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Abstract. We formally verify a direct model-reference adaptive control
(MRAC) method that is used to enable flight control in adverse condi-
tions. We use the bounded verification approach and verify the system
by introducing templates for both the assumptions and the guarantees,
and using QEPCAD to solve the resulting ∃∀ formula.

1 Introduction

Adaptive control is receiving a significant amount of attention lately. In par-
ticular, the goal of the “Integrated Resilient Aircraft Control” (IRAC) research
project, which is part of the Aviation Safety Program under the NASA Aeronau-
tics Research Mission Directorate, is to advance the art in adaptive control to
enable flight control resiliency in adverse conditions. NASA has been conducting
a flight test of a neural net intelligent flight control system on board a modified
F-15 test aircraft.

While adaptive control can provide increased robustness in the presence of
faults/damage in the aircraft, it can also potentially excite unmodeled dynamics
and lead to instability and crash (X-15 crash in 1967). Verification and vali-
dation of adaptive flight control systems is a major challenge. In this context,
formal verification can provide guarantees that are impossible to achieve using
simulations and testing alone.

This short paper describes a case study of formally analyzing a direct model-
reference adaptive flight control that is based on neural networks. The paper
presents some preliminary analysis results obtained using the bounded verifica-
tion approach.

2 Neural Net Direct Adaptive Control

A traditional control system consists of two components: a controller and a plant
(see Figure 1). The controller receives as input the desired target state. The goal
of the controller is to move the plant to this desired target state. It does so by
sending a control signal to the plant. The controller can choose its control signal
by taking into account the feedback it receives from the plant.
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Fig. 1. Simple and Adaptive Control System. Adaptive systems have an additional
learning module that can be used by the controller.

In an adaptive control system, there is an additional learning module that
performs online learning based on the output of the plant and the control input
generated by the controller. The controller can now also use the information gen-
erated by the learning module to generate the next control signal (see Figure 1).

Adaptive control methods can be broadly classified as direct, indirect, or
hybrid. Indirect methods identify the unknown plant parameters and generate
a control scheme using these parameter estimates. In contrast, direct methods
directly adjust the control signal to account for plant uncertainties without ex-
plicitly identifying the plant parameters. Neural networks have been used to play
the role of the learning module in both direct and indirect adaptive control meth-
ods. In particular, Rysdyk and Calise [10] described a neural net direct adaptive
control method. This has subsequently formed the basis for the intelligent flight
control system in the NASA F-15 test aircraft [6].

2.1 Direct Neural Net Adaptive Flight Control

In this paper, we focus on direct neural net adaptive flight control. The main
source of our model is [8] and [1]. The high-level architecture of such a controller
is shown in Figure 2. In the figure, the pilot (or a supervisory controller) gives
a command r, which is the desired target position. Using some known reference
model, a trajectory to r is calculated. Thus, xm is the current desired position
and ˙xm is the current desired velocity computed using the reference model. A
standard PI controller (proportional integral) is used to ensure that position xm

is reached. However, since we actually need to reach r, the final desired velocity
ẋd is a sum of ˙xm and the output of the PI controller. Using a known model
of the (undamaged) aircraft, ẋd is inverted and the actual control input u is
computed.

The direct adaptive modification adds an additional loop to the above archi-
tecture (see Figure 2). This additional loop goes through a neural net module.
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Fig. 2. Neural Net Direct Model-Reference Adaptive Control.

r commanded value of x
xm desired value of x, calculated using reference model
x actual value of x, determined by the damaged aircraft
xe error, xm − x
intxe integral of the error,

R
xe

L weights of the NN
β fixed functions, LTβ = adaptive control term
f Damaged dynamics, f = ẋ− ẋu

ue PI gain, Kpxe +Kiintxe

ẋd ˙xm + ue − uad

L̇ weight update / neural net learning
Γ , Kp, Ki, Am Known constants

r, f , ḟ Unknown/Symbolic Parameters
Table 1. Meaning of the variables used in the paper and in Figure 2

The direct neural net takes as input the current position, x, and the current
control vector, u, and computes an adaptive gain term, uad, that is directly
subtracted from ẋd. The idea is that this additional term will compensate for
the difference between the dynamics of the actual (possibly damaged) aircraft
and the dynamics of the known model of the (undamaged) aircraft. In this
way, adaptive control can potentially help keep the system stable even under
adverse/damage conditions.

The idea behind analyzing the above system is to represent the weight update
equations of the neural network using continuous differential equations. Since all
the other components are modeled using differential equations, the entire system
can be modeled as a continuous dynamical system.

2.2 Model

Let x be a 3×1 vector consisting of the roll, pitch, and yaw rates of the aircraft.
The control vector u is also a 3×1 vector consisting of the aileron, elevator, and
rudder inputs. We are assuming that the vector z – the trim state vector of the
angle of attack, angle of sideslip, and engine throttle, is fixed. The dynamics of



the aircraft are given by

ẋ = Ax +Bu +Gz + f(x,u,z) (1)

where A,B,G are known matrices in <3×3 and f represent the unknown term
(caused by uncertainty or damage to the aircraft).

The desired trajectory is computed using the reference model as

˙xm = Amxm +Bmr (2)

where r is the pilot command (3 × 1 vector), and Am, Bm are known matrices
in <3×3.

The desired acceleration, ẋd, is given by

ẋd = Amxm +Bmr +Kp(xm − x) +Kiintxe − uad (3)
˙intxe = xm − x (4)

where uad = LTβ is the output of the neural network. Here L is a n× 3 is the
matrix consisting of weights, and β is a n × 1 matrix of the kernel (or basis)
functions. The notation LT denotes the transpose of the matrix L. Thus, uad is
a weighted sum of the kernel functions. The kernel functions can consist of linear
functions – x,u; quadratic functions – xixj for xi, xj ∈ x; and more complex
nonlinear functions, such as trigonometric functions applied to the variables x,u.

The dynamic inversion module uses the known dynamics (of the undamaged
aircraft) to compute the required u for the given ẋd,

u = B−1(ẋd −Ax−Gz) (5)

The dynamics of the neural net weight update law is given by

L̇ = −Γβ(intxe
TK−1

i + (xm − x)TK−1
p (I +K−1

i )) (6)

where Γ is a fixed constant. Equations 1, 2, 3, 4, 5, and 6 together completely
describe the model.

Note that the state space of the model is described by x,xm, intxe, L,β,f .
The variables ẋd and u are internal variables that can be eliminated by substi-
tution. Note that f and its dynamics are unknown. Note also that since we are
not assuming any fixed set of kernel functions, β and its dynamics are also un-
known. We wish to analyze the system for stability under suitable assumptions
on β and f .

3 Bounded Verification

The verification problem is to determine if a given model satisfies a given prop-
erty. Bounded verification approach is based on performing a bounded search
for a proof of the fact that the given model satisfies the given property. The
main observation behind this approach is that the verification problem, in most



cases, reduces to the search for the “right witness”. For example, we can prove
safety by searching for the “right” inductive invariant and we can prove ter-
mination, respectively stability, by searching for the “right” ranking function,
respectively Lyapunov function. Since the universe of these witnesses is often
infinite, bounded verification achieves computability by limiting this search to
witnesses of a specific form. More specifically, witnesses that are instances of
some fixed templates are searched.

Formally, we first define a continuous dynamical system.

Definition 1 (Continuous Dynamical System). A continuous dynamical
system CDS is a tuple (X, f) where X is a finite set of variables interpreted over
the reals R, X = RX is the set of all valuations of the variables X, and f : X 7→ X
is a vector field that specifies the continuous dynamics.

Note that RX is isomorphic to the n-dimensional real space Rn where n = |X|
is the number of variables in X. We assume that f is Lipshitz, which guarantees
that the solution of the initial value problem dX(t)

dt = f(X(t)), X(0) = x0, always
exists and is unique and will be denoted by F (x0, t). Given a CDS CDS and a
set Init ⊆ X of initial states, the meaning of a continuous dynamical system
is simply the collection of all possible trajectories starting from an initial state.
Formally, the semantics is the collection of all solutions F (x0, t) of the initial
value problem dX(t)

dt = f(X(t)), X(0) = x0, where x0 ∈ Init. The above semantics
using flow functions is broadly referred to as the flow semantics [12]. One can
also give a transition semantics using discrete state transition systems [5], but
the distinction [2] is not relevant here.

We reuse the temporal operators G and F and give them the following natural
definitions. If CDS = (X, f) is a continuous dynamical systems and φ ⊆ X is a set
of states, then F(φ) and G(φ) denote the following set of all states:

F(φ) := {x ∈ X | Cl({F (x, t) | t ≥ 0}) ∩ φ 6= ∅}
G(φ) := {x ∈ X | Cl({F (x, t) | t ≥ 0}) ⊆ φ}

that is, F(φ) denotes all states starting from which CDS can eventually reach φ
and G(φ) denotes all states starting from which CDS always stays within φ. Note
that Cl denotes the (topological) closure operator.

In this paper, we are interested in proving stability properties of continu-
ous dynamical systems; that is, starting from some initial states, the system
eventually (or always eventually) reaches some desired set of states.

In the bounded verification approach, the verification task is reduced to a
constraint solving task. This reduction depends on using sufficient conditions
(given in the form of inference rules) for the property of interest. We treat for-
mulas and sets of states interchangeably with the understanding that a formula
denotes all those states where it evaluates to true. Hence, logical implication ⇒
is the same as the subset relation ⊆.

Figure 3(left) presents an inference rule for verifying F(φ). The proof for
F(φ) is achieved by finding a (Lyapunov-like) function V : Rn 7→ R that is
initially non-negative (Condition (A1)), but which decreases whenever V > 0



(A1) : Init ⇒ V ≥ 0
(A2) : V > 0 ⇒ dV

dt
< 0

(A3) : V ≤ 0 ⇒ φ

Init ⇒ F(φ)

(B1) : ¬φ ⇒ V > 0
(B2) : ¬φ ⇒ dV

dt
< 0

true ⇒ G(F(φ))

Fig. 3. On the left, an inference rule for verifying that a continuous system CDS := (X, f)
eventually reaches φ starting from any state in Init. On the right, an inference rule
for verifying that a continuous system CDS := (X, f) always eventually reaches φ.

(Condition (A2)). These two conditions guarantee, under some mild technical
assumptions, that eventually V ≤ 0, and hence Condition (A3) then guarantees
that eventually φ holds. Note that the derivative of V with respect to time, dV

dt ,
is called the Lie derivative, Lf (p), of p with respect to the vector field f . It can
be computed using the chain rule as

Lf (p) :=
∑
x∈X

∂p

∂x

dx

dt
:= ∇p · f (7)

:= (
∂p

∂x1
,
∂p

∂x2
, . . .) · (dx1

dt
,
dx2

dt
, . . .)

Figure 3(right) presents an inference rule for verifying that a system al-
ways eventually reaches φ, that is, G(F(φ)), irrespective of its starting state.
The proof for G(F(φ)) is obtained by finding a (Lyapunov-like) function V that
is non-negative whenever φ is not true (Condition (B1)), but which decreases
whenever φ is not true (Condition (B2)). Again, under some mild technical as-
sumptions, these two conditions guarantee that always eventually V ≤ 0 and
always eventually φ holds.

The two inference rules given in Figure 3 for verifying F(φ) and G(F(φ))
properties respectively, are sound (under some reasonable technical assumptions
that are not detailed here). However, before we can use them, we have to find
the “witness” function V . In the bounded verification approach, we perform a
bounded search for V . Specifically, we fix a template for V and search only
for those V ’s that match the template and that also validate the conditions in
the inference rule. Concrete application of this approach will be illustrated in
Section 4.

Bounded verification is the dual of bounded model checking. Whereas
bounded model checking searches for a bounded counterexample (for safety),
bounded verification searches for a bounded proof (for safety). Bounded verifi-
cation has been used for safety verification by using templates for specifically
searching for inductive invariants in the work of several authors [11, 9, 7]. More
details on bounded verification, can be found in the work of Gulwani et al. [3]
and Gulwani and Tiwari [4].



(C1) : ψ ∧ ¬φ ⇒ V > 0
(C2) : ψ ∧ ¬φ ⇒ dV

dt
< 0

G(ψ) ⇒ G(F(φ))

Fig. 4. Inference rule for verifying that a continuous system CDS := (X, f) always even-
tually reaches φ under the assumption that always ψ holds.

Assumption ψ (LTβ − f) is bounded Template: ||LTβ − f ||2 ≤ a

Guarantee φ ||xe|| is bounded Template: ||xe||2 ≤ c

Witness V A Lyapunov function Template: ||xe||2 + b||intxe||2

Table 2. Verifying that xe is always eventually bounded under the assumption that
LTβ − f is bounded.

4 Analysis Results

We are interested in proving that, for the model of the direct neural net adaptive
flight controller, the error xe := xm − x and the integral of this error, namely
intxe, remain bounded. Since our property of interest relates only to xe and
intxe, we can eliminate some of the other variables by substitution and obtain
the following reduced model:

ẋe = −Kpxe −Kiintxe + LTβ − f

˙intxe = xe

L̇ = −Γβ(intxe
TK−1

i + xe
TK−1

p (I +K−1
i ))

β̇ = f1

ḟ = f2

where the new state variables are xe, intxe, L, β, f and f1, f2 are unknown pa-
rameters, whereas Γ,Kp,Ki are known fixed parameters.

The matrices Kp and Ki are diagonal matrices. Specifically, Kp :=
√

2K and
Ki := K2, where K := diag(3.5, 2.5, 2). Consequently, the three dimensions can
be separately analyzed and the results can be subsequently put together.

We first verify that always eventually the error goes below some fixed bound,
that is, G(F(x2

e ≤ c)), for some constant c. We prove this under the assumption
that the neural net approximates, upto some bound, the change in dynamics
caused by aircraft damage. We use the inference rule in Figure 3(right), but
modified to include an assumption ψ, as shown in Figure 4.

To apply the inference rule in Figure 4, we use templates for the assumption
ψ, the guarantee φ and the witness V . These templates are shown in Table 2.

Note that the choice of a sum of squares as a template for V guarantees that
the Condition (C1) in Figure 4 always holds (there is an implicit assumption that
b ≥ 0). Hence we do not write Condition (C1) below. The ∃∀ formula generated



Guarantee φ ||xe||
||LT β−f || is bounded ||xe||2 ≤ c||LTβ − f ||2

Witness V Exists a Lyapunov function ||xe||2 + b||intxe||2

Table 3. Verifying that ||xe||
||LT β−f || is always eventually bounded.

by Condition (C2) using the templates from Table 2 is:

∃a, b, c : ∀xe, intxe, L, β, f : (LTβ − f)2 ≤ a ∧ (x2
e > c) ⇒ d

dt
(x2

e + b intx2
e) < 0

Since we deal with the 3 dimensions separately, the variables in the formula
above are real-valued variables (and not vectors). Using QEPCAD, we get values
for the parameters a, b, c as: b = 10, 25c > a > 0. This proves, for example, that

G((LTβ − f)2 ≤ 0.01) ⇒ G(F(x2
e ≤ 1)). (8)

In other words, we prove that assuming LTβ − f is bounded, the error xe even-
tually falls below some bound – irrespective of the initial weights of the neural
net L, the kernel functions of the neural net β, or the type of damage f .

We can also show that the error xe always eventually drops below a constant
factor of the neural net approximation error – again irrespective of β, f and L.
This time we do not need any assumption on the neural net approximation error
and we can use the inference rule in Figure 3(right). Specifically, we use the
templates shown in Table 3. Condition (B2) from Figure 3(right), when applied
using the templates in Table 3, generates the following ∃∀ formula:

∃b, c : ∀xe, intxe, L, β, f : ||xe||2 > c||LTβ − f ||2 ⇒ d

dt
(||xe||2 + b||intxe||2) < 0

The values for b, c returned by QEPCAD are: b = 10, 25c > 1. This shows that the
following property holds of the model:

G(F(x2
e ≤ 0.05(LTβ − f)2)). (9)

We have proved above two versions of the property related to showing that
the error xe is eventually bounded. Formula 8 shows that the error is always even-
tually bounded assuming the neural network closely approximates the change in
the dynamics caused by damage (f). Formula 9 shows that the ratio of the error
xe to the approximation error (LTβ − f) is always eventually bounded with-
out requiring any further assumptions. In the final analysis, we prove another
variant of the same property by showing that the error is eventually bounded
unconditionally. In the process, we will also show that the weights of the neural
network remain bounded and hence this partly proves the correctness of the
neural network weight update laws. We only need to assume that the there is an
optimal value for the weights, L∗; that is, f = L∗β. In other words, we assume
that the neural network basis functions β are expressible enough to precisely



Guarantee φ ||xe|| is bounded ||xe||2 ≤ a

Witness V A Lyapunov-like function ||xe||2 + b||intxe||2 + c||L− L∗||2 − d

Assumption ψ ||β|| is bounded ||β||2 ≤ e

Table 4. Verifying that ||xe|| is always eventually bounded.

capture the difference in the aircraft dynamics (f) caused by the damage. Our
analysis will show that the computed weights, L, are not too far off from the
optimal weights L∗.

We again use the inference rule in Figure 4, but this time on the templates
outlined in Table 4. Using QEPCAD to solve the ∃∀ constraint generated by Con-
dition (C2) of Figure 4, we get the following values for a, b, c, d, e:

b = 10, c =
1

2200
, 20(d− a)2e < 11a2.

Note that QEPCAD is used to eliminate the internal ∀ quantifiers and hence it
generates a formula on a, b, c, d, e (shown above). Since V in Table 4 is not a
sum of squares, we also need to satisfy Condition (C1). It is easily verified that
this can be achieved by setting d = a. If we set d = a, then the condition
20(d − a)2e < 11a2 holds for all values of e and any nonzero value of a. Hence,
the assumption ||β||2 ≤ e is trivially satisfied. Thus, we prove the property

G(F(x2
e ≤ a)) (10)

for any positive a. Note also that the proof of the above property implicitly shows
that the weights L of the neural network are eventually bounded, whenever the
error xe exceeds a certain bound.

5 Conclusion

We presented preliminary results obtained from formally analyzing a model of
direct neural net adaptive flight control. The model was analyzed for bounded
stability. The bounded verification approach was used which is based on using
templates for the witness functions and the assumptions. The ∃∀ constraints
resulting from the bounded verification approach were solved using QEPCAD.

There are several different avenues for future work. While, in theory, QEPCAD
can decide the validity of arbitrary first-order formulas (in particular, of ∃∀
formulas) over the reals, in practice it is unreliable. One direction for future
work involves developing scalable and robust tools for checking validity of ∃∀
formulas over the reals. A different direction for future work consists of building
and verifying more refined models of adaptive control systems. Specifically, it will
be interesting to model uncertainties in the model of the (damaged) aircraft and
concrete details of the kernel functions used in the neural net. A third direction
for future work consists of analyzing indirect and hybrid adaptive flight control



systems. Finally, another potentially useful future work consists of developing
heuristics – specific for the domain of adaptive flight control – for automatically
generating templates and efficiently solving the ∃∀ constraints.
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