
One Context Unification Problems Solvable in
Polynomial Time

Adrià Gascón and Ashish Tiwari
SRI International, Menlo Park, USA

adriagascon@gmail.com, tiwari@csl.sri.com

Manfred Schmidt-Schauss
Goethe-Universität, Frankfurt, Germany

schauss@cs.uni-frankfurt.de

Abstract—One context unification extends first-order unifi-
cation by introducing a single context variable, possibly with
multiple occurrences. One context unification is known to be in
NP, but it is not known to be solvable in polynomial time. In
this paper, we present a polynomial time algorithm for certain
interesting classes of the one context unification problem. Our
algorithm is presented as an inference system that non-trivially
extends the usual inference rules for first-order unification. The
algorithm is of independent value as it can be used, with slight
modifications, to solve other problems, such as the first-order
unification problem that tolerates one clash.

I. INTRODUCTION

The problem of checking satisfiability of a set of equations
plays a central role in any mathematical science. From the
perspective of computer science, a lot of effort is devoted to
finding efficient decision procedures for different families of
equations. The problem of satisfiability of word equations, also
known as word unification, figures prominently as one of the
most intriguing problems of that form. The first algorithm
for that problem was given by Makanin [15], and the best
known upper bound (PSPACE) is due to Plandowski [19]. On
the other hand, the best known lower bound is NP, which
is widely believed to be the true complexity of the problem.
Several particular cases of that problem, such as the ones that
result from fixing the number of variables in the equations
to a constant, have also been studied. For instance, efficient
algorithms for satisfiability of word equations with one [4],
[17], [11] and two [3] variables have been discovered.

Another fundamental operation in symbolic computation
systems is the well-known first-order unification problem. This
problem consists of solving equations of the form s

.
= t, where

s and t are terms with first-order variables. The goal is to
find a mapping from variables to (first-order) terms that would
make the terms s and t syntactically equal. This problem was
first introduced as such in the work by J.A. Robinson, which
established the foundations of automated theorem proving
and logic programming. More concretely, Robinson presented
in [20] a procedure to determine the validity of a first-order
sentence that has term unification as its main ingredient. Later,

This work was sponsored, in part, by National Science Foundation under
grant CCF-1423296 and ONR under subaward 60106452-107484-C under
prime grant N00014-12-1-0914. The views, opinions, and/or findings contained
in this report are those of the authors and should not be interpreted as
representing the official views or policies, either expressed or implied, of
the funding agencies.

term unification was also used by Knuth and Bendix as a key
component of their critical pairs method to determine local
confluence of term rewrite systems (see [1] for a general survey
on unification theory). The syntactic unification and matching
problems were deeply investigated in the last century. Among
other results, linear time algorithms were discovered [16], [18].
Moreover, more expressive variants of term unification such as
unification modulo theories have also drawn a lot of attention.
In this notion of term unification, equality between terms
is interpreted under equational theories such as associativity,
commutativity, and distributivity, among others [1].

An interesting connection between word and term unification
is the context unification problem. In context unification, the
terms s, t in the equation s .

= t may contain context variables.
For example, consider the equation F (f(x, b))

.
= f(a, F (y)).

where x, y are first-order variables ranging over terms and F
is a context variable that can be replaced by any context. One
of the possible solutions of this instance is the substitution
{F 7→ f(a, •), x 7→ a, y 7→ b}. Note that when we instantiate
F by f(a, •) in the equation, replacing the occurrence of •
by the argument of F in each of its occurrences, we get
f(a, f(x, b))

.
= f(a, f(a, y)), and thus both sides of the

equations become equal after applying {x 7→ a, y 7→ b}.
Note that, simply using a unary signature, word unification
reduces to context unification. On the other hand, context
unification is a restricted form of second-order unification,
which is undecidable [9]. The decidability of context unification
remained open for a long time, until recently a PSPACE
algorithm was presented by Jeż [12].

Several variants of context unification with decision proce-
dures in NP, such as stratified context unification and well-
nested context unification, have been considered. Such variants
have applications in computational linguistics and unification
up to several positions [13], [5], [14]. Furthermore the variant
of context unification where one of the sides of the equation is
ground, called context matching, has also been investigated [21],
[6] and, although the problem is in general NP-hard, polynomial
time algorithms are known for some subclasses.

In this paper we revisit the particular case of context
unification where only one context variable, possibly with
many occurrences, occurs in the input equations. This prob-
lem is known as one context unification (1-CU). In [7], a
non-deterministic polynomial time algorithm for 1-CU was
presented. That result has later been extended [2] also to the

case where the input terms are represented with Singleton
Tree Grammars, a grammar-based compression mechanism
more general than Directed Acyclic Graphs. On the other
hand, 1-CU is not known to be NP-hard nor solvable in
polynomial time. This gap motivates the work described in this
paper. We also remark here that initial interest in 1-CU came
from interprocedural program analysis [10], where context
variables are used to represent (the yet unknown) summaries of
procedures. In particular, 1-CU problems (over uninterpreted
terms) arise when analyzing programs using an abstract domain
consisting of (uninterpreted) terms.

A. Related Work

A non-deterministic polynomial time procedure for 1-CU
was presented in [7]. There are instances where that algorithm
provably takes exponential worst-case (deterministic) running
time to decide unifiability. For example, let s be f(x0, x0) and
let tn be the term recursively defined as f(f(xn, xn), tn−1)
for n > 0, and t0 = f(a, b). Consider the 1-CU instance
{F (a)

.
= s, F (b)

.
= tn}, where x1, . . . , xn are pairwise

different first-order variables and F is a context variable.
Although this instance has an exponential number of solutions,
the algorithm from [7] requires (deterministic) exponential time
to conclude unifiability, i.e. solve the decision version of the
problem. However, our algorithm solves this class of problems
in polynomial time.

This paper extends the results of [7] by providing polynomial
time solutions to several interesting classes of the one context
unification problem. Our approach consists on reducing a
general 1-CU instance to solving polynomially many instances
of a restricted form that we call reduced instances. This
approach immediately yields a polynomial time procedure
for classes of 1-CU whose reduced instances can be efficiently
solved. We present some such classes in this paper, which
include classes containing left- and right-ground instances, a
class containing instances with disjoint first-order variables on
the two sides of equations, and a certain class of instances with
a constant number of equations. In fact, we do not have a class
of examples for which an algorithm consisting on recursive
applications of our procedure takes exponential time.

Our algorithm can actually be seen as following a “divide and
conquer” paradigm and it relies on polynomial time algorithms
for some base cases. One of the most important base cases
are instances of the form {F (r1)

.
= s, F (r2)

.
= t}, where the

context variable F does not occur in r1 and r2. We call this
the 2-restricted 1-CU problem. The algorithm for this case is
presented in a companion paper [8].

II. PRELIMINARIES

We assume a fixed ranked alphabet F and a set of variables
X containing first-order variables and exactly one context
variable. By maxarity we denote the maximum arity of the
symbols in F . We denote the context variable by F and first-
order variables by x with possible subindices. Our algorithm
introduces fresh first-order variables from a set Y , which we
denote by y with possible subindices. We denote X∪Y as V . We

will argue about terms in T (F ,X), T (F ,V) and T (F ,X)∪Y .
A term containing exactly one occurrence of a special symbol,
•, is called a context. The unique position of the hole • in a
context C[•] is called the hole position of C and denoted by
hp(C). The set of contexts constructed using symbols in F
and variables in X is denoted by C(F ,X).

With < we denote the prefix relation among positions and
with ≺ the subterm relation among terms. We also define,
for a term t = α(t1, . . . , tn), topsymbol(t) = α. The
exponentiation of a position p to a natural number n, denoted
pn, is the position recursively defined as pn = p.pn−|p| if
n > |p| > 0, as pn = p1 if n ≤ |p|, p = p1.p2, and |p1| = n,
and pn = λ, otherwise.

In this work, we deal with multiequations on terms, de-
noted by m with possible subindices. Given a multiequation
m = (t1

.
= . . .

.
= tn), we call the set

⋃n
i {ti} the top terms

of m, denoted topterms(m). Similarly, for a multiset ∆ of
multiequations, topterms(∆) denotes

⋃
m∈∆ topterms(m).

Similarly, topvars(m) = topterms(m) ∩ V . We also
extend topsymbols from terms to multiequations as
topsymbols(m) =

⋃
t∈topterms(m){topsymbol(t)}. By |∆|

we denote the number of multiequations in ∆. Moreover, our
multiequations are ordered and we use m[i] to refer to ti, for
every i ∈ {1, . . . , n}.

A substitution, denoted by σ, θ, η, is a total function σ :
V → T (F ,V) ∪ C(F ,V) such that ασ ∈ T (F ,V) if α is a
first-order variable and ασ ∈ C(F ,V) if α is a context variable.

The domain of a substitution σ, denoted dom(σ), is defined
as usual, i.e. dom(σ) = {z ∈ V | zσ 6= z}. The composition
of σ and θ, denoted θ ◦ σ, is defined as {α 7→ (ασ)θ | α ∈
dom(σ) ∪ dom(θ)}.

For substitutions σ, θ, σ = θ holds if ∀z ∈ V : zσ = zθ.
Moreover, σ is more general than θ, denoted σ ≤ θ, if there
exists η such that θ = σ ◦ η.

Substitutions are extended to be mappings from terms to
terms, i.e. σ : T (F ,V) → T (F ,V), as g(t1, . . . , tn)σ =
g(t1σ, . . . , tnσ) and F (t)σ = Fσ(tσ). In addition, substitu-
tions are also extended, in a similar way, to be mappings
from contexts to contexts, i.e. σ : C(F ,V) → C(F ,V). We
also define mσ = (t1σ

.
= . . .

.
= tnσ), for a multiequation

m = (t1
.
= . . .

.
= tn), ∆σ =

⊎
m∈∆(mσ), for a multiset of

multiequations ∆, and Lσ = 〈t1σ, . . . , tnσ〉, for a list of terms
L = 〈t1, . . . , tn〉.

A unifier of two terms s, t is a substitution σ such that
sσ = tσ. A unifier does not always exist. We capture that
situation by simply saying that the unifier of s and t is ⊥.
We define the most general unifier of terms s and t, denoted
mgu(s = t), as any substitution σ such that, for every unifier θ
of s and t, σ ≤ θ holds. If such substitution does not exist we
say that mgu(s = t) is not defined, denoted mgu(s = t) = ⊥.
In an abuse of notation, we assume that ασ = ⊥ if σ = ⊥, for
every term or multiequation or multiset of multiequations or
list of terms α. Moreover, mgu is extended to multiequations
in the natural way.

Although 1-CU is defined as a set of equations over terms
in T (F ,X), we can always transform an 1-CU instance (by

2

several applications of the usual first-order unification rules)
to the following more restricted definition without loss of
generality.

Definition II.1 (1-CU). An instance I of the 1-CU problem is
a set of equations {F (s1)

.
= t1, . . . , F (sn)

.
= tn}, where

∀i ∈ {1, . . . , n} : topsymbol(ti) 6= F . A solution of
I is a substitution σ such that F (si)σ = tiσ, for every
i ∈ {1, . . . , n}.

Definition II.2 (size). Let I be a 1-CU instance. The size of
I , denoted ||I||, is defined as the sum of the sizes of the terms
in the equations of I.

We assume the DAG representation for terms and hence the
size ||I|| is just the number of nodes in the DAG representing
all terms in I . In the sequel, we assume this measure for 1-CU
instances and hence we do not state it explicitly every time we
refer to a polynomial time algorithm. Moreover, when we state
that a unification problem can be solved in polynomial time,
we refer to both its decisional version (deciding unifiability)
and functional version (finding a unifier).

III. OVERVIEW OF THE PROCEDURE

In this section, we present a very high-level overview of our
procedure for solving the one context unification problem.

Our procedure is based on the observation that a solution
σ of a 1-CU instance I = {F (s1)

.
= t1, . . . , F (sn)

.
= tn} is

completely characterized by the position p = hp(Fσ). Hence,
our procedure for 1-CU proceeds by searching for p. However,
as illustrated by the example given in the introduction, a naive
brute force enumeration of all possibilities for p may take
exponential time. Instead, our algorithm carefully prunes the
search space for p while preserving unifiability.

Our procedure is closely related to the standard syntactic
(first-order) unification procedure. A syntactic unification
procedure on s

.
= t can be interpreted as searching for a

“conflict position” p in s and t; that is, a position p such that
if we unify s|q

.
= t|q for all positions q parallel to p, say with

a unifier σ, then sσ|p and tσ|p are definitely not unifiable –
due to an obvious “clash” or “occur check violation”. The
search for such a p proceeds by starting with p = λ and
then considering larger positions p. When we try to unify
I = {F (u)

.
= s, F (v)

.
= t}, our procedure also tries to search

for “conflict” positions p in s, t because these positions are
likely candidates for hp(Fσ), where σ is a unifier for I.

IV. SPECIAL CASES

Our procedure for 1-CU follows a “divide and conquer”
paradigm, much like standard term unification procedures, and
it relies on dedicated 1-CU procedures for certain base cases
called elementary 1-CU instances. In this section we present
these elementary 1-CU instances, and show that they can be
solved in polynomial time.

The first elementary instance is the analog of the clash rule
for first-order unification.

Claim IV.1 (Clash). Let I be a 1-CU instance of the form
I = I ′ ∪ {F (u1)

.
= f(s1, . . . , sm), F (u2)

.
= g(t1, . . . , tm′)},

with f 6= g. Then, I can be solved in polynomial time and
every solution σ satisfies Fσ = [•].

Next, consider another special case where we have one
equation that contains F on both sides. This special case was
solved in a previous paper [7]. In the case of the equation
F (s)

.
= C[F (t)], one of the key observations is that the hole

position of every context that is a solution for F has to be a
prefix or exponentiation of hp(C). In the problem considered
in [7], the terms at the input were given explicitly. Since we
assume the DAG representation for terms, the result from [7]
needs to be extended for our setting. However, the proof ideas
are the same.

Theorem IV.1 ([7]). Let I be a 1-CU instance of the form
I = I ′ ∪ {F (s)

.
= C[F (t)]}, where C is a non-empty context.

Then, I can be solved in polynomial time.

The second elementary instance is the analog of the “occur
check” rule of term unification and is characterized by equations
F (u1)

.
= s and F (u2)

.
= C[s], where C is nonempty.

Claim IV.2 (Cyclic). Let I be a 1-CU instance of the form
I = I ′∪{F (u1)

.
= s, F (u2)

.
= C[s]}, where C is a non-empty

context. Then, I can be solved in polynomial time.

Proof. Consider the instance I ′′ = I ∪ {F (u2)
.
= C[F (u1)]}.

The lemma follows from the fact that I and I ′′ have the same
set of solutions, ||I ′′|| is polynomial w.r.t. ||I||, and I ′′ can
be solved in polynomial time by Theorem IV.1.

Our third elementary instance is called a reduced 1-CU
instance.

Definition IV.2. An 1-CU instance I is called reduced if it is
of the form

{F (ui)
.
= xi | i = 1, 2, . . .} ∪ {F (vj)

.
= s | j = 1, 2, . . .}

∪ {F (wk)
.
= t | k = 1, 2, . . .} (1)

where s, t do not contain F ; that is, the right hand-side of the
equations have at most two non-variable terms.

For now, we will assume that we can solve reduced 1-CU
instances in polynomial time. In Section VI, we will return
to reduced 1-CU instances. We will now present our 1-CU
procedure, assuming we have access to a procedure solve that
can solve any elementary 1-CU instance (in polynomial time).

V. INFERENCE RULES FOR ONE CONTEXT UNIFICATION

We present inference rules for solving the one context
unification problem in this section.

A. Defining the State

Our inference rules operate on states (configurations), which
are pairs of the form

〈∆, L〉

3

where ∆ is a multiset of multiequations and L is a list of
terms. Given a 1-CU instance {F (s1)

.
= t1, . . . , F (sn)

.
= tn},

the initial state of our algorithm is

〈 {{t1
.
= . . .

.
= tn}} , 〈s1, . . . , sn〉〉

Intuitively, our algorithm tries to first-order unify t1, . . . , tn
and find a “conflict position”, which will be the hole position
of F in some solution σ, i.e. hp(Fσ).

Our states satisfy the invariant that each multiequation in ∆
has |L| top terms and the value |L| remains unchanged. Hence,
if we start with the above initial state, then for every state
〈∆, L〉 generated by our inference rules, we will have that
(a) |L| = n and
(b) every multiequation in ∆ will have n top terms.
In the sequel, especially in the section proving correctness of
our procedure, whenever we say state, we implicitly assume
that it satisfies (a) and (b).

Since ∆ is a multiset, we fix the following convention:
whenever we refer to a multiequation m ∈ ∆, we will mean
one specific element of ∆ and not all the multiple occurrences
of the element m in ∆. We will later see that our inference
rules will guarantee that ∆ always turns into a set, and it is a
multiset only in “transient” states.

B. Mapping State to 1-CU Instances

We will next formally define a mapping from states to 1-CU
instances. This mapping will help in stating the soundness and
completeness of the inference rules.

Definition V.1. Let S = 〈∆, 〈u1, . . . , un〉〉 be a state, let m ∈
∆ be a multiequation, and let θ = mgu(∆ \ {{m}}). We define
the 1-CU instance spanned by m in S, denoted P (m,S) (or
simply P (m) if S is clear from the context), as

P (m) =

{⋃
i∈{1,...,n}

{
F (uiθ)

.
= (m[i])θ

}
if θ 6= ⊥

⊥ otherwise.

where m[i] denotes the i-th top term in the multiequation m.

Note that several copies of the same multiequation in ∆
span the same problem.

We now extend our definition of a solution of an 1-CU
instance to define solution of a state.

Definition V.2. Let 〈∆, L〉 be a state of our procedure. A
solution for 〈∆, L〉 is a pair 〈m, θ〉, where m ∈ ∆ is a
multiequation such that P (m) 6= ⊥, and θ is a solution for
P (m).

The inference rules for 1-CU are presented in Figure 1 and
Figure 2. We now explain these rules.

C. The ForcedDecompose Rule

Recall the decomposition rule for first-order unification
which replaces the equation f(s, t)

.
= f(u, v) by two equations

s
.
= u and t .= v. Our algorithm uses a variant of this common

decomposition rule. Our rule is applied on the multiequations
in ∆ and produces a multiset of multiequations. For example,

consider the following 1-CU instance:

{F (s0)
.
= f(x, x), F (s1)

.
= f(u1, v1), . . . , F (sn)

.
= f(un, vn)}

As mentioned above, this 1-CU instance corresponds to the
following initial state of our algorithm:

S0 = 〈 {{f(x, x)
.
= f(u1, v1)

.
= . . .

.
= f(un, vn)}} , 〈s0, . . . , sn〉〉

Checking whether hp(Fσ) = λ (or, equivalently Fσ = [•])
is a solution reduces to first-order unification. If we can
find a solution σ where Fσ = [•], we are done. If not, then
we should consider the cases where |hp(Fσ)| > 0. After
decomposition, we obtain the following state:

S1 = 〈 {{x .
= u1

.
= . . .

.
= un, x

.
= v1

.
= . . .

.
= vn,}} , 〈s0, . . . , sn〉〉

This state, according to Definition V.1, spans the following
two 1-CU instances:

1) {F (s0σ1)
.
= xσ1, F (s1σ1)

.
= u1σ1, . . . , F (snσ1)

.
=

unσ1, }, where σ1 = mgu(x
.
= v1

.
= . . .

.
= vn), and

2) {F (s0σ2)
.
= xσ2, F (s1σ2)

.
= v1σ2, . . . , F (snσ2)

.
=

vnσ2, }, where σ2 = mgu(x
.
= u1

.
= . . .

.
= un).

If σ is a solution for the original problem and hp(Fσ) = i.p,
where i ∈ {1, 2}, then the instance (1) has a solution σ′ s.t.
hp(Fσ′) = p if i = 1, and the instance (2) has a solution
σ′ s.t. hp(Fσ′) = p if i = 2. Hence our new state S1

does not miss any solution of the original problem where
|hp(Fσ)| > 0. However, considering both cases above and
solving the corresponding subproblem separately is not a good
idea, since the algorithm may end up exploring too many
equivalent possibilities. In fact, this is one reason for the
exponential running time of the algorithm presented in [7], on
the class of instances presented in the introduction.

A possible alternative is to “delay” the computation and
application of the substitutions σ1 and σ2 as much as possible.
So, we keep state S1 as such and try to proceed. But, we
can not apply the usual decomposition rule on state S1 since
both multiequations in it have a variable x. So, how do we
make progress? Here we use our first key idea: we extend the
decomposition rule to allow minimal instantiation of x that
will allow us to progress (with decomposition steps).

For simplicity, let us assume that the ui’s and vi’s of our
example are of the forms ui = f(u1

i , u
2
i) and vi = f(v1

i , v
2
i).

In this case, note that σ1 would have instantiated x by a
term of the form f(,) and σ2 would also have instantiated
x by a (possibly different) term of the same form. Hence,
we can keep both options open for x in the next state by
instantiating x by f(y1, y2) where y1, y2 are fresh variables.
This allows us to proceed with decompose and avoiding
committing to any one branch. We call this inference rule
the ForcedDecompose rule, and it is shown in Figure 2.
Unfortunately, the ForcedDecompose rule adds new variables
to our problem.

After applying the ForcedDecompose rule, we get the
following state in our example:

S2 = 〈{{y1
.
= u1

1
.
= . . .

.
= u1

n,
y2

.
= u2

1
.
= . . .

.
= u2

n,
y1

.
= v1

1
.
= . . .

.
= v1

n,

4

y2
.
= v2

1
.
= . . .

.
= v2

n}},
〈s0{x→ f(y1, y2)}, . . . , sn{x→ f(y1, y2)}〉〉

Our approach consists of applying this lazy instantiation
followed by term decomposition (the ForcedDecompose rule),
but ensuring that, every time we apply this rule, we decrease the
measure |subterms(topterms(∆)) \ Y|, i.e. the total number
of terms occurring in the multiequations of ∆ that are not fresh
variables. If we apply the ForcedDecompose rule arbitrarily,
then the above measure may not decrease. Even in regular
first-order unification, a decomposition step is not guaranteed
to remove some subterm from ∆.

Here we use our second key idea: instead of decomposing
arbitrarily any/all multiequations in ∆, we ensure that the
above measure decreases by decomposing only a submultiset
Γ ⊆ ∆ of multiequations at a time. The selected submultiset
Γ satisfies that every term in topterms(Γ) is maximal with
respect to the subterm relation in ∆. More concretely, a subset
Γ ⊆ ∆ is called a root class if for every top term t in Γ, (a)
t is not a proper subterm of any term in ∆, and (b) t is not
a top term in ∆ \ Γ. A consequence of this side condition
in our ForcedDecompose rule is that the variables in Y will
never occur in the multiequations in ∆ as subterms of other
terms, i.e., we will maintain the invariant that topterms(∆) ⊂
(T (Σ,X)∪Y). The idea of decomposing on maximal equations
w.r.t. to the subterm relation is already used in the Paterson-
Wegman linear unification algorithm [18], where equations in
a root class are decomposed first.

We formally define the ForcedDecompose rule next. First,
let us recall a variant of the traditional term decomposition
rule for multiequations.

Definition V.3. Let ∆ be a set of multiequations and let m =
f(s1

1, . . . , s
1
l)

.
= . . .

.
= f(sk1 , . . . , s

k
l) be a multiequation in ∆

such that topvars(m) = ∅ and topsymbols(m) = {f}, with
l = ar(f).

• By Decompose(m) we denote the multiset of multiequa-
tions

⋃l
i=1({s1

i
.
= . . .

.
= ski }),

• By Decompose(∆,m) we denote ∆ \ {m} ∪
Decompose(m), and

• Decompose is also extended to a submultiset of multi-
equations Γ ⊆ ∆ as Decompose(∆,Γ) = (∆ \ Γ) ∪⋃

m∈Γ Decompose(m).

Definition V.4. Let S = 〈∆, L〉 be a state of the al-
gorithm, let Γ ⊆ ∆ be a subset of multiequations such
that topsymbols(Γ) = {f}, and let Y be a set of first-
order variables disjoint with vars(S). Let {x1, . . . , xk} be
topvars(Γ) and let σ be

⋃k
i=1({xi → f(yi1, . . . , y

i
ar(f))}),

where yij ∈ Y , for i ∈ {1, . . . , k} and j ∈ {1, . . . , ar(f)}.
Then, ForcedDecompose(S,Γ,Y) is defined as the state

〈(∆ \ Γ) ∪ Decompose(∆σ,Γσ), Lσ〉.

Note that the substitution σ is not applied to ∆ \ Γ in the
definition of ForcedDecompose(S,Γ,Y): since Γ is a root
class, variables in dom(σ) do not occur in ∆ \ Γ.

D. The Shrinking Rules

If we only rely on decomposition, we will end up with ex-
ponentially many multiequations in ∆. To avoid this explosion,
we exhaustively apply a sequence of shrinking operations to ∆
before applying every decomposition step. Such shrinking rules
are shown in Figure 1. The shrinking rules simplify the current
state 〈∆, L〉 of the algorithm by either completely solving one
of the problems spanned by 〈∆, L〉 in polynomial time (rules
CycleOrClash and TwoNonVar), or applying substitutions that
preserve all solutions (rules InvEq, NoSol).

A crucial property of our algorithm (captured in
Lemma V.17) is that, if none of the shrinking rules can
be applied, then |∆| is (bounded by) a polynomial function
of |subterms(topterms(∆)) \ V|. This fact, together with
the fact that every application of ForcedDecompose reduces
|subterms(topterms(∆)) \ V| and the application of the
other rules does not increase that value, forms the core of
our termination argument.

We will now describe the shrinking inference rules. The first
three rules each remove a multiequation m from the multiset
∆ for which the instance P (m) is an elementary instance. The
last rule will simplify the problem by applying a substitution.

a) The NoSol inference rule: If ∆\{{m}} is not unifiable,
then it means that hole position of F can not lie at (or below)
the position corresponding to m, and in fact note that P (m) =
⊥ in this case. Hence, the multiequation m can be discarded.
To discard m, we have to unify m, apply its unifier to all
other multiequations in ∆ and continue. This is captured in
the NoSol rule in Figure 1, which states that if ∆ is of the
form ∆′ ·∪ {{m}} (where ·∪ denotes disjoint multiset union)
and mgu(∆′) = ⊥, then we can discard m by updating ∆ to
be ∆′mgu(m).

b) The CycleOrClash inference rule: If the 1-CU in-
stance P (m) has two equations of the form F (u1) = f(. . .)
and F (u2) = g(. . .) for some f 6= g, then we can easily
determine if P (m) has a solution using Claim IV.1. Similarly,
if the 1-CU instance P (m) has two equations of the form
F (u1) = s and F (u2) = C[s] for some nonempty context C,
then we can easily determine if P (m) has a solution using
Claim IV.2. In both these cases, if P (m) has a solution, we
can terminate the search and report success. If P (m) has no
solution, then we can discard m as in the NoSol rule. This
process is formalized in the CycleOrClash inference rule.

c) The TwoNonVar inference rule: Recall that we as-
sumed access to a procedure solve that works on reduced
1-CU instances. The TwoNonVar rule works in the same way as
the rule CycleOrClash, except that it is applied when P (m)
is a reduced 1-CU instance.

d) The InvEq inference rule: Rather than discarding
multiequations m from ∆, our last shrinking rule InvEq

removes variables from the state by applying substitutions
that can be deduced to hold in every branch of the search tree.
How to find such “globally” valid substitutions? We need a
few definitions for this purpose.

5

Definition V.5. Let ∆ be a multiset of term multiequations.
Let ∆l be the set obtained by marking each occurrence of a
multiequation m in ∆ with a different mark1. The graph G(∆)
is defined as the undirected graph that has topterms(∆) ∪
∆l as the nodes and the relation {(s,ml) | ml ∈ ∆l, s ∈
topterms(m)} as the edges.

Cycles in the graph G(∆) are special: if terms s, t lie on a
cycle, then every solution σ of every problem P (m) should
unify s and t.

Definition V.6. Let ∆ be a set of multiequations and let s, t ∈
topterms be distinct terms. We say that ∆ induces the equality
s = t, denoted ∆ |= (s = t), if s and t lie on some cycle in
G(∆).

It follows directly from the definition above that equations
induced by ∆ can be computed efficiently.

Lemma V.7. Given a multiset ∆ of multiequations, terms
s, t ∈ topterms such that ∆ |= (s = t), if they exist, can be
found in polynomial time with respect to |∆|.

If s = t is an induced equality, then every solution σ of the
1-CU problem should make sσ = tσ, and hence, we can unify
s and t and apply the unifier to our state without losing any
solutions. This action is performed by the InvEq rule.

Note that all the shrinking rules rely on the application of a
most general unifier. Such a unifier θ does not necessarily
always exist and hence, by our convention mentioned in
Section II, in that case θ = ⊥ and 〈∆θ, Lθ〉 = 〈⊥,⊥〉. This
allows us to simplify the presentation by having a single failing
rule Fail (Figure 2) while still making the failing cases explicit.

Remark V.8. If ∆ has two copies of the same multiequation
m, say s1

.
= · · · .= sn, then we have ∆ |= (s1 = · · · = sn).

The InvEq can be used to unify all the si’s in the state, and as
a result the problem P (m) has all right-hand side terms equal.
The inference rule TwoNonVar can remove such m. Hence, if
the multiset ∆ has multiple occurrences of m, it gets converted
to a set.

E. The algorithm

All our inference rules are presented in Figures 1 and 2. To
obtain a polynomial time procedure, we will apply our inference
rules according to a particular strategy. Specifically, our strategy
gives priority to the shrinking rules over the ForcedDecompose
rule and thus can be described as sequences of rule application
of the form: (Shrink! · ForcedDecompose)! where Shrink

refers to (CycleOrClash | TwoNonVar | InvEq | NoSol). Here
the notation R! refers to applying rule R repeatedly until it is
not applicable any more.

Assuming that the procedure solve runs in polynomial time,
to prove polynomial running time of our procedure, we have
to argue that

(a) all intermediate subproblems have polynomial size,

1If ∆ has m twice in it, then the set ∆l has two elements, say ml1 ,ml2 .

(b) every application of ForcedDecompose yields polynomi-
ally many subproblems, and

(c) the derivations in our algorithm have polynomial length.
Note that, roughly speaking, to prove (a) and (b) it suffices to
argue that every state 〈∆, L〉 considered by our algorithm can
be represented in polynomial space. Regarding correctness, we
must argue that our rules neither miss solutions (completeness)
nor introduce new solutions (soundness).

F. Correctness

The following lemma formalizes the correctness of the
process of eliminating a multiequation m from ∆. Its proof
easily follows from Definitions V.1, and V.2 by induction on
|∆|.

Lemma V.9. Let S = 〈{m`} ·∪ ∆, L〉 be a state of our
algorithm. S has a solution if and only if either P (m) has a
solution or 〈∆σ, Lσ〉 has a solution, where σ = mgu(m).

We denote an application of an inference rule using infix →
notation, possibly labeled with the name of the inference rule.
Correctness of rules CycleOrClash, TwoNonVar, and NoSol

stated in the next two lemmas, is a direct consequence of the
previous lemma.

Lemma V.10. Let 〈∆, L〉 →r (solve(P (m)) | 〈∆′, L′〉) be
an inference step with r ∈ {CycleOrClash, TwoNonVar}.
Then, 〈∆, L〉 has a solution if and only if either P (m,∆)
has a solution or 〈∆′, L′〉 has a solution.

Lemma V.11. Let 〈∆, L〉 →NoSol 〈∆′, L′〉 be an inference
step. Then, 〈∆, L〉 has a solution if and only if 〈∆′, L′〉 has a
solution.

Proof. Note that P (m) = ⊥, where m ∈ ∆ is the multi-
equation that satisfies the condition for the application of
NoSol.

Lemma V.12. Let 〈∆, L〉 →ForcedDecompose

(solve(P (m1)σ) | . . . | solve(P (m|∆|)σ) | 〈∆′, L′〉)
be an inference step. Then, 〈∆, L〉 has a solution 〈m, θ〉 if
and only if either Fθ = [•] and the first-order unification
problem P (m)σ has a solution or 〈∆′, L′〉 has a solution.

Proof. Note that, if 〈∆, L〉 has a solution 〈m, θ〉 then ei-
ther θ maps F to [•] or it does not. The former case
is checked by solving the first-order unification problem
P (m)σ = P (m){F 7→ [•]}, whereas the latter case implies
that 〈∆′, L′〉 has a solution, since the ForcedDecompose

operation simply decomposes some multiequations without
making any assumptions. For the other implication, note that the
ForcedDecompose operation is only defined if the top symbol
in all the non-variable terms in the decomposed multiequations
are the same, and hence this rule application does not introduce
new solutions.

Lemma V.13. Let 〈∆, L〉 →InvEq 〈∆′, L′〉 be a derivation
in our algorithm. Then, 〈∆, L〉 has a solution if and only if
〈∆′, L′〉 has a solution.

6

TwoNonVar:
〈∆ = ∆′ ·∪ {{m}} , L〉

solve(P (m)) | 〈∆′mgu(m), Lmgu(m)〉
if P (m) is a reduced 1-CU instance

CycleOrClash:
〈∆ = ∆′ ·∪ {{m}} , L〉

solve(P (m)) | 〈∆′mgu(m), Lmgu(m)〉
if P (m) satisfies the conditions of Claim IV.2 or Claim IV.1.

InvEq:
〈∆, L〉
〈∆σ, Lσ〉 if ∆ |= (s = t) and σ = mgu(s

.
= t)

NoSol:
〈∆ = ∆′ ·∪ {{m}} , L〉
〈∆′mgu(m), Lmgu(m)〉 if mgu(∆′) = ⊥

Fig. 1. Shrinking rules of the 1-CU algorithm

ForcedDecompose:
〈∆ = Γ ·∪ ∆′, L〉

solve(P (m1)σ) | . . . | solve(P (m|∆|)σ) | ForcedDecompose(〈∆, L〉,Γ,Y)

if |topsymbols(Γ)| = 1, σ = {F → [•]}, and Γ is a root class.

Fail:
〈⊥,⊥〉
fail

Fig. 2. Decomposition and failing rules of the 1-CU algorithm

Proof. The correctness of rule InvEq follows from Defini-
tion V.6 and the fact that ∆ |= (s = t) holds for some state
S = 〈∆, L〉 if and only if mgu(s, t) ≤ θ, for any solution
〈m, θ〉 of S.

We conclude that each inference rule preserves unifiability.
The following Lemma states that our inference system makes
progress; that is, any derivation starting from an initial state
either terminates early (with success) or it reaches a “terminal”
state, if we apply the rules exhaustively. The proof is omitted
due to space limitations.

Lemma V.14. Let S = 〈∆, L〉 be a state of our procedure
such that no rule can be applied to S. Then, ∆ = ∅.

The correctness of the algorithm follows from the previous
lemmas.

Theorem V.15. The algorithm is correct regardless of the rule
application strategy.

G. Runtime analysis

We now establish the time complexity of our procedure.
Henceforth we assume that our algorithm applies the rules
of Figures 1 and 2 according to the strategy (Shrink! ·
ForcedDecompose)!, where Shrink is the collection of all
four shrinking rules. Let us remark that we assume that terms
are represented using a Directed Acyclic Graph (DAG). The
size of a DAG is defined as its number of nodes. We assume
that all the terms (including subterms) involved in our problem
are represented as nodes in a single DAG D. Without loss of
generality, we assume that D is minimal in size, and then the
correspondence between terms and nodes is bijective. Hence,

we can then refer to nodes of D and subterms of the problem
as if they were the same thing. A crucial observation is that
the number of terms represented in DAG is preserved by
the application of substitutions resulting from the unification
of terms of the DAG. This is because application of such
substitutions can be achieved by manipulating only the edges
of the DAG, leaving its nodes untouched.

The only source of difficulty is that our procedure introduces
fresh variables from a set Y , and hence the DAG D will grow.
However, in this section we prove a bound on the size of D
that does not depend on the number of introduced variables.
In the rest of the paper we will not refer to D. We instead
prove that our algorithm is polynomial w.r.t. the total number
of different subterms occurring in the input I, which is the
same as the size of the DAG representing I.

The following property, mentioned in the previous sections,
is related to the previous observation about the DAG representa-
tion for terms: The algorithm does not increase the total number
of subterms in the multiequations of ∆ that are not freshly
introduced variables from Y . Moreover, the ForcedDecompose
rule strictly reduces this measure. The requirement that Γ be a
root class (in the conditions for ForcedDecompose) is crucial
here.

Lemma V.16. Let 〈∆0, L0〉 →∗ 〈∆k, Lk〉
be a derivation starting from a valid initial
state. Then, |subterms(topterms(∆k) \ Y)| ≤
|subterms(topterms(∆0) \ Y)|. Moreover, if 〈∆0, L0〉 →∗
〈∆k, Lk〉 →ForcedDecompose 〈∆k+1, Lk+1〉 is a derivation from
a valid initial state, then, |subterms(topterms(∆k+1))\V| <
|subterms(topterms(∆k)) \ V|.

7

f m v m v f

Fig. 3. An example acyclic graph with an unbounded number of m-nodes
(red nodes), where each red node has two neighbours that can both reach
some f -node (blue node) (using light blue v-nodes).

f v m

f

v m f

Induction hypothesis Induction hypothesis

Fig. 4. Proof of induction step: the node m in the middle is removed from
the graph to obtain at least two disjoint graphs shown in the left and right.

One of the key facts about our inference system is that
the cardinality of ∆ in any state generated in a derivation
is polynomially bounded. The main part of the proof can be
explained as a puzzle: given n blue nodes, assume we have
to construct a bipartite graph by adding any number of red
nodes and any number of light blue nodes with the following
constraints: (a) the graph is acyclic, (b) all red nodes are in
one partition and the blue and light blue nodes are in the other
partition, and (c) each red node has 3 neighbours, and there
is a path from each neighbour to a blue node. The problem
is to find a bound on the maximum possible number of red
nodes that one can add. As part of the proof of the following
lemma, we prove a quadratic bound for the above puzzle. Note
that if each red node is required to have only 2 neighbours
(with the same property), then the number of red nodes can
be unbounded, as demonstrated in the graph in Figure 3.

Lemma V.17. Let 〈∆0, L0〉 →∗ 〈∆k, Lk〉 be a derivation start-
ing from a valid initial state. Then, |∆k| ≤ |topterms(∆k) \
V|2maxarity.

Proof. We prove the lemma by induction on the length of
the derivation, taking into account the strategy (Shrink! ·
ForcedDecompose)!. The lemma trivially holds for ∆0, since
|∆0| = 1. Note that the property of the lemma is pre-
served by the application of the four shrinking rules, namely
CycleOrClash, TwoNonVar, InvEq and NoSol, since these
rules do not increase the size of ∆. Hence, it suffices
to show that, if (i) a state S = 〈∆k−1, Lk−1〉 satisfies
the condition of the lemma, (ii) the rules CycleOrClash,
TwoNonVar, InvEq and NoSol cannot be applied to S,
and (iii) S →ForcedDecompose 〈∆k, Lk〉, then |∆k| ≤
|subterms(topterms(∆k)) \ V|2maxarity.

Consider the graph G(∆k−1) (Definition V.5). Recall that
the set of nodes V of G(∆k−1) is ∆l

k−1 ∪ topterms(∆k−1).
First note that G must be acyclic due to the non-applicability
of InvEq and hence it is a forest. Therefore, ∆k−1 is in fact
a set; that is, ∆l

k−1 in Definition V.5 is the same as ∆k−1.
We refer to the nodes in V ∩∆k−1, i.e. the nodes of G that

are multiequations, as m-nodes, to the nodes of G that are
non-variable terms as f -nodes, and to the nodes of G that are
variables and v-nodes.

Without loss of generality we assume that G is a tree. Let us
give some intuition on how the properties of ∆k−1 translate to
G. Consider a multiequation m ∈ ∆k−1 and let G1, . . . , Gs be
all subtrees adjacent to m. By Definition V.1, computing P (m)
involves unifying f -nodes and v-nodes in the same Gi. Note
that, since TwoNonVar is not applicable to ∆k−1, there must
be at least three distinct trees {Gi, Gj , Gk} ⊆ {G1, . . . , Gs}
containing f -nodes. Hence, there are disjoint paths in G from
every m-node to at least 3 f -nodes and, in particular, the
degree of m is greater than 3.

We prove that the number M of m-nodes is bounded
by T 2, where T is the number of f -nodes. (The following
argument is the solution to the above puzzle.) Note that
T = |topterms(∆k−1) \ V|. We use induction on M . For
base case, if M = 1, then T ≥ 3 due to the non-applicability
of TwoNonVar, and hence M ≤ T 2 in this case.

For the inductive step, note that, again due to the non-
applicability of TwoNonVar, G must contain an f -node. Among
all the f -nodes, pick one, say vf , that has degree one: such an
f -node must exist, since if every f -node has degree at least 2,
then the graph will have a cycle (recall that every m-node is
connected to at least 3 f -nodes as observed above).

The f -node vf should have an edge to some m-node, say
vm. If we remove all outgoing edges from vm, we should
get at least 3 disjoint trees (see illustration in Figure 4) that
contain f -nodes (due to the non-applicability of TwoNonVar
as observed above). One of those trees contains just one node
– the f -node vf . Assume that we get l + l′ other subtrees
G1, . . . , Gl, Gl+1, . . . , Gl+l′ , and only the first l contain f -
nodes. (In Figure 4, the number l is 2 and l′ is 0.)

Let Mi be the number of m-nodes in Gi, and let Ti be
the number of f -nodes in Gi, for all i. Hence, Tl+1 = · · · =
Tl+l′ = 0 holds, and it implies that Ml+1 = · · · = Ml+l′ =
0 by, again, non-applicability of TwoNonVar (every tree Gi

that contains an m node must contain also at least two f -
nodes). Thus, the trees Gl+i’s consist of just one v-node each.
Therefore, we have that M = M1 + . . . + Ml + 1 and that
T = T1 + . . .+ Tl + 1, where the last one is for the node vf .

By assumption, every Gi contains an f -node, i.e. Ti > 0,
and fewer m-nodes than m. We want to use the induction
hypothesis, but before we can do that we need to make sure
each Gi satisfies our original constraint that every m-node has
at least 3 neighbours such that there is a path from each of
those neighbours to a different f -node. Removing node vm
may cause violation of this property. This happens if vm has
an edge to a v-node in Gi. This is the case in the illustration
in Figure 4 for the subgraphs that are encircled. We treat that
v-node as an f -node and then apply induction hypothesis to

8

get Mi ≤ (Ti + 1)2 for all i. Thus, we now have

M = (

l∑
i=1

Mi) + 1

≤
l∑

i=1

(Ti + 1)2 + 1

= ((

l∑
i=1

Ti) + 1)2 −
∑
j 6=k

2TjTk + l

= T 2 −
∑
j 6=k

2TjTk + l

≤ T 2 − (
∑
j 6=k

2) + l

= T 2 − l(l − 1) + l ≤ T 2

For the last step in the above derivation, note that l ≥ 2 and
hence, l ≤ l(l − 1) is always true.

Altogether implies that |∆k−1| is bounded by
|topterms(∆k−1) \ V|2 and, since the application of
ForcedDecompose increases the number of multiequations
by at most a factor of maxarity, we have that
|∆k| ≤ |topterms(∆k) \ V|2maxarity.

Every subproblem generated during a derivation will have
polynomial size.

Lemma V.18. Let 〈∆0, L0〉 →∗ 〈∆k, Lk〉 be its correspond-
ing derivation in our algorithm. Then, for every multiequation
m ∈ |∆k|, P (m) has polynomial size with respect to ||I| and
k.

Proof. The Lemma follows from the fact that, thanks to the
DAG representation, the terms in Lk and m(mgu(∆k \ {{m}}))
have polynomial size in k and ||I||.

Finally, our main result is the following. Its proof follows
from Lemmas V.16 and V.17.

Theorem V.19. The 1-CU problem is solvable in polynomial
time assuming existence of a polynomial time procedure solve

for 1-CU instances with at most two non-variable terms in the
right hand-side of equations.

VI. ONE CONTEXT UNIFICATION PROBLEMS SOLVABLE IN
POLYNOMIAL TIME

The results in the previous section (Theorem V.19 and
Lemmas IV.2 and IV.1) give us a reduction from the general
1-CU problem to a reduced 1-cu problem.

So far, we relied on an oracle to solve reduced instances. We
will present special classes of 1-CU problems whose reduced
instances can be solved in polynomial time. Certain reduced
instances could have only one or two “non-trivial” equations.
So, we first present results on solving 1-CU instances that have
exactly one or two equations. These will help in solving more
general reduced instances later.

A. One Equation 1-CU Problem

We prove that a single equation 1-CU problem can be effi-
ciently solved. If the equation is of the form F (s) = C[F (t)]
and C is nonempty, then we can use Theorem IV.1 to solve
it. Next, consider an equation of the form F (C[F (s)]) = t.
It has the nice property that the hole position of any context
that is a solution for F can not be an extension of a nonlinear
positions in t. A position p is nonlinear in t if there exists
another position q 6= p such that t|p = t|q. We also call t|p
a non-linear subterm of t. Note that, for every term t and
non-linear position p of t, every position q ∈ pos(t) that is an
extension of p is also non-linear.

Lemma VI.1. Let I be a 1-CU instance consisting of one
single equation of the form F (C[F (s)])

.
= t such that F

does not occur in t (but F can occur in C). Let P =
{p ∈ pos(t) | t|p = v and v is a non-linear subterm of t.
Then, ∀p ∈ P : hp(Fσ) 6= p, for every solution σ of
F (C[F (s)])

.
= t.

Proof. Let σ be a solution contradicting the conditions of the
lemma, i.e. there is a term v occurring at two distinct positions
p and q of t such that hp(Fσ) = p. It follows that Fσ =
tσ[•]p, tσ[•]p|q = vσ and hence we have vσ = C[F (s)]σ =
Cσ[Fσ(sσ)] = Cσ[tσ[•]p[sσ]] = Cσ[tσ[•]p[sσ]]|hp(C).q =
vσ|hp(C).q = vσ, a contradiction.

There are only a (linear number of) linear positions in a
term. (In contrast, there can be exponentially many non-linear
positions in a term). It follows from Lemma VI.1 that for the
equation F (C[F (s)])

.
= t, we only need to test the (small

number of) linear positions as possible hole positions. In fact,
we can enumerate a complete set of unifiers: a set of unifiers is
complete if any other unifier (for the problem) is an instance of
some unifier in the set. Here, a unifier is allowed to instantiate
a context variable F in terms of a new context variable F ′.
The following lemma follows from Lemma VI.1 above.

Lemma VI.2. Let I be a 1-CU instance consisting of one
single equation of the form F (C[F (s)])

.
= t such that F does

not occur in t. Then, a complete set of unifiers U of I of
polynomial size can be computed in polynomial time. Any
substitution σ in U satisfies one of the two conditions below:

1) Either Fσ = t[•]p, with p ∈ pos(t),
2) Or σ = {F 7→ t[F ′(•)]q, x 7→ F ′(C[t[F ′(s)]q])},

where x does not occur in F (C[F (s)]), t|q = x, and F ′

is a new context variable different from F .

Using the special cases in Lemma VI.2 and Theorem IV.1,
we can now prove that the special case when we have only
one equation can be solved.

Claim VI.1 (1-eqn). Let I be a 1-CU instance consisting
of one single equation F (s)

.
= t. Then, I can be solved in

polynomial time.

Proof. Note that the case where F occurs in t holds by
Theorem IV.1. Note that the case where F occurs in s holds
by the previous lemma. So, we are left with the case where

9

F does not occur in s or t. In this case, it is easy to see
that a unifier exists iff one exists where hp(Fσ) ∈ pos(t). To
determine existence of solutions where hp(Fσ) ∈ pos(t), we
just need to find a subterm of t that unifies with s. Whereas
the total number of subterms of t might be exponential due
to the DAG representation, the number of distinct subterms is
polynomial. Hence, we can simply check, in polynomial time,
all terms v ∈ subterms(t) that unify with s.

B. Two Equation 1-CU Problem

We show that 1-CU problems consisting of exactly two
equations can be solved efficiently, but under a technical
condition. To motivate the technical condition, note that the
instance I = {F (r1) = z, F (r2) = z} can encode an arbitrary
1-CU instance I ′ = {F (s1)

.
= t1, . . . , F (sn)

.
= tn}, by having

r1 = C[F (s1), . . . , F (sn)] and r2 = C[t1, . . . , tn]. So, two
equation case is as hard as an arbitrary number of equations.
However, if we are interested in solutions σ so that hp(Fσ) is
not below a position p where both right-hand side terms have
the same variable, then we can solve two equation problems.

First, consider two equations in which one has a nested F
on one side. The proof of the following lemma follows from
Lemma VI.2, Theorem IV.1, and Claim VI.1.

Lemma VI.3. Let I = {F (C[F (u)])
.
= s, F (v)

.
= t} be

a 1-CU instance such that s, t are non-variable terms not
containing F . If we are only interested in solutions σ such that

not(∃p, x : (s|p = t|p = x and hp(Fσ) > p)),

then such a solution σ of I can be found in polynomial time.

Note that the ignored solutions make s, t equal, but not all
solutions that make s, t equal are ignored.

Using the previous result, we can now solve the two
equation case, but also when it is extended with some “variable
definitions”, under an extension of the same technical condition.

Claim VI.2 (2-nonvar). Let I be a 1-CU instance of the form⋃n
i=1({F (ui)

.
= xi}) ∪ {F (v1)

.
= s, F (v2)

.
= t} such that the

terms s,t, and u1, . . . , un do not contain F , and s, t, x1, . . . , xn
are pairwise different. If we are only interested in solutions σ
such that

not(s, t do not contain any xi, and

v1 or v2 contains either F or some xi, and

∃p, x : (s|p = t|p = x and hp(Fσ) > p)),

then such a solution σ for I can be found in polynomial time.

Proof. Note that, if some xi occurs in either s or t, it has to
occur properly, and the lemma follows from Lemma IV.2.

Hence assume that s, t do not contain any xi. We define
the instance I ′ as the result of exhaustively replacing xi by
F (ui) everywhere. If there is a cycle and this replacement can
not be performed exhaustively, then I ′ = ⊥. Note that every
solution of I ′ can be easily extended to be a solution of I,
that I ′ can be obtained from I in polynomial time, and that
||I ′|| is polynomial w.r.t. ||I||. Moreover, I ′ is either of the
form

1) ⊥, or
2) {F (v1)

.
= s, F (v2)

.
= t}, where v1, v2, s, t do not

contain F or
3) {F (v1)

.
= s, F (v2)

.
= t}, where s, t do not contain F

and either v1 or v2 contains F .

In case 1 I ′ has no solutions. In case 2, I ′ is a 2-restricted
1-CU instance that we have shown can be efficiently solve in a
companion paper [8]. Finally, case 3 follows from Lemma VI.3,
while noting that the new technical condition maps to the
condition in that lemma.

C. Disjoint Variables and Constant Number of Equations

Now that we have results for one and two equations, we next
present sufficient conditions for polynomial time solvability of
1-CU problem. In each case, we will show that we can solve
the corresponding reduced problems in polynomial time. Let
us fix the following notation for the rest of the section.

I = {F (s1)
.
= t1, . . . , F (sn)

.
= tn}

V1 = Set of all first-order variables in s1, . . . , sn

V2 = Set of all first-order variables in t1, . . . , tn
T1 = {u | u = F (u′), si|p = u for some i, p, u′}
T2 = {u | u = F (u′), ti|p = u for some i, p, u′}

Instance where T2 6= ∅ can be solved in polynomial time using
Theorem IV.1. Hence, the proofs below will implicitly assume
T2 = ∅.

Theorem VI.4. The class of 1-CU instances where T1 = ∅
and V1 ∩ V2 = ∅ is solvable in polynomial time.

Proof. (Sketch) The reduced instances generated by our proce-
dure from any instance from this class will also belong to this
class. We solve reduced instances by unifying the left-hand
sides corresponding to equal right-hand sides, and applying
the unifier to the rest. Under the assumption that T1 = ∅, this
unifier will be a first-order substitution. Since V1∩V2 = ∅, the
right-hand side terms do not change. The simplified reduced
instance would be solved by either Theorem IV.1, or using
Claim VI.1, or using Claim VI.2.

Theorem VI.4 subsumes the V1 = ∅ case, for which the
best known algorithm is the NPtime procedure from [7]. In
fact, we showed a family of examples from such a class in the
introduction that would cause the algorithm from [7] to run
in worst-case exponential time, whereas Theorem VI.4 would
solve it in polynomial time.

In general, we want to use Claim VI.2 to solve reduced
1-CU instances generated by our procedure. However, due to
the technical condition in Claim VI.2, we could miss certain
solutions that make two left-hand side terms (or equivalently,
right-hand side terms) equal. But, if we have a constant number
of equations, then we could systematically explore all possible
combinations (of which left-hand sides are equal and which
not) to get a complete procedure.

10

Theorem VI.5. The class of 1-CU instances where T1 = ∅ and
the cardinality |I| is assumed to be a constant k (independent
of the input problem size) is solvable in polynomial time.

Proof. For each possible equivalence relation ∼ on I, we
generate an instance I ′ and solve it. To generate I ′ from I
and ∼, whenever we have F (s)

.
= t ∼ F (s′)

.
= t′, we (first-

order) unify t, t′ and s, s′ and apply the most-general unifier to
all the equations in I . Let I ′ be the new instance. Note that the
number of equations in I ′ is equal to the number of equivalence
classes induced by ∼. We then apply our inference rules on I ′.
We need to show how to solve the reduced instances generated
from I ′. We use the following algorithm for this purpose: If the
reduced instance has two equations with identical right-hand
sides, then we return “no solution” (for that reduced instance).
If not, the reduced instance should have the form mentioned
in Claim VI.2 and we solve it using Claim VI.2.

We claim that I has a solution iff for some ∼, the procedure
above finds a solution. If the procedure above finds a solution,
then clearly I has a solution. If I has a solution σ, define ∼
as follows: F (s)

.
= t ∼ F (s′)

.
= t′ if sσ = s′σ. When we

use our procedure to solve instance I ′ generated from I using
∼, we are guaranteed to find a solution. This is because, while
Claim VI.2 can miss solutions, it never misses a solution that
makes all left-hand side terms (in I ′) different.

We can extend the previous result to allow T1 6= ∅.

Corollary VI.6. The class of 1-CU instances where the
cardinality |T1|+|I| is assumed to be a constant k (independent
of the input problem size) is solvable in polynomial time.

Proof. If T1 6= ∅, then we introduce new variables and get an
instance where T1 = ∅. Specifically, if u ∈ T1, then we add
the equation u .

= x to the instance (where x is a new variable),
and replace u by x everywhere else. Applying this repeatedly,
we get an instance for which T1 = ∅, and now we can use
Theorem VI.5.

D. Left- and Right-Ground 1-CU Problems

Right-ground 1-CU instances can be efficiently solved.

Theorem VI.7. The class of 1-CU instances where V2 = ∅ is
solvable in polynomial time.

Proof. If the instance has 2 equations, we solve it using
Claim VI.2. Note that we do not miss any solutions due to the
technical condition. If the instance has 3 or more equations,
we use our inference rules. The procedure will not generate
any reduced instances to solve since all (≥ 3) right-hand side
terms are always ground (in any generated subproblem).

The result in Theorem VI.7 was already known [6], but
now we can obtain a new proof using our procedure. We can
generalize Theorem VI.7 to a class that does not require all
right-hand sides terms to be ground, but just two of them.

Theorem VI.8. Let I be a 1-CU instance of the form I ′ ∪
{F (s1)

.
= s, F (s2)

.
= t}, where s, t are distinct ground terms.

Then I can be solved in polynomial time.

Proof. Clearly, for every solution σ, hp(Fσ) ∈ pos(s) ∩
pos(t). Hence, l = |hp(Fσ)| is polynomial even when s and
t are DAGs. We now argue that, once l is fixed, there is
only one choice for hp(Fσ), and thus also Fσ. If l = 0 the
claim holds trivially. Hence assume l > 0 and, without loss
of generality, let s = f(s1, s2) and t = f(t1, t2). Note that,
since s 6= t, ∃i ∈ {1, 2} : ti 6= si holds. Also note that,
if ∀i ∈ {1, 2} : ti 6= si holds then there is no solution of
length l. In the remaining case either s1 = t1 or s2 = t2,
say s2 = t2. Then hp(Fσ) = 1.hp(F ′), Fσ = t[F ′(•)]1, and,
since |hp(F ′)| < l the claim holds by induction hypothesis.

Since there are only polynomially many choices for hp(Fσ),
we can enumerate them all and solve I using polynomially
many calls to a first-order unification procedure.

Left-ground 1-CU instances can also be efficiently solved.

Theorem VI.9. The class of 1-CU instances where V1 = T1 =
∅ is solvable in polynomial time.

Proof. We apply our inference rules and use the following
algorithm to solve the generated reduced instances: If the
reduced instance has two equations with identical right-hand
sides, then we return “no solution” (for the reduced instance) if
the left-hand sides are not identical, and we delete one equation
from I if the left-hand sides are identical. Let I ′ be the new
reduced instance. Let F (u)

.
= x be an equation in I ′. If x

occurs in any other right-hand side term in I ′, then we use
Theorem IV.1. Since V1 = ∅, x can not occur in left-hand
side terms. So, we can remove F (u)

.
= x from I ′. Hence,

finally I ′ will have at most two equations. If I ′ has zero or
one equations, then we are done by Claim VI.1. So, assume
I ′ has exactly two equations, say F (v)

.
= s and F (w)

.
= t. If

v 6= w, we can use Claim VI.2 (we will not miss any solutions
since v and w are ground and therefore they will be different
in all solutions.) If v = w, then we unify s and t and solve
the resulting one equation.

Finally, we generalize Theorem VI.9 to remove the require-
ment T1 = ∅, and consider instances where only V1 = ∅. Note
that the context matching problem with a constant number of
context variable was solved in polynomial time in [6], but the
class V1 = ∅ falls out of the class solved in [6].

Theorem VI.10. The class of 1-CU instances where V1 = ∅
is solvable in polynomial time.

Proof. We follow along the lines of the proof of Theorem VI.9.
We now use the following algorithm to solve any generated
reduced instance, say of form given in Equation 1: If the
reduced instance I ′ has two equations F (u)

.
= r and F (u′)

.
=

r with identical right-hand sides, then we use (first-order)
decomposition rule on u

.
= u′ exhaustively to get a set of

equations, where each equation is of the form F (u1)
.
= u2,

where F (u1) ∈ T1 and u2 is a first-order ground term whose
top symbol is not F , but u2 possibly contains F . We add
these equations to the reduced instance and remove one of the
original equations, say F (u)

.
= r, from I ′. If u2 contains F ,

11

then we can solve I ′ using Theorem IV.1. Hence, assume the
first-order ground term u2 does not contain F .

Let I ′′ denote the reduced instance we get after we have
processed all repeated right-hand side equations as above. Let
F (u)

.
= x be an equation in I ′′. If x occurs in any other

right-hand side term in I ′′, then we use Theorem IV.1. Since
V1 = ∅, x can not occur in left-hand side terms. So, we can
remove F (u)

.
= x from I ′′ without changing its solvability.

Hence, finally I ′′ will have the form:

F (v)
.
= s, F (w)

.
= t, F (u1)

.
= u′1, . . . , F (uk)

.
= u′k

where s, t are the non-variable terms in the original reduced
instance, and the last k equations are generated from unification
of left-hand sides. The terms u′1, . . . , u

′
k are all ground. We

can assume all u′i are distinct, otherwise we could just repeat
the above process.

If k ≥ 2, we are done by Theorem VI.8.
If k = 0, then we solve using Claim VI.2, but to overcome

the incompleteness there, we additionally solve the instance
I ′′′ obtained by unifying s and t, and then adding equations
obtained by decomposing v .

= w. The instance I ′′′ has at most
one non-ground right-hand side. If it has two or more distinct
ground right-hand sides, then again we can use Theorem VI.8.
If it has exactly one ground right-hand side, and one non-
ground, then we Claim VI.2 again, and this time, the instance
we need to solve to overcome the incompleteness there, will
have only ground right-hand sides (for which we can use either
Theorem VI.8 or Claim VI.1).

If k = 1, then we have 3 equations, where one has a ground
right-hand side. We use our inference system on these three
equations to obtain new reduced instances. Each new reduced
instance has 3 equations: one has a variable on the right, one
has a ground term, and the third can have an arbitrary first-
order term. We can again remove the equation with a variable
on the right and get instances like in case k = 0 above.

E. The General 1-CU Problem

We can actually use our inference system presented in
Section V to solve the general 1-CU problem in stages as
follows: (a) first we reduce an instance I to polynomially many
reduced instances I1, . . . , Ik, (b) for each reduced instance Ij ,
we unify left-hand sides that have equal right-hand sides, apply
the substitution and obtain new reduced instances I ′1, . . . , I ′k,
and (c) finally we apply our procedure recursively on each new
reduced instance. We conjecture that this procedure yields a
polynomial time algorithm for the general 1-CU problem.

VII. CONCLUSION

We presented an inference system for solving the one context
unification problem. We proved that the inference system yields
a polynomial time algorithm for several classes of one context
unification problems. The inference system itself has many
interesting features: the proof search continues along one main
branch, while the side branches are immediately terminated
using polynomial time procedures. The main branch itself can
generate a large number of subproblems, but their number is

bounded using a graph argument that might be of independent
interest.

ACKNOWLEDGMENT

The authors thank Guillem Godoy, Carles Creus, and Lander
Ramos for useful discussions, and the anonymous reviewers
for their valuable comments.

REFERENCES

[1] F. Baader and W. Snyder. Unification theory. In Handbook of Automated
Reasoning (in 2 volumes), pages 445–532. Elsevier and MIT Press, 2001.

[2] C. Creus, A. Gascón, and G. Godoy. One-context Unification with
STG-Compressed Terms is in NP. In RTA, pages 149–164, 2012.

[3] R. Dabrowski and W. Plandowski. Solving Two-Variable Word Equations
(extended abstract). In ICALP, pages 408–419, 2004.

[4] R. Dabrowski and W. Plandowski. On word equations in one variable.
Algorithmica, 60(4):819–828, 2011.

[5] K. Erk and J. Niehren. Dominance constraints in stratified context
unification. Inf. Process. Lett., 101(4):141–147, 2007.

[6] A. Gascón, G. Godoy, and M. Schmidt-Schauß. Context Matching for
Compressed Terms. In LICS, pages 93–102, 2008.

[7] A. Gascón, G. Godoy, M. Schmidt-Schauß, and A. Tiwari. Context
Unification with One Context Variable. J. Symb. Comput., 45(2):173–
193, 2010.

[8] Adrià Gascón, Manfred Schmidt-Schauss, and Ashish Tiwari. Two-
Restricted One Context Unification in Polynomial Time. Available on:
https://www.cs.upc.edu/∼agascon/papers/1cu-2r.pdf, 2015.

[9] W. D. Goldfarb. The Undecidability of the Second-Order Unification
Problem. Theor. Comput. Sci., 13:225–230, 1981.

[10] S. Gulwani and A. Tiwari. Computing Procedure Summaries for
Interprocedural Analysis. In ESOP, pages 253–267, 2007.

[11] A. Jeż. One-Variable Word Equations in Linear Time. In ICALP, pages
324–335, 2013.

[12] A. Jeż. Context unification is in PSPACE. In ICALP, volume 8573 of
Lecture Notes in Computer Science, pages 244–255. Springer, 2014.

[13] J. Levy, J. Niehren, and M. Villaret. Well-Nested Context Unification.
In CADE, pages 149–163, 2005.

[14] J. Levy, M. Schmidt-Schauß, and M. Villaret. On the complexity of
Bounded Second-Order Unification and Stratified Context Unification.
Logic Journal of the IGPL, 19(6):763–789, 2011.

[15] G. S. Makanin. The problem of solvability of equations in a free
semigroup. Matematicheskii Sbornik, 2(103):147–236, 1977.

[16] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Trans. Program. Lang. Syst., 4(2):258–282, 1982.

[17] S. E. Obono, P. Goralcik, and M. N. Maksimenko. Efficient solving of
the word equations in one variable. In MFCS, pages 336–341, 1994.

[18] M. Paterson and M. N. Wegman. Linear unification. J. of Computer and
System Sciences, 16:158–167, 1978.

[19] W. Plandowski. Satisfiability of word equations with constants is in
PSPACE. J. ACM, 51(3):483–496, 2004.

[20] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM, 12(1):23–41, 1965.

[21] M. Schmidt-Schauß and J. Stuber. The complexity of linear and stratified
context matching problems. Theory Comput. Syst., 37(6):717–740, 2004.

12

https://www.cs.upc.edu/~agascon/papers/1cu-2r.pdf

	Introduction
	Related Work

	Preliminaries
	Overview of the Procedure
	Special Cases
	Inference Rules for One Context Unification
	Defining the State
	Mapping State to 1-CU Instances
	The ForcedDecompose Rule
	The Shrinking Rules
	The algorithm
	Correctness
	Runtime analysis

	One Context Unification Problems Solvable in Polynomial Time
	One Equation 1-CU Problem
	Two Equation 1-CU Problem
	Disjoint Variables and Constant Number of Equations
	Left- and Right-Ground 1-CU Problems
	The General 1-CU Problem

	Conclusion
	References

