.

We use the function b∀c(`, F, E) to find the under-approximation
of ∀` on fact F in environment E. It should have these properties.

DEFINITION 5 (b∀c). Let E, E1 be elements of the abstract do-
main. Let E′

1 := b∀c(t,E1, E). Then, we say

• b∀c is sound if (E′
1 u E) � E1 and t 6 6∈E E′

1.
• b∀c is complete if for all E′′

1 s.t. (E′′
1 uE) � E1 and t 6 6∈E E′′

1 ,
it is the case that E′′

1 u E � E′
1.

By definition, b∀c(t, E) is just b∀c(t, E, true).

An algorithm to compute b∀c is given later in the paper. Line 5
of Figure 3 relies on this algorithm to eliminate ` from the guard of
a quantifier.

Quantifier instantiation. One important step in existential elimi-
nation is to instantiate some quantifiers and move the instantiations
to the environment, especially those that may be invalidated. This
may seem pointless, since these facts will be immediately elimi-
nated from the environment as well. However, they may lead to
inferences in the environment before they are eliminated. Consider
the following example, which is derived from insertion sort.

E := ∀k(0 ≤ k < i ⇒ A[k] ≤ A[k + 1])

The programmer assigns A[j + 1] := A[j], where j is a local
variable. Our NotEffect algorithm will convert the quantifier to
the following:
∀k(0 ≤ k < i∧ k 6= j + 1 ∧ k + 1 6= j + 1 ⇒ A[k] ≤ A[k + 1])

Compared to the old quantifier, two facts are lost: A[j] ≤ A[j + 1]
and A[j + 1] ≤ A[j + 2]. However, if we put these two facts into
the environment, then even after eliminating A[j + 1] from them,
we retain A[j] ≤ A[j + 2] by transitivity. Hence, we get a stronger
result.

Line 2 of Figure 3 performs this quantifier instantiation. Note
that because of the way our partial order �∀ is defined, this step is
not needed to prove completeness. However, it increases precision
in practice, so we include it nonetheless.

Soundness and completeness. These two lemmas prove sound-
ness and completeness for d∃e on D∀. They are similar to the cor-
responding ones for the join operation. They depend on the sound-
ness and completeness of the base domain operations, �, d∃e, and
b∀c.

LEMMA 3 (Soundness of d∃e wrt T

⇒). If E ′ := d∃e(`, E), then

E
T

⇒ E ′ and ` 6 6∈E E ′.

PROOF: Let E be E ∧
Vn

i=1 ∀Ui(Fi ⇒ ei). Let E ′ be E′′ ∧
Vn

i=1 ∀Ui(F
′′
i ⇒ e′i), where E′′, F ′′

i , e′i are as defined in the
procedure in Figure 3. First we show that E T

⇒ E ′ using the
following two arguments:
(a) E

T
⇒ E′′: This follows from the two facts E

T
⇒ E′ and

E′ T

⇒ E′′. The first fact is true because every fact eiσ added
to E′ (Line 2) is implied by E . (Note here that, since L is a
logical lattice, we have E �L Fiσ implies E

T

⇒ Fiσ, and
hence E ∧ ∀Ui(Fi ⇒ ei)

T

⇒ eiσ.) The second fact follows

from the soundness of d∃e on the base domain (Line 7).
(b) For each i, E T

⇒ ∀Ui(F
′′
i ⇒ e′i): From Line 4 and Line 5

it follows that F ′
i

T

⇒ Fi and F ′′
i �L F ′

i (soundness of b∀c in
the base domain). Since the base domain is a logical lattice, it
follows that F ′′

i
T

⇒ F ′
i and hence we have F ′′

i
T

⇒ Fi. Similarly,
from Line 6, it follows that ei∧E′∧F ′

i
T
⇒ e′i (using soundness

of d∃e on the logical lattice defining the base domain). Now,
assume that E is true. Thus, if F ′′

i is true, then Fi is true (by
F ′′

i

T

⇒ Fi), and hence ei is true since E
T

⇒ ∀Ui(Fi ⇒ ei).
Also, if F ′′

i is true, then F ′
i is true (by F ′′

i

T

⇒ F ′
i), and hence

e′i is true (using ei ∧E′ ∧F ′
i

T

⇒ e′i) since E T

⇒ E′. This shows
that E T

⇒ ∀Ui(F
′′
i ⇒ e′i).

To complete the proof, we have to show that ` 6 6∈E E ′. Note
that, in Line 5, Line 6, and Line 7, we explicitly use d∃e and
b∀c on the base abstract domain to eliminate ` from the result
E ′. Hence, it follows from the correctness of d∃e and b∀c on the
base abstract domain that, for all i, ` 6 6∈E′ F ′′

i , ` 6 6∈ei∧E′ e′i,
and ` 6 6∈E′ E′′. We note that E′ is implied by E . Furthermore,
we can assume that ei does not participate in proving any
nontrivial fact not involving the quantified variables. Hence, it
follows that ` 6 6∈E′ F ′′

i , ` 6 6∈E′ e′i, ` 6 6∈E′ E′′, and therefore,
` 6 6∈E E ′.

�

LEMMA 4 (Completeness of d∃e wrt �∀). If E ′′ := d∃e(`, E),
then for all E ′′′ s.t. E �∀ E ′′′ and ` 6 6∈E E ′′′, it is the case that
E ′′ �∀ E ′′′.

PROOF: Let E be E ∧
Vn

i=1 ∀Ui(Fi ⇒ ei). Let E ′′ be E′′ ∧
Vn

i=1 ∀Ui(F
′′
i ⇒ e′i), where E′′, E′, F ′′

i , F ′
i and e′i are as

defined in the procedure in Figure 3. Let E ′′′ be E′′′ ∧
Vn

i=1 ∀Ui(F
′′′
i ⇒ e′′′i). We show that E ′′ �∀L1

E ′′′ by not-
ing the following:
(a) E′′ � E′′′: This follows from the following derivation,

E �∀ E ′′′, ` 6 6∈E E ′′′ Definition of E ′′′

E � E′′′ Definition of �∀

` 6 6∈E E′′′ Above and property of 6 6∈
E′ � E′′′

∵ E′ is E ∧ something
d∃e(`, E′) � E′′′

∵ d∃e is complete on base domain
E′′ � E′′′ Definition of E′′

(b) for each i, there is a j s.t. Ed∧eF ′′′
i � F ′′

j and e′j � e′′′i :
Since E �∀ E ′′′, we know that, for each i, there is a j s.t.

Ed∧eF ′′′
i � Fj , ej � e′′′i Definition of �∀

` 6 6∈E′∧NotEffect(〈`,E′〉,t) ej Definition of NotEffect
` 6 6∈E′∧NotEffect(〈`,E′〉,t) e′′′i ∵ ej � e′′′i

` 6 6∈E′∧F ′

j
e′′′i ∵ F ′

j � NotEffect(〈`, E〉, t)

ej � e′′′i , ` 6 6∈E′∧F ′
j

e′′′i Putting it together
d∃e(`, ej , E

′ ∧ F ′
j) � e′′′i ∵ d∃e is complete on base domain

e′j � e′′′i Definition of e′j

To complete the proof, we will also show that Ed∧eF ′′′
i � F ′′

j .

Ed∧eF ′′′
i � Fj , ` 6 6∈E E ′′′ From above

Ed∧eF ′′′
i � Fj , ` 6 6∈E′′′ F ′′′

i Definition of 6 6∈,�∀

E � E′′′ Definition of E ′′′

Ed∧eF ′′′
i � Fj , ` 6 6∈E F ′′′

i From above
F ′′′

i � b∀c(`, Fj , E) ∵ b∀c is complete on base
F ′′′

i � F ′′
j Definition of F ′′

j

This completes the proof.
�

3.3 Miscellaneous Transfer Functions

Conditionals. We assume that all conditionals in the program
are converted to assume statements. The right side of Figure 2
shows the transfer function for assume. It simply adds the assumed
condition to the environment.

Partial order. When computing a fixed point, it is necessary to
check if one quantified domain element is below another in the
partial order. The definition of �∀ is purely in terms of �. Hence,
the check for �∀ is easily implemented using an implementation
of �. The soundness and completeness of this implementation
follows directly from the soundness and completeness of � and
the definition of �∀.

3.4 Quantifier Introduction and Merging

Quantifiers are introduced by finding facts in the environment that
match a given set of templates, as described in Section 2.2. This
step takes place before a join, as joins may throw away facts from
the environment unless they are quantified first. This step clearly
preserves soundness. It is complete according to our lattice �∀,
since the resulting quantified element is actually below the original
one in the lattice.

A related operation, merging two quantifiers into a single one, is
sometimes desirable. Frequently, after introducing new quantifiers
from the environment, we get a fact like:

E := ∀k(k = 0 ⇒ A[k] = 0) ∧ ∀k(k = 1 ⇒ A[k] = 0)

Since our lattice �∀ essentially treats different quantifiers indepen-
dently, the analysis may become more precise if we merge these
facts into a single one:

E ′ := ∀k(0 ≤ k ≤ 1 ⇒ A[k] = 0)

We merge two quantifiers (in a process called Merge) when their
right-hand sides match the same template with the same substitu-
tions. In this case, we can write these quantifiers as ∀U(F1 ⇒ e)
and ∀U(F2 ⇒ e). To merge the guards F1 and F2, we compute
an under-approximation of their disjunction (essentially unioning
them together). In Section 4, we describe how to implement an op-
erator b∨c(F1, F2, E) that under-approximates disjunction in an
environment E. Given this function, we can eliminate the origi-
nal quantifiers and replace them with ∀U(F ⇒ e), where F =
b∨c(F1, F2, E). This transformation is sound (complete) assum-
ing b∨c is sound (complete).

3.5 Widening, Termination, and Complexity

Widening is used in abstract interpreters to ensure termination. We
define a widening operator, 5∀, on the quantified domain using a
widening operator, 5, on the base domain and an operator, 4, on
the base domain that is dual of the widening operator.

DEFINITION 6 (Dual Widening). An operator 4(F1, F2) is a
dual widening operator if (i) 4(F1, F2) � F1, (ii) 4(F1, F2) �
F2, and (iii) for every infinite sequence F1�F2� · · · , the sequence
F ′

1, F
′
2, F

′
3, . . ., where F ′

1 := F1 and F ′
i := 4(F ′

i−1, Fi) (for
i ≥ 2), is not strictly decreasing.

A trivial 4 operator is one that always returns false.
Given quantified abstract domain elements E1 and E2, the

widening operator 5∀(E1, E2) returns E3. Let Ei be written
Ei ∧

Vni

j=1 ∀U(Fij ⇒ eij). We assume that the universal vari-
ables in e1j and e2k have been appropriately matched up. Then E3,
the widening result, is defined as follows.
(a) E3 is 5(E1, E2),
(b) if E2 6� E1 (that is, E2 is not equivalent to E1), then n3 is
equal to n2 and for each k = 1, . . . , n3, e3k is e2k and F3k is F2k .
(c) if E2 � E1 (that is, E2 is equivalent to E1), then n3 is equal to

n2 and for each k = 1, . . . , n3, if, for some j ∈ {1, . . . , n1},
e1j � e2k and E1 u F2k � E1 u F1j , then e3k is equal
to 5(e1j , e2k) and F3k is 4(E1 ∧ F1j , E1 ∧ F2k); otherwise,
F3k := F2k and e3k := e2k.

Termination. We now establish termination of our abstract inter-
preter. Suppose that it does not terminate. This can happen only if
we get an infinite chain of successively weaker facts,

E1 �∀ E2 �∀ E3 �∀ · · · ,

where Ei is Ei ∧
Vni

j=1 ∀U(Fij ⇒ eij). This infinite chain and the
the definition of �∀ together imply that,

E1 � E2 � E3 � · · · .

The widening step (a) guarantees that the base abstract interpreter
always terminates, and hence there is a finite m such that all Ei’s,
for i ≥ m, are (logically) equivalent.

Now let us consider the quantified facts in the above infinite
chain starting from the m-th element. The infinite chain above (and
the definition of �∀) implies that we will have a chain of quantified
facts,

∀U(Fmj ⇒ emj), ∀U(Fm+1,j′ ⇒ em+1,j′), · · · ,

such that (we assume universal variables have been renamed and
made equal)

Em u emj � em+1,j′ Em u Fm+1,j′ � Fm,j

Em+1 u em+1,j′ � em+2,j′′ Em+1 u Fm+2,j′′ � Fm+1,j′

...
...

We know that all E’s in the above are equivalent to Em. Hence, it
follows that,

Em u Fm,j � Em u Fm+1,j′ � Em u Fm+2,j′′ � · · ·

Em u em,j � Em u em+1,j′ � Em u em+2,j′′ � · · ·

The widening operator, 5, on the e’s and the dual widening opera-
tor, 4, on the F ’s guarantee that this chain is not strictly decreas-
ing. This establishes termination of our abstract interpreter.

Complexity. Although the widening operator defined above guar-
antees termination, it does not guarantee efficiency. Recall that if
there are multiple quantified facts ∀U(F1 ⇒ e), ∀U(F2 ⇒ e), . . .,
∀U(Fk ⇒ e) with the same right-hand side, e, then we can use
Merge to merge them. However, Merge does not guarantee that
the number of quantified facts will always be bounded. In our im-
plementation, we modify the Merge rule so that it keeps at most
K different quantified facts with the same right-hand side e. Sec-
ond, by using a finite set of templates to specify Dc (Section 2.2),
we ensure that the number of distinct facts e that can occur on the
right-hand side of a quantified fact is bounded, say by M . Hence,
the number of quantified facts is always bounded by M ∗ K.

Suppose that the length of any increasing chain (with widening)
in the base domain is bounded by L1 and the length of any decreas-
ing chain (with dual widening) is bounded by L2. The termination
argument shows that, at any program point, we can change facts at
most (L1 +K ∗M ∗L2) times. Hence, the abstract interpreter over
the quantified domain makes at most (L1 + K ∗M ∗L2) ∗ n calls
to the transfer functions, where n is the size of the input program.

A join of two quantified domain elements, each containing up
to MK quantified facts, can create MK2 quantified facts. The
complexity of the join operator is O(MK2Tb∧c), whereas the
assignment operator runs in O(KM(Td∃e + Tb∀c)) time. The
Merge operator takes time O(MK2(Tb∨c)) time. The partial order
checking function runs in O(MK2(T�)) time. Here T∗ denote
the time the operator ∗ takes in the base domain. Hence, the time

complexity of the abstract interpreter for the quantified domain is
obtained by multiplying the number of calls, (L1+K∗M ∗L2)∗n,
and the sum of the complexities of each of the transfer functions.
If we treat K, M as constants, the complexity is only a polynomial
factor over the complexity of the base domain abstract interpreter.

4. Under-Approximation Operators
The underapproximation operators, b∨c, b∧c, and b∀c, are needed
by the abstract interpreter for the quantified domain. They are not,
in general, reducible to the other standard lattice operators. Hence,
we have to develop dedicated algorithms for these operators for
each base domain. Here, we present sound generic procedures that
work for any base domain. These procedures are complete only for
certain theories, like difference constraints, as will be explained.
The following example demonstrates the difficulty of computing
under-approximations.

EXAMPLE 5. In a version of insertion sort without loop unrolling
(unlike the one appearing later in the experiments section), the
following two quantified facts are generated on different paths.

j = i − 1 ∧ ∀u(0 ≤ k < i − 1 ⇒ A[k] < A[k + 1])

j < i − 1 ∧ ∀u(0 ≤ k < i ⇒ A[k] < A[k + 1])

Both facts say that the array is sorted except at position j, but
they say it in different ways. Eventually, these paths are joined
together, causing the guards (and their respective environments)
to be combined via b∧c.

b∧c((0 ≤ k < i − 1, j = i − 1), (0 ≤ k < i, j < i − 1))

:= b(j = i − 1 ⇒ 0 ≤ k < i − 1) ∧ (j < i − 1 ⇒ 0 ≤ k < i)c

One valid result is 0 ≤ k < i ∧ k 6= j. When used as a guard,
we get the following quantifier. It agrees with our intuition that the
array is sorted at every position but j.

∀u(0 ≤ k < i, k 6= j ⇒ A[k] < A[k + 1])

There are two difficulties in computing the under-approximations.
First, the under-approximation result must be an element of a con-
junctive domain, so it cannot use any disjunction. Second, each
input to the under-approximation must be understood in the con-
text of its environment, and the two inputs may have different
environments (as is the case for b∧c).

We solve these difficulties using a technique called abduction.
Abduction is a process in artificial intelligence that generates an ex-
planation for a fact given a set of assumed facts (the environment).
We define abduct(E, F) to be the set of all explanations for a base
fact F in the context of an environment E.

More formally, suppose we make an observation, F ′, in a
known state, E. Abduction learns an explanation, F , for the ob-
servation F ′. This means,

E ∧ F
T
⇒ F ′ and E ∧ F is consistent

We require abduct(E,F ′) to compute the set of all possible ex-
planations F that satisfy the requirement above. An algorithm to
compute abduct will be given later. Using it, we can now define
the two underapproximation functions as follows:

b∨c(F1, F2, E) := abduct(E, F1 ∨ F2)

b∧c((F1, E1), (F2, E2)) := abduct(E1, F1) ∩ abduct(E2, F2)

It is valid to use these two definitions as algorithms for comput-
ing b∧c and b∨c. However, since abduct can return many different
answers, this algorithm would be fairly inefficient. Instead, we use
the standard over-approximations from the base domain to compute
d∧e and d∨e, and then use abduct to add additional constraints un-
til we reach a valid under-approximation. This technique leads to

b∧c((F1, E1), (F2, E2))
1 F := d∨e(F1d∧eE1, F2d∧eE2)
2 Forall e1 ∈ F1 − F:
3 F := F ∧ abduct(E1d∧eF, e1);
4 Forall e2 ∈ F2 − F:
5 F := F ∧ abduct(E2d∧eF, e2);
6 Return F;

Figure 5. Underapproximation of conjunction. This operator is
used for implementing d∨e on the quantified domain.

more efficient algorithms in practice. Pseudo-code is given in Fig-
ure 5 and Figure 6; the next sections explain these algorithms in
detail.

4.1 Under-approximating Conjunction in Two Environments

Under-approximating conjunction is necessary when joining two
quantifiers from different domain elements. For a quantified do-
main element E1 ∧ ∀U(F1 ⇒ e) and another E2 ∧ ∀U(F2 ⇒ e),
the joined quantified element must have a guard that under-
approximates (E1 ⇒ F1) ∧ (E2 ⇒ F2) (recall that simply using
F1 ∧ F2 is too imprecise). The function b∧c((F1, E1), (F2, E2))
computes this under-approximation.

As mentioned in the previous section, abduct(E1, F1) ∩
abduct(E2, F2) is a sound answer for this algorithm. However,
using abduct in this way may lead to many different answers, and
it would be inefficient. Instead, we start by computing a conjunc-
tion of facts that must be in the answer, and then add we more
conjuncts using abduct until we have a sound result. Another way
to think of this algorithm is that we start with an initial “guess” and
then refine it to a valid answer.

An over-approximation of the conjunction of guards in their
environments is a good place to start, since it is like an under-
approximation but less constrained (because the under-approximation
implies the over-approximation). Therefore, starting with the over-
approximation will not preclude any potential answers; we then
add extra constraints by abduction until we find a correct under-
approximation.

Fortunately, it is easier to find a good over-approximation of
(E1 ⇒ F1)∧(E2 ⇒ F2) than to find a good under-approximation.
We are allowed to assume E1 ∨ E2, since it is known in the join
that either one quantified domain element or the other holds. In this
case, the following inference is valid.

(E1 ⇒ F1) ∧ (E2 ⇒ F2) (E1 ⇒ F1) ∧ (E2 ⇒ F2)
⇒ E1 ∧ F1 assuming E1 ⇒ E2 ∧ F2 assuming E2

⇒ (E1 ∧ F1) ∨ (E2 ∨ F2) assuming E1 ∨ E2

It is easy to over-approximate this formula in the base domain using
its join algorithm, d∨e.

In fact, with a bit more examination above, it’s clear that when
E1 is disjoint from E2 (that is, E1 ⇒ ¬E2), then the top formula
and the bottom formula are equivalent. In most cases, the two
environments are disjoint, usually having forms like E1 = E ∧
i = 1 and E2 = E ∧ i = 2. Due to this fact, we know that
(E2 ∧ F2) ∨ (E1 ∧ F1) is not just an over-approximation, it is
usually the best over-approximation.

Figure 5 shows the remainder of the algorithm for conjunc-
tion in the presence of environments. After computing the over-
approximation, it generates more constraints via abduction to en-
sure that the result is a valid under-approximation. Note that since
abduction may generate multiple answers, this algorithm may also
have many results. The pseudo-code makes sense if we consider
abduct as a non-deterministic algorithm, and let the results of
b∧c be the set of all possible results, given the non-determinism
of abduct.

The algorithm first considers all atomic facts in F1 that are not
already implied by F , the over-approximation. For each such fact,
abduction is used to find explanations for why this fact is true in the
first environment. For example, if E1 says j = 2 and e is i = 2,
then one possible abduction result is simply i = 2. However, i = j
is another possible answer, which may be more precise. The same
process is repeated for F2, using the updated F . Note that the closer
the initial over-approximation is to a valid under-approximation,
the fewer calls there are to abduct, and the quicker the algorithm
runs.

EXAMPLE 6. Consider these inputs, which occur when zero itera-
tions of an array initialization are joined with one iteration.

E1 := i = 0 F1 := false

E2 := i = 1 F2 := j = 0

The procedure b∧c((F1, E1), (F2, E2)) will compute j = 0 ∧ i =
1. This result is obtained in Line 1, and the other lines do not
contribute to the result.

Similarly, the following occurs when the first iteration of an
array initialization loop is joined with the second iteration.

E1 := i = 1 F1 := j = 0

E2 := i = 2 F2 := 0 ≤ j < 2

In this case, the procedure will compute 0 ≤ j < i. Again, this
result is obtained in Line 1, and the other lines do not contribute to
the result.

The following example illustrates the importance of the results
returned by abduction.

EXAMPLE 7. After unrolling the inner loop of bubble sort once, we
get three different sets of facts. We consider only two sets here. In
set one, the first 3 elements of the array are already sorted and we
get

E1 : change = 0 ∧ A[0] ≤ A[1] ≤ A[2].

In the second set, the array is not sorted initially, but the largest
element moves up, and we get

E2 : change = 1 ∧ A[0] ≤ A[2] ∧ A[1] ≤ A[2].

These facts are generalized to give the following elements of the
quantified domain,

E1 : change = 0 ∧ ∀U(0 ≤ u1 ≤ u2, 1 ≤ u2 ≤ 2 ⇒ A[u1] ≤ A[u2])
E2 : change = 1 ∧ ∀U(0 ≤ u1 ≤ 2, u2 = 2 ⇒ A[u1] ≤ A[u2])

where U := (u1, u2), and F1 and F2 are the underlined formulas
in the two elements respectively. When we join these two facts, we
have to compute the following underapproximation,

b∧c((F1, change = 0), (F2, change = 1))

This returns two mutually incomparable answers: change = 0∧F1

and F2. The first one leads to the invariant which says that if
change is zero, then the array is sorted. The second one gives
the quantified invariant that the last element is the largest element
(which is the correctness statement of the inner loop of bubble sort).

The soundness of the procedure in Figure 5 follows directly
from the soundness of abduct. The completeness follows from the
observation that (i) we do not lose any solutions in Line 1 as it is an
over-approximation of any possible answer; and (ii) completeness
of abduct guarantees that we generate all possible explanations.

4.2 Under-approximating Disjunction in an Environment

Under-approximating disjunctions of base facts is useful when two
quantifiers from the same quantified domain element are to be

b∨c(F1, F2, E)
1 F := d∨e(F1d∧eE, F2d∧eE)
2 Foreach e1 ∈ F1 − F and e2 ∈ F2 − F:
3 F := F ∧ abduct(Ed∧eF, e1 ∨ e2);
4 Return F;

Figure 6. Underapproximation of disjunction. This operator is
used for implementing d∧e on the quantified domain.

combined into a single quantifier. In this case, their guards are
combined via b∨c(F1, F2, E), where E is the environment and F1

and F2 are the guards.
As in the algorithm for conjunction, we start with an initial over-

approximation of the result and then refine it with more constraints.
In this case, the over-approximation is even easier to compute. We
could start with d∨e(F1, F2). However, we wish to take advantage
of facts that are known to be true in the environment, so instead it
is safe to start with d∨e(F1d∧eE, F2d∧eE).

Figure 6 shows the remainder of the algorithm, which adds more
constraints using abduction to get a sound under-approximation, as
was done for conjunctions.

We illustrate the efficacy of the heuristic by a few examples.

EXAMPLE 8. For the inputs,

F1 := (1 ≤ k ≤ n) F2 := (k = 0) E := true

the procedure b∨c(F1, F2, E) returns 0 ≤ k ≤ n. This result is
obtained in Line 1, and the other lines do not contribute to the
result. We note here that this particular example is reminiscent of
the “range merging” approach of Jhala and McMillan [12].

As another example, consider the inputs

F1 := (j = 0, k = 1) F2 := (j = k) E := (0 ≤ k ≤ 1)

In this case, the procedure b∨c(F1, F2, E) will compute 0 ≤ j ≤
k. Again, this result is obtained in Line 1, and the other lines do not
contribute to the result.

The soundness of the procedure in Figure 6 follows directly
from the soundness of abduct. The completeness follows from
the fact that (i) Line 1 generates an over-approximation and does
not forbid any solution; while (ii) the completeness of abduct
guarantees that all solutions are generated.

4.3 Generating Explanations via Abduction

The previous two sections use abduction to generate alternate ex-
planations for a formula in the context of an environment. This
section explains how to implement abduction. The simplest sound
implementation of abduct(E, e1 ∨ . . . ∨ ek) can return any ei.
However, a more sophisticated abduction procedure that takes ad-
vantage of facts from the environment will improve the precision
of the rest of the system. The abduction algorithm we describe in
this section is even complete for certain base domains.

Our abduction algorithm is based on the following principle.

(E ∧ (
^

i

¬ei)
T

⇒ e) implies (E ∧ ¬e
T

⇒
_

i

ei)

That is, the negation of any fact e implied by E and the negation
of all the eis is a valid answer for abduct. Therefore, we take the
set of all such facts that are maximally strong and return their nega-
tions. As an optimization, we ignore all facts implied by the envi-
ronment alone, since they are not useful. Figure 7 shows pseudo-
code for this algorithm.

EXAMPLE 9. Consider computing abduct(E, φ), where

E := j = 2 φ := i = 2

abduct(E, φ)
1 let φ be e1 ∨ · · · ∨ ek, where ei is an atomic fact
2 ans := ∅;
3 Foreach maximally strong

atom e s.t E ∧
V

i
¬ei ⇒ e and E 6⇒ e

4 ans := ans ∪ {¬e};
5 return(ans);

Figure 7. Abductive reasoning in the base domain using forward
reasoning. A literal is an atomic formula or its negation. The
abduct function is used for implementing all underapproximation
operators. It assumes that negated atomic formulas can be repre-
sented in the base domain.

We will search for all maximally strong facts e such that j =
2 ∧ i 6= 2 implies e (and j = 2 alone does not imply e). The most
obvious answer is i 6= 2, but another potentially useful answer
is i 6= j. We return the negations of both these facts as possible
answers.

Implementing this algorithm requires two non-trivial properties
of the base domain. First, it must support negation of atomic facts.
All of the domains that we have implemented for our experiments
can perform sound reasoning about negated facts. Second, the do-
main must be able to enumerate the maximally strong facts implied
by a set of formulas. It is easy to do this for saturation-based do-
mains like difference constraints or reachability.

If one of these properties is not satisfied by the base domain, it
is still possible to implement a simpler but less complete abduction
procedure, such as the trivial one that returns its inputs. However,
we believe that most domains used in practice do fulfill these
requirements.

EXAMPLE 10. Let us revisit Example 5 wherein we had to compute

b∧c((0 ≤ u < i − 1, j = i − 1), (0 ≤ u < i, j < i − 1)).

In Line 1, we compute a join and get

F := (0 ≤ u < i, j ≤ i − 1)

This is not a sound underapproximation. We need to strengthen it
as in Line 3 and Line 5 of Figure 5. For example, we will need to
strengthen it by abduct(F ∧j = i−1, u < i−1). We compute this
by computing atomic facts implied by F ∧ j = i − 1 ∧ u ≥ i − 1.
Some such atomic facts are u = i−1, u = j, Using the second
atomic fact, u = j, and adding its negation to F results in the
answer 0 ≤ u < i, u 6= j that is used in Example 5.

We remark here that the inductive invariant generated in Ex-
ample 5 is not present in the code in any way. It took 3 hours of
manual effort to generate this precise inductive invariant, which is
automatically generated in our approach.

The soundness of the abduction procedure (Figure 7) is obvious
from its description. There is a potential loss of completeness on
Line 3 since we only search for atomic (and not arbitrary) e.
However, the procedure in Figure 7 is complete for convex theories
whose set of atomic facts is closed under negation. This is because,
for such theories, ∧l¬el (and hence E ∧ ∧l¬el) can be written
as a conjunction of atomic facts (say e′) and hence, whenever
E′ T

⇒ e ∨ e′ then E′ T
⇒ e or E′ T

⇒ e′ (by convexity). This
shows that there is no loss of completeness on Line 3. While linear
arithmetic over integers is not convex, it becomes convex if we
remove = from the signature and replace t = t′ (and t 6= t′)
by t ≥ t′ ∧ t ≤ t′ (and t < t′ ∨ t > t′). The atomic facts are
obviously closed under negation in this theory. Hence, abduction,
and consequently each of the other under-approximation operator,
is complete for the theory of linear arithmetic over integers (and

b∀c(`, F, E)
1 let F be e1 ∧ e2 ∧ · · · ∧ ek, where ei is atomic
2 ans := true;
3 for i = 1, . . . , k do
4 Nondeterministically choose maximally strong

atom e in d∃e(`,¬ei, E)
5 ans := ans ∧ ¬e;
6 return(ans);

Figure 8. Underapproximation of ∀ Quantification. This operator
is used in implementing d∃e on the quantified domain.

reals) and for the theory of difference constraints over integers (and
reals).

4.4 Under-approximating ∀ in an Environment

The underapproximation operator b∀c requires computing an ex-
planation for a fact in the context of a known fact such that
the explanation does not contain the quantified term. Recall that
b∀c(`, F, E) under-approximates the logical formula ∀`(E ⇒ F).
The function b∀c(`, F, E) can be computed using the procedure
given in Figure 8. The soundness of the procedure follows from
noting the following logical equivalences:

ans ⇒ ∀`(E ⇒ F) iff (∃`.(E ∧ ¬F)) ⇒ ¬ans

Assuming that the abstract domain can precisely represent literals
(atomic formulas and negated atomic formulas), it is easy to see that
the procedure of Figure 8 always returns an underapproximation of
the forall quantified formula.

5. Experiments
In our experiments, we instantiated our quantified domain by two
base domains. The first base domain was the logical domain defined
by the combination of linear arithmetic and uninterpreted sym-
bols [10]. We extended this domain to include some disequality rea-
soning. Disequalities permit us to represent disjoint ranges in a sin-
gle quantifier guard, rather than splitting them into multiple quan-
tifiers. The second base domain we used was a saturation-based
domain that has inference rules for reasoning about data structure
reachability. One appeal of our approach is that our quantified do-
main can switch from linear arithmetic/uninterpreted functions to
reachability with little effort. This section first gives an overview of
the reachability domain, and then describes our experiments over
both domains.

5.1 Reachability

We considered a domain in which each element is a conjunction of
atomic facts of the form

R(e1, e2) | ¬R(e1, e2) | e1 = e2 | e1 6= e2

where each expression e is of the form
e ::= x | null | e→next

The reachability predicate, R(x, y), intuitively denotes that there
is a path from the object specified by x to the object specified by
y, where the path passes through a set of fixed pointer fields in the
objects (e.g., the next field). A reachability predicate is commonly
used in the analysis of pointer data structures [2].

Given a set of known reachability facts, we saturate it by apply-
ing a set of inference rules to add new facts (as described in [2]).
Examples of these reachability inference rules for lists include:

e2 = e1→next ⇒ R(e1, e2)

R(e1, e2) ∧ R(e2, e3) ⇒ R(e1, e3)

R(e1, e2) ∧ e1 6= e2 ⇒ R(e1→next, e2)

The algorithms for meet and join are fairly simple—we take the
union or the intersection of the saturated facts. Existential elimina-
tion is somewhat more complicated, and beyond the scope of this
paper.

We used the generic under-approximation algorithms described
in Section 4 for this domain. Despite not being complete in this
context, they are precise enough to handle the following examples,
which we extracted from our linked list manipulation benchmarks.

Underapproximation of disjunction in an environment. When
initializing the data fields of an acyclic singly-linked list to zero,
we arrive at the following quantified domain element. It represents
the case where property P has been established for the first two list
elements (recall that we use loop unrolling for better performance).
Variable ` is the head of the list and the iteration pointer p points
two elements beyond it. We would like to merge the two quantifiers.

p = `→next
2 ∧ ∀u(u = ` ⇒ P (u)) ∧ ∀u(u = `→next⇒ P (u))

This requires computing an underapproximation of disjunction of
F1 = (u = `) and F2 = (u = `→next) in presence of the
environment E = (p = `→next2). The answer that is computed
by our generic under-approximation algorithm is as follows. It says
that P is true for all nodes between ` and `→next, inclusive, which
is what we desire.

b∨c(F1, F2, E) = R(`, u) ∧ R(u, `→next)

Underapproximation of conjunction in two environments. The
preceding example shows the case when the first two elements have
been initialized. Now consider joining this case with the one where
only the first element has been initialized.
E1 := p = `→next ∧ ∀u(u = ` ⇒ P (u))

E2 := p = `→next
2 ∧ ∀u(R(`, u) ∧ R(u, `→next) ⇒ P (u))

This requires computing an underapproximation of conjunction of
F1 = (u = `) and F2 = R(`, u) ∧ R(u, `→next) in presence
of their environments E1 = (p = `→next) and E2 = (p =
`→next2).

b∧c((F1, E1), (F2, E2)) = R(`, u) ∧ R(u→next, p)

The above answer gives the guard for the quantified fact that says
that the property P is true for all nodes between ` and the node
immediately before p, inclusive. This is an inductive loop invariant
that can now be used to verify that the loop establishes P for all
elements.

5.2 Results

We applied our techniques to automatically generate invariants for
some standard sorting routines and other similar problems that have
been studied as challenge problems for generation of quantified in-
variants in the literature. We report on some of the examples in
detail in Table 1. Benchmarks were run on a 3 GHz Intel processor
with 2 GB of RAM. In the array examples, we used fixed vari-
ables instead of Roman variables in the templates to increase per-
formance. We also unrolled loops two times to avoid discovering
spurious invariants.

The first few examples in Table 1 have been taken from [12].
ArrayInit is the example from our Section 1. Our tool discovers
the invariant that all array elements are initialized to 0. It uses a
template A[α] = 0. VarArg (from [12]) counts the number of non-
null entries in a list, and then scans over that many list entries again,
asserting non-nullness. We use a template A[α] 6= 0. ArrayCopy
(from [9]) simply copies the contents of one array into another,
distinct array. Our tool discovers the invariant that the two arrays
are the same. We use the template A[α] = B[α]. ArrayCopyProp
(from [12]) starts with the pre-condition that a source array has only

non-zero elements. It copies this array into a distinct destination
array. Our tool checks that the destination array has only non-
zero elements. We use the template A[α] = B[α]. Find (from [8])
searches an input array for a specific value, setting a flag if it is
found. After the search, our tool discovers that if the flag is not set,
the value is not present in the array. We use the template A[α] 6= v.
PartialInit (from [9]) copies those indices of a source array for
which the source array’s value is positive into a target array. Our
tool discovers that the source array’s values are all positive at the
indices stored in the target array. We use the template A[B[α]] = 0.
Partition (from [1]) copies the zero and non-zero elements of a
source array into two different arrays. Our tool discovers that the
two destination arrays have entirely zero or non-zero entries. We
use the two templates B[α] = 0 and C[α] 6= 0.

The next four examples constitute the inner loop of various sort-
ing algorithms. For each of these examples, we were able to dis-
cover the inductive invariant required for proving that the final ar-
ray is sorted. We use three kinds of templates in these examples:
A[α] ≤ e, e ≤ A[α], and A[α] ≤ A[α + 1]. (Caveat: Because of a
bug in our quantified instantiation routine, we had to hand-annotate
the results of one quantifier instantiation in both InsertionSort and
SelectionSort and the timing results do not take this into account.
However, we do not anticipate any significant increase in the tim-
ing of these examples with the fix of the quantifier instantiation
routine.)

The final four examples are standard acyclic singly-linked list
manipulation routines. We were primarily limited by our current
implementation of the reachability base domain that can only han-
dle one next link. However, our technique theoretically works
equally well for other data-structures such as cyclic linked lists,
doubly-linked lists, and trees, and we have manually traced our al-
gorithm to successfully discover similar invariants for these data-
structures.

All four list examples are designed to establish or preserve the
invariant that all list elements have a data field set to zero. They all
use the template that α→data = 0. The insert and remove routines
start with a pre-condition that ` is a list with data fields set to zero,
and t is a pointer into the list. They insert or remove at position t.
The list init example assumes a valid list on entry, and we discover
that its data fields are zero on exit. The list create example creates
a list from scratch, and we discover that the result is a list, whose
data fields are zero. (Caveat with the list create, insert, and remove
examples: a bug in our reachability saturation procedure forced us
to “hard-code” the results of some reachability domain operations.
As a result, the timings for these benchmarks may under-estimate
the true time.)

The total time take by some of these examples seems rather
large compared to the size of these examples. However, it must be
noted that we have a very naive and inefficient saturation based im-
plementation of the underlying difference constraints domain and
reachability domain. This is corroborated by the fact that the time
taken to do abstract interpretation over simply the base quantifier-
free abstract domain in those examples is also large. An interesting
attribute to read from the tables in that case is the ratio of the time
taken to do abstract interpretation over quantified domain and the
corresponding quantifier-free domain.

6. Related Work
Automatic generation of (universally) quantified invariants has
been a topic of extensive research [8, 5, 14, 9, 3, 1, 12]. The var-
ious approaches differ in the extent of user guidance assumed.
In one class of methods, the user specifies the predicates and the
tool searches for the “right” boolean structure that gives an induc-
tive invariant [8, 3, 14]. In the dual approach, the user specifies
the boolean structure and the tool searches for the “right” predi-

Procedure D∀ Time D Time Ratio
ArrayInit 3.2 1.5 2.1
VarArg 4.1 2.0 2.1
ArrayCopy 5.5 2.2 2.5
ArrayCopyProp 11.3 6.8 1.7
PartialInit 12.0 6.1 2.0
Find 24.6 8.3 3.0
Partition 73.0 22.7 3.2
InsertionSort (inner loop) 35.9 2.0 18
QuickSort (inner loop) 42.2 4.5 9.4
SelectionSort (inner loop) 59.2 8.1 7.3
MergeSort (inner loop) 334.1 73.5 4.5
List Remove 20.5 1.4 14.6
List Insert 23.9 1.4 17.1
List Init 24.5 1.9 12.9
List Create 42.0 3.4 12.4

Table 1. Benchmark results. Times are in seconds. The third col-
umn reports time for the mode wherein abstract interpretation is
performed over the base quantifier-free abstract domain.

cates [1]. In our approach, the user is not required to specify either
the boolean structure or the predicates.

Flanagan and Qadeer [8] require that all atomic formulas in
the quantified invariants be given. Given such a set of atomic
fomulas, their approach generates a quantified invariant that can
be expressed using only those atomic formulas. For example, to
generate the quantified invariant ∀u(0 ≤ u < n ⇒ A[u] = 0)
for the array initialization procedure, their method requires that
the three predicates u ≥ 0, u < n, and A[u] = 0 be given.
Our approach, on the other hand, would generate the quantified
invariant with only the template a[α] = 0. In our approach, the
antecedent, 0 ≤ u < n, is learnt using join of facts generated in 0,
1, or 2 iterations of the loop.

Jhala and McMillan [12] have described an interpolation based
technique to generate quantified invariants [12]. They have instanti-
ated their technique to discover range predicates that capture prop-
erties of sequences of array properties (e.g., facts such as “the
elements of the array M from index i through j are positive”).
The range predicate R(t1, t2, p) denotes ∀i(t1 ≤ i < t2 ⇒ p),
where i is a free variable in p. This can not represent, for ex-
ample, that the contents of a two-dimensional array is initialized:
∀i, j(0 ≤ i < n, 0 ≤ j < m ⇒ A[i][j] = 0). Representing this
fact would require a new and different range predicate with its own
set of axioms. It is not clear what is a good choice for a complete set
of such range predicates. There will always be interesting examples
that are not representable using a predefined range predicate.

Beyer et. al. [1] combine invariant generation and predicate ab-
straction techniques using path invariants. While this technique is
independent of any particular invariant generation technique, Beyer
et.al. [1] describe a particular template-based approach for gener-
ating quantified invariants. The template-based technique reduces
the search of an invariant to constraint solving over a large num-
ber of (unknown) variables used to specify the templates. While it
is sound in general, it is complete only for a very specific form of
invariants, ∀U(∧iti(X) ≤ ui ≤ t′i(X) ⇒ r(X, U)), where X are
the program variables and ti, t

′
i, r are linear expressions (with pa-

rameterized coefficients) with the provision that array reads of the
form A[ui] can occur in r. Note that correctness of sorting routines
can not be stated using the above template since it disallows com-
parison between quantified variables. Furthermore, the translation
from the original templates to the final constraints is not generic
and has to be freshly worked out for each base domain. While the

high-level approach (choose templates and translate to constraints)
is general, the details are not general.

One fundamental difference of our framework for generating
quantified invariants, compared to these other works [8, 14, 3, 1,
12], is that it is based on abstract intepretation. This offers a more
efficient methodology of discovering useful program invariants, al-
beit at the cost of merging facts at join points (which may re-
sult in loss of some precision). While abstract interpretation based
methods have been thoroughly investigated for unquantified do-
mains [6, 13, 7], they have seen only limited exploration for quan-
tified domains [4, 5, 9]. In the work of Cousot [5] and Gopan
et.al. [9], quantified facts are encoded as new unquantified predi-
cates and lattice operators are defined directly on these unquantified
predicates. The automation achievable via the under-approximation
operators has to be painfully hard-coded in these methods.

Cousot [5] has used an abstract domain consisting of elements
of the form 〈lt(t, a, b, c, d), r〉, which informally says that all ele-
ments of t between indices a and b are less than any element of t
between indices c and d. In our notation, this element is represented
as,
r(a, b, c, d)∧∀u1, u2(a ≤ u1 ≤ b∧c ≤ u2 ≤ d ⇒ t[u1] ≤ t[u2])

(Since the auxiliary variables a, b, c, d always have definitions in
terms of program variables, they can be eliminated and we get ex-
actly an element of our quantified abstract domain.) Cousot [5]
presents procedures to compute the abstract logical operators on
this domain, and it can be easily verified that the underapproxi-
mation calculation is built into the definitions. Using this abstract
domain, Cousot [5] generates invariants for a sorting routine. The
work of Gopan, Reps, and Sagiv [9] is similar in spirit to the work
of Cousot [5]. They use an abstract domain 〈P, Ω, ∆〉, where P is
a partition of an array’s indices, Ω associates each partition with a
numerical abstract domain element, and ∆ is a valuation of some
given abstract predicates on each partition. Again, this abstract do-
main element can be expressed in our quantified abstract domain
as
^

π∈Π

∀u(u ∈ π ⇒ Ω(π)) ∧
^

π∈Π

∀u1, u2(u1 ∈ π∧u2 ∈ π ⇒ ∆(π)),

where u ∈ π essentially denotes a conjunction of constraints,
and Ω(π) and ∆(π) denote some atomic facts. It should again be
noted that the antecedent is carefully fixed here and Gopan et.al. [9]
provide dedicated descriptions of the transfer functions.

Our paper uniformly generalizes these specific abstract domains
(that represent quantified facts) by explicitly making quantified
facts as first-class objects. It builds on our earlier work [11] – that
developed an abstract quantified domain with must and may equali-
ties – but goes significantly beyond by developing a precise formal
theory for abstract interpretation on generic quantified domains us-
ing under-approximation operators. We also present generic proce-
dures for computing transfer functions for the quantified domain –
thus automating a lot of the manual effort in building special do-
mains such as in [4, 5, 9].

7. Conclusion
Quantified abstract domains provide the expressive power re-
quired to state universally quantified invariants of unbounded data-
structures. We formally define quantified abstract domains by using
base domains – whose facts are used to build universally quantified
facts – as parameters. We provide a general framework for building
abstract interpreters over such quantified domains. This is achieved
using a rich interface provided by the base domain. This inter-
face consists of the standard over-approximation functions (that
are used to build abstract interpreters over the base domain) along
with additional functions that compute under-approximations of

logical boolean operators. The under-approximation functions play
a foundational role in the process of invariant generation.

We also instantiate this framework to obtain two specific ab-
stract interpreters – one for programs that manipulate arrays and
the other for programs that manipulate heap-based linked data-
structures. These abstract interpreters are used to successfully gen-
erate quantified invariants stating correctness of several procedures
that work on arrays and lists.

References
[1] D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko. Path

invariants. In PLDI, 2007.
[2] J. D. Bingham and Z. Rakamaric. A logic and decision procedure for

predicate abstraction of heap-manipulating programs. In VMCAI, pages
207–221, 2006.

[3] A. R. Bradley, Z. Manna, and H. Sipma. What’s decidable about arrays?
In VMCAI, volume 3855 of LNCS, pages 427–442. Springer, 2006.

[4] P. Cerny. Verification par interpretation abstraite de predicats
parametriques. Master’s thesis, Univ. Paris VII & Ecole normale
superieure, Paris 20, 2003.

[5] P. Cousot. Verification by abstract interpretation. In Verification:
Theory and Practice, volume 2772 of LNCS, pages 243–268, 2003.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL, pages 234–252, 1977.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL, pages 84–97, 1978.

[8] C. Flanagan and S. Qadeer. Predicate abstraction for software
verification. In POPL, pages 191–202, 2002.

[9] D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis
of array operations. In POPL, pages 338–350, 2005.

[10] S. Gulwani and A. Tiwari. Combining abstract interpreters. In PLDI,
pages 376–386, June 2006.

[11] S. Gulwani and A. Tiwari. Static analysis of heap manipulating
low-level software. In CAV, LNCS, 2007.

[12] R. Jhala and K. McMillan. Array abstractions from proofs. In CAV,
2007.

[13] M. Karr. Affine relationships among variables of a program. In Acta
Informatica, pages 133–151. Springer, 1976.

[14] S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for
unbounded system verification. In CAV, pages 135–147, 2004.

