
Verification and Synthesis Using Real Quantifier
Elimination

Thomas Sturm
Max-Planck-Institut für Informatik

66123 Saarbrücken, Germany
sturm@mpi-inf.mpg.de

Ashish Tiwari∗
SRI International

Menlo Park, CA 94025
tiwari@csl.sri.com

ABSTRACT
We present the application of real quantifier elimination to
formal verification and synthesis of continuous and switched
dynamical systems. Through a series of case studies, we
show how first-order formulas over the reals arise when for-
mally analyzing models of complex control systems. Ex-
isting off-the-shelf quantifier elimination procedures are not
successful in eliminating quantifiers from many of our bench-
marks. We therefore automatically combine three estab-
lished software components: virtual subtitution based quan-
tifier elimination in Reduce/Redlog, cylindrical algebraic de-
composition implemented in Qepcad, and the simplifier Slfq
implemented on top of Qepcad. We use this combination
to successfully analyze various models of systems including
adaptive cruise control in automobiles, adaptive flight con-
trol system, and the classical inverted pendulum problem
studied in control theory.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; I.1.4 [Symbolic
and Algebraic Manipulation]: Applications; I.6.4 [Simula-
tion and Modeling]: Model Analysis

General Terms: Algorithms, Experimentation, Verifica-
tion

Keywords: Formal verification, Safety, Stability, Lyapunov
functions, Inductive invariants, Controller synthesis

1. INTRODUCTION
Physical processes in the world around us are often mod-

eled using the real numbers. The temperature of a room,
the speed of a car, the angle of descent of an airplane, rela-
tive population of a species, protein concentration in a cell,
blood glucose concentration in a human, and the amount of
a chemical in a tank are a few of the countless quantities
that arise in science and engineering and that are modeled

∗Research partially funded by DARPA under con-
tract FA8650-10-C-7078, NSF grants CSR-0917398 and
SHF:CSR-1017483, and NASA grant NNX08AB95A.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0675-1/11/06 ...$10.00.

using real-valued variables. Many of these physical quanti-
ties are being controlled by computer software implement-
ing sophisticated control algorithms. The resulting system
– consisting of a physical plant and a software controller
– is called a cyber-physical system. These systems are of-
ten employed in safety-critical applications. Before a newly
designed complex system, such as a new flight-control sys-
tem or a modern automobile cruise control module, can be
certified and deployed, it is imperative to guarantee its cor-
rectness. One of the most pressing needs today is to develop
tools that can formally analyze, and possibly also correctly
synthesize, such systems.

The current practice in verification of cyber-physical sys-
tems is based on performing extensive (numerical) simula-
tion and testing. However, simulation-based methods are
incomplete – how do we know that the system has been
tested enough? In the past few years, there has been an
extensive push for extending formal verification approaches
to also verify physical and cyber-physical systems. Broadly
speaking, these techniques can be classified as follows:
(a) reach-set methods that compute the set of all reach-
able states of the system, either exactly [21], or approxi-
mately [34]
(b) abstraction-based methods that first abstract the system
and then analyze the abstraction [33]
(c) certificate-based methods that directly search for certifi-
cates of correctness (such as inductive invariants and Lya-
punov functions) of systems [30, 23, 26, 22, 18]

While all these techniques have had some success, the
certificate-based methods are turning out to be particularly
effective in proving deep properties of complex systems. At
the core of all certificate-based methods, and also many of
the other verification methods above, lie reasoning engines
that perform inferences in the theory of reals.

During the past 40 years significant advances have been
made in tools and techniques for performing quantifier elim-
ination in the first-order theory of reals (QE). For practi-
cal purposes, substitution methods [35, 37] and their imple-
mentation in redlog [12] play a prominent role for formulas
where the degrees of the quantified variables are small. For
general formulas, partial cylindrical algebraic decomposition
(CAD) and its implementation in the qepcad package is an
important tool [8, 2, 9, 6]. Another efficient implementation
of CAD exists in the commercial computer algebra system
Mathematica, and a less mature one in redlog. For both,
substitution methods and CAD, simplification of quantifier-
free results is important [13, 7]. This is particularly true for
substitution methods. While these methods typically have



been referred to as virtual substitution, recently the term
substitute-and-simplify1 has been coined, which adequately
describes the equal relevance of the core elimination method
and the simplification aspect.

In this paper we reduce a class of verification and synthesis
problems that arise when analyzing cyber-physical systems
to quantifer elimination problems over the reals. It turns
out that the corresponding formulas are computationally too
hard to be solved by the established software. Our approach
here is to automatically combine several systems to a fully
automatic procedure suitable for our purposes.

The goal of this paper is threefold:
(1) Present the application of quantifier elimination to the
verification and synthesis of switched and hybrid dynamical
systems
(2) Present some benchmarks and details on how they were
generated so that the larger community can benefit from
the availability of real benchmarks and improvements in the
technology for performing quantifier elimination can be cal-
ibrated2

(3) Present a novel combination of tools and techniques for
performing quantifier elimination that is more scalable and
promising than any of its components

In Section 2 we describe the design and the architecture
of our software. In Sections 3 we present several verification
and synthesis case studies that are challenging for most of
the existing analysis tools, but that we were able to success-
fully solve using the certificate-based approach implemented
using quantifier elimination. In Section 4 we summarize and
evaluate our results.

2. A META-QE PROCEDURE FOR
CONTROL THEORY

To start with, let us recall some basic asymptotic com-
plexity results for real quantifier elimination, the substitute-
and-simplify method, and CAD. For simplicity, we restrict
ourselves to prenex formulas. In the worst case, the running
time of real QE is asymptotically bounded from both above
and below by a double exponential function in the length of
the input formula [35, 10]. With CAD the relevant complex-
ity parameter is the number of variables, where it makes no
difference whether or not they are quantified. With substi-
tution methods, in contrast, the quantification significantly
contributes to the complexity: The procedure is doubly ex-
ponential only in the number of quantifier alternations. For
a fixed number of quantifer alternations the number of quan-
tifiers contributes only singly exponential to the complexity,
and unquantified variables contribute only polynomially [35,
37].

While the substitution method is appealing from the com-
plexity standpoint, it is limited in its applicability to formu-
las of low degree in the quantified variables. More precisely,
assuming w.l.o.g that all right-hand sides of real constraints
are 0 and that all left-hand sides are expanded to distribu-
tive polynomials, the maximal total degree in the quantified
variables must not exceed 2. Moreover, with the successive
elimination of the quantifiers from the inside to the outside,
the degrees of outer quantifiers possibly increase so that be-
fore elimination it is not even predictable whether or not

1In an ISSAC 2010 presentation by C. Zengler
2The website [32] contains all benchmark described in this
paper and many others, too.

the elimination procedure will succeed. In principle, substi-
tution methods can be generalized to arbitrary degrees [37,
36], but these extensions have not been implemented so far,
and it is unclear whether or not they are practical.

Our first idea is to apply substitute-and-simplify as long
as there occur no degree violations, and then to use CAD for
the remaining problem. Obviously, we benefit from the ad-
vantages of the substitution method wrt. complexity at the
beginning, and later on we possibly enter CAD with a for-
mula where several variables have already been eliminated.
In addition, the quantifier-free formula establishing the fi-
nal result will be generated by CAD, yielding another ad-
vantage: It is well-known that elimination results of CAD,
in contrast to most other real QE methods, are very con-
cise, nonredundant, and intuitively interpretable. In this
raw form, our approach has been available within redlog

and mentioned in several presentations by the first author
since 2005. The CAD used then was always that of redlog.

Our present work refines this idea in several ways. First,
we use qepcad instead of redlog’s own CAD. This improves
performance of the overall method. Second, qepcad is not
used directly after a degree violation. Before invoking qep-

cad, we apply slfq to the quantifier-free part of the interme-
diate result. slfq is a simplifier for quantifier-free formulas
over the reals that uses multiple qepcad calls on subformu-
las in a divide-and-conquer approach [7]. Simplification us-
ing slfq significantly reduces the size of the intermediate
formula generated by the substitution method and makes
qepcad run much faster. Third, when using qepcad to elim-
inate quantifiers, we distribute existential quantifiers over
top-level disjunctions and solve several smaller QE problems,
∃~x : φi, in place of one large QE problem ∃~x : ∨iφi. This
optimization is frequently usable in our application since all
our input formulas are of the form “exists-forall”, and sub-
stitution methods turn out to successfully eliminate all the
universal variables and some of the existential variables. Re-
call that the successive elimination of existential quantifiers
via substitution methods systematically yields comprehen-
sive disjunctions. Hence, the result produced by the sub-
stitution method is often of the form ∃~x : ∨iφi, enabling
the optimization above. Note also that slfq preserves this
form unless it is particularly successful. A more important
benefit of this optimization is the following: If qepcad fails
due to limited time or space on some of the subproblems,
the disjunction of the elimination results for the successful
subproblems still yields a sufficient (although not necessary)
quantifier-free condition for the original question. In our
application, this partial result is still enough to successfully
complete the analysis task; see the example in Section 3.1.

To complete the picture, we can also automatically use
the CAD of Mathematica instead of qepcad. However, we
did not observe any significant advantage of Mathematica
on our benchmarks and, hence, we do not discuss it further.
Finally, qepcad itself can optionally spawn Singular [11]
processes to speed up its Gröbner basis computations. We
systematically made use of this feature and observed that
this considerably improved our computation times.

All relevant software components, i.e., Reduce/redlog,
slfq, qepcad, and Singular, as well as all the benchmarks
discussed in this paper (and many others), are freely avail-
able on the Web [32]. Using the current head version of
Reduce, the process communication described here should
run out-of-the-box using default installations of slfq, qep-



cad, and Singular. The system can be used either in batch
or interactively. With interactive use, Reduce serves as the
interface, and all results obtained from external components
are available there for further processing.

We also experimented with using generic quantifier elim-
ination [14], which makes some nondegeneracy assumptions
during the initial substitute-and-simplify elimination step.
The assumptions made were found to not influence the final
outcome, especially in those cases where there was a“robust”
verification proof; see Section 3.2 for more discussion.

All computations described here have been carried out on
an Intel Xeon E5630 2.53GHz single-core processor (x86 64
arch) with 4G RAM running Ubuntu Linux 2.6.32-26.

3. CERTIFICATE-BASED TECHNIQUES
Given a system, say modeled using differential equations,

and given a property, the verification problem asks whether
the system satisfies the property. Given an incomplete sys-
tem and given a property, the synthesis problem asks whether
the system can be completed so that it satisfies the prop-
erty. A certificate for a verification problem (respectively,
synthesis problem) is a (Boolean or real valued) function on
the state space of the system such that existence of such a
function is sufficient, and perhaps even necessary, condition
for the verification problem (synthesis problem) to have a
positive answer. For example, a Lyapunov function is a cer-
tificate for stability verification, and an inductive invariant
(also known as barrier certificate) is a certificate for safety
verification. A controlled Lyapunov function (respectively,
controlled inductive invariant) is a certificate for a synthesis
problem whose goal is stability (safety).

Certificate-based methods tranform the verification prob-
lem (respectively, the synthesis problem) into a search for
an appropriate certificate. The space of certificates is un-
bounded, and hence, we bound the search for a certificate
by fixing the form of the certificate. For example, for stabil-
ity verification, we can restrict search to quadratic Lyapunov
functions.

Formally defining certificates for different verification and
synthesis problems is beyond the scope of this paper. In
each subsequent section, we precisely define a different ver-
ification or synthesis problem and then define a certificate
for that problem. The search for a certificate is cast as an
∃∀ problem. The overall approach is shown in Figure 1.

3.1 Adaptive Cruise Control:
Proving Collision Avoidance

Here, we prove collision avoidance for two cars under cruise
control. The rear car uses a cruise control law that actively
adjusts its acceleration based on its own velocity, acceler-
ation, the relative velocity of the leading car, and the gap
between the two cars. Proving collision avoidance means
showing that the two cars will not collide assuming that the
cruise control is activated in a safe initial configuration.

The cruise control law is taken from the leader control
developed in [16] and also discussed in [24] and [30]; see
also the Berkeley Path project [4]. Let gap, vf , v, and a,
respectively, represent the gap between the two cars, the
velocity of the leading car, and the velocity and acceleration
of the rear car. The dynamics of the velocity of the rear car

and the gap are given by

dv

dt
= a, a ∈ [−5, 2]

dgap

dt
= vf − v (1)

The restriction of a to be in the range [−5, 2] comes from
the physical constraint on the braking and accelerating ca-
pability of the car. The dynamics of the acceleration a of
the rear car are assumed to be determined by the following
control law

ȧ = −3a− 3(v − vf ) + (gap − (v + 10)) (2)

The dynamics of the leading car are given by

dvf
dt

= af , af ∈ [−5, 2] (3)

Note that we do not assume any particular acceleration
profile for the leading car. Thus, the leading car can be-
have nondeterministically as long as its acceleration remains
within the [−5, 2] range.

We wish to find the initial states such that if we activate
the above cruise control law in those states, then the control
law will guarantee that there will be no collision. The initial
states we are interested in are of the form

Init := (gap = 10 ∧ a = 0 ∧ vf = c1 ∧ v = c2) (4)

where c1, c2 are parameters. The set of safe (collision-free)
states is defined by

safe := (gap > 0) (5)

How to prove collision avoidance for the above (paramet-
ric) system? We use the certificate-based approach for veri-
fication [18, 23, 30, 28]. The idea behind proving safety is
to discover an invariant set, Inv , such that
(1) all initial states in Init are also in Inv , and
(2) all states in Inv are in safe, and
(3) the system dynamics cannot force the system to go out
of the set Inv
Such a set Inv is a certificate for safety. The problem is that
we do not know Inv . We can discover Inv by fixing its form.
Let us assume a linear form for Inv , that is,

p := c3v + c4vf + c5a+ gap + c6, Inv := (p ≥ 0) (6)

Let Inv ′ denote the constraints imposed by physical reality,

Inv ′ := (a ∈ [−5, 2] ∧ af ∈ [−5, 2] ∧ v ≥ 0 ∧ vf ≥ 0)(7)

Now, the three conditions for Inv to be a certificate for
safety can be encoded in the following formula

φ1 := (Init ∧ Inv ′ ⇒ Inv)

φ2 := (Inv ∧ Inv ′ ⇒ (gap > 0)) (8)

φ3 := (p = 0 ∧ Inv ′ ⇒ dp

dt
≥ 0)

where dp/dt can be symbolically computed using the defini-
tion of p in Equation (6) and the dynamics in Equation (1)
and Equation (2) as

dp

dt
:= c3a+ c4af + (9)

c5(−3a− 4v + 3vf + gap − 10) + (vf − v)



Synthesis

Verification/

Problem

Certificate−based

Approach

Exists−Forall

Formula

Yes/No/

Synthesized

System

QE

Methods

substitute−and−simplify

slfq
qepcad

Figure 1: Overall approach for verification and synthesis using quantifier elimination.

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

−15

−10

−5

0

5

10

time

g
a
p
,a

 

 

gap

a

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

time

g
a
p
,1

0
*a

 

 

gap

10*a

Figure 2: Simulation of the adaptive cruise control
system. (Left) Plot of gap, a: The cars collide (gap
becomes negative) even though the initial conditions
v = 30, vf = 15 satisfy the precondition under which
safety was established. This occurs because the as-
sumption a ≥ −5 is also violated. (Right) Plot of
gap, 10a: The assumptions always hold, and cars do
not collide. The initial conditions v = 15, vf = 20
satisfy the precondition for safety.

Thus, we can find the conditions on the initial velocities
c1, c2 that will guarantee collision avoidance by eliminating
quantifiers from the following formula (File acc7.red [32])

∃c3, c4, c5, c6 : ∀v, vf , gap, a, af : (φ1 ∧ φ2 ∧ φ3) (10)

where φ1, φ2, φ3 are as defined in Equation (8) expanded
using the definitions given in Equation (4), Equation (6),
Equation (7), and Equation (9).

Analysis Results
We use redlog, qepcad, and slfq to eliminate quantifiers
from Formula (10) and to then simplify it. Virtual substi-
tution implemented in redlog is able to eliminate all but
one quantified variable, namely c5, from the above formula,
but it returns a huge formula that is a disjunction of 584
subformulas and contains 33365 atomic formulas (nested to
depth 13). The simplifier slfq fails to simplify this formula.
Since slfq fails on the 34th disjunct, we simplify the first
33 disjuncts using slfq under the assumption that c1 > 0
and c2 > 0 and obtain c22 − 30c2 − 75 ≤ 0, which is, sur-
prisingly, independent of c1 and c5. Since we have discarded
some disjuncts, the actual equivalent formula would have
been c22 − 30c2 − 75 ≤ 0∨ψ for some ψ. This means that, if
the initial velocity of the rear car is at most 32, then we are
guaranteed to be safe. (There may be other cases, too, when
we would be safe, since we have lost some solutions in the
approximation.) We can verify that our results are correct
by instantiating c1 and c2 by the respective conditions and
proving the implications, which are immediately proved by
redlog (File acc7-verify.red [32]).

Why is this result interesting? It is because we have estab-
lished collision freedom without making any assumption on
the dynamics of the leading car. So, the leading car is free to
choose any driving profile, and the control law would guar-

antee safety. However, there is one caveat. We have assumed
that the physical constraints (in Equation (7)) remain true
always. We have not proved that those constraints would
not be violated. In fact, let us consider a scenario in which
the leading car starts at velocity of 15m/s (decelerating at
−3m/s2), and the rear car starts at velocity 30 m/s at a
distance of 10m behind it. Since the velocity 30 is less than
32, we expect that the two cars will not collide. However, a
simulation plot in Figure 2 (left) shows that the cars collide.
This occurs because, even before the cars collide, the physi-
cal constraint (a ≥ −5) is violated. In the simulation shown
in Figure 2 (right), the physical constraints are not violated
and there is no collision. So, what we have actually proved
is the following fact.

Proposition 1. If the rear car follows the control law in
Equation (2) and the dynamics of the leading and rear car
are given by Equation (1) and Equation (3), and the cars
start in any initial configuration where gap = 10, a = 0, 0 ≤
v ≤ 32, 0 ≤ vf , then either one of the physical constraints
in Equation (7) is violated or the cars never collide.

3.2 1-D Robot: Synthesizing Safe
Switching Logic

Consider a robot moving in a 1-dimensional space. Let x
denote the position of the robot and v denote its velocity.
Suppose we can control the robot by controlling the force
we apply on it: we can either force the robot to have an
acceleration of +1 units or −1 units. Thus, the robot has
two modes with the following dynamics:

Mode1 :
dx

dt
= v,

dv

dt
= 1 Mode2 :

dx

dt
= v,

dv

dt
= −1 (11)

We wish to switch between these two modes so that the
robot remains within a specified range, say 70 ≤ x ≤ 80.
We assume that initially the robot is in a state such that
74 ≤ x ≤ 76 and v = 0.

φsafe := 70 ≤ x ∧ x ≤ 80

φinit := 74 ≤ x ∧ x ≤ 76 ∧ v = 0 (12)

It is clear that we have to switch to Mode1 before x reaches
70 and we have to switch to Mode2 before x reaches 80. A re-
cent paper [27] proposed a certificate-based method to solve
this “switching logic synthesis problem” by deciding formu-
las in the theory of reals. Specifically, quantifier elimination
is used to find a controlled inductive invariant, which is any
set, say defined by V1 ≥ 0∧V2 ≥ 0, that satisfies the follow-
ing formula:

(φinit ⇒ V1 ≥ 0 ∧ V2 ≥ 0) ∧
(V1 ≥ 0 ∧ V2 ≥ 0 ⇒ φsafe) ∧ (13)

(V1 = 0 ∧ V2 ≥ 0 ⇒ (
dV1

dt

∣∣∣∣
Mode1

≥ 0 ∨ dV1

dt

∣∣∣∣
Mode2

≥ 0))

(V2 = 0 ∧ V1 ≥ 0 ⇒ (
dV2

dt

∣∣∣∣
Mode1

≥ 0 ∨ dV2

dt

∣∣∣∣
Mode2

≥ 0))



where dV1/dt|Mode1 denotes the derivative of V1 in Mode1.
Suppose that we are given the following forms for V1, V2:

V1 := v2 + c2v + c3x+ c4

V2 := −v2 − c2v − c3x+ c5 (14)

where c2, c3, c4, c5 are some (unknown) constants. For
these choices of V1 and V2, we can symbolically compute the
derivatives dV1/dt and dV2/dt in the two modes using the
dynamics in Equation (11).

We can determine if there exist constants c2, . . . , c5 that
will make Formula (13) true by deciding the formula

∃c2, c3, c4, c5 : ∀x, v : φ (15)

where φ is the formula in Equation (13) with subexpressions
replaced by their definitions given in Equation (12), Equa-
tion (14), and dVi/dt|Modej replaced by the symbolic value of
dVi/dt in Modej (File thermo-two-fail.red [32]).

Analysis Results
Using virtual substitution we can eliminate the inner univer-
sally quantified variables and get an equivalent constraint on
the unknowns c2 . . . , c5. If we existentially quantify these
variables and ask qepcad if the formula is satisfiable, it fails.
However, slfq is able to simplify the formula to false – in
1.03 seconds and using 604 qepcad calls – indicating that
there is no controlled inductive invariant of this form.

We retry using a different template for V1 and V2:

V1 := c1x− v2 + c2p+ c3

V2 := −c1x− v2 + c2p+ c4 (16)

Using these new forms for V1 and V2 we get a new ∃∀ for-
mula (File thermo-two-orig.red [32]). In this case, we suc-
ceed: redlog successfully eliminates the universal variables
quickly, but the resulting constraint on c1, c2, c3, c4 is not
easy to check for satisfiability. Even slfq fails to simplify
the constraints. But looking at the constraints and using
one of the disjuncts, c1 = 2, as an assumption, slfq suc-
cessfully simplifies the formula in 120 milliseconds using 296
qepcad calls, to

c2 = 0 ∧ c4 ≥ 76c1 ∧ 4c4 + c22 − 320c1 ≤ 0 ∧
c3 + 74c1 ≥ 0 ∧ 4c3 + c22 + 280c1 ≤ 0

Thus, we find that c1 = 2, c2 = 0, c4 = 156, c3 = −144 is a
possible solution and, hence, we get the inductive controlled
invariant,

2x− v2 − 144 ≥ 0 ∧ −2x− v2 + 156 ≥ 0

A simulation of the system that maintains this invariant is
shown in Figure 3 (left).

We finally see if we can do better using more general
quadratic templates. Let us use the following template

V1 := −v2 − c1(x− 75)2 + c2, (17)

which is motivated by the desire to bound the absolute val-
ues of v and x − 75. Using this template, we can expand
the formula in Equation (13) to get another quantifier elim-
ination problem (File thermo-two-quad.red [32]). This new
problem is considerably simpler as redlog immediately re-
turns after successfully eliminating the universal variables v
and x. The condition on a, b is simplified by slfq in 60 mil-
liseconds (using 37 qepcad calls) to

c1 > 0 ∧ c2 ≤ 25c1 ∧ c2 ≥ c1 ∧ c1c2 ≤ 1

0 2 4 6 8 10 12 14 16 18 20
72.5

73

73.5

74

74.5

75

75.5

time

x

0 2 4 6 8 10 12 14 16 18 20
73.6

73.8

74

74.2

74.4

74.6

74.8

75

75.2

75.4

75.6

time

x

Figure 3: Simulation of the synthesized robot con-
troller. (Left) Plot of x using the controller synthe-
sized from a linear-quadratic controlled invariant.
(Right) Plot of x using the controller synthesized
from the quadratic controlled invariant. In both
cases, the controller switches modes as soon as the
boundary of the invariant is reached, which ensures
that x remains in the safe interval [70, 80].

Thus, by choosing c2 = 1 and c1 = 1/25, we get the following
controlled inductive invariant

−v2 − (x− 75)2/25 + 1 ≥ 0

A simulation of the controller generated using this controlled
inductive invariant is shown in Figure 3 (right).

Using an ostensibly more “complex” template here leads
to a “simpler” QE problem. One reason why the complex
template is better is that it leads to a more “robust” proof
– even if the model of the system were to change slightly
(the coefficients were to be perturbed), there would still be
invariants of the complex quadratic form, whereas there may
not be an invariant of the simpler linear-quadratic form.
While quantifier elimination is a hard problem, it could still
be successful in verifying systems that are “well-designed”
since such systems are more likely to be robust, and hence
have small (easy) proofs [15].

3.3 Adaptive Flight Control:
Proving Stability

We consider the problem of verifying the stability of a
closed loop model of an adaptive flight control system.

The roll, pitch, and yaw rates of an airplane are controlled
by setting the angles on the respective actuators – ailerons,
elevators, and rudder. The task of the flight controller is to
set the actuators so that the airplane reaches some desired
roll, pitch, and yaw state. A typical proportional-integral
(PI) controller is used for this purpose. However, recently
there is renewed interest in evaluating adaptive controllers
because of their potential to successfully control a damaged
or aging aircraft.

Let we denote the error between the desired state and
the current state of the airplane. In general, we (and other
state variables that we will consider below) will be a vec-
tor (consisting of the error in roll, pitch, yaw); however,
for simplicity (and also since the proof generalizes from a
scalar to a vector), we let we be a scalar. Let intwe de-
note the integral of we. The state variables we and intwe are
required to describe the standard PI controller. The adapta-
tion term is modeled using three additional variables: β, L,
and L∗, where β are the kernel functions, L are the weights
learned by the adaptation procedure, and L∗ are the opti-
mal weights. Again we will assume that these are scalars in



our analysis here. The dynamics of the system are given by

dintwe
dt

= we

dwe
dt

= −10intwe − 5we + (L− L∗)β

dL

dt
= (−1000intwe − 2200we)β

dL∗

dt
= 0 (18)

The dynamics of L describe the (neural) learning law used to
update the current model of the plant damage. For further
details on the actual model and the simplifications used to
obtain the model above, we refer the reader to [31].

We are interested in showing that the error we eventually
falls below a certain threshold. We prove this by showing
that whenever the error is greater than that threshold, a cer-
tain positive semidefinite function will decrease. We assume
that we are given a template for the positive semidefinite
function, namely,

V := we
2 + bintwe

2 + c(L− L∗)2 (19)

where b, c are unknown constants that we need to find. We
cannot prove that the error we will eventually be bounded
without making further assumptions. Specifically, we first
assume that the absolute value of intwe is bounded and also
assume that the absolute value of the term (L − L∗)β is
bounded. Under these assumptions, the formula φ defined
below says that V always decreases whenever we

2 ≥ 1:

φ := (intwe
2 ≤ 1 ∧ (L− L∗)2β2 ≤ 1 ∧ we

2 ≥ 1)

⇒ dV

dt
< 0 (20)

where dV/dt can be computed using the definition of V and
the dynamics given above as

dV

dt
:= 2we(−5we − 10intwe + (L− L∗)β) + 2bintwewe +

2c(L− L∗)(−1000intwe − 2200we)β

Thus, we get the quantified formula ∃b, c : b > 0 ∧ c >
0 ∧ ∀we, intwe, L, L∗, β : φ in File adaptive-simpl.red [32].

Using virtual subtitution of redlog, we successfully elim-
inate all the universal quantifiers except we to get an equiv-
alent formula on b, c, we. This formula is a conjunction of 48
subformulas and contains 1081 atomic formulas, nested to a
depth of 10. We simplify it using slfq under the assumption
that b > 0 ∧ c > 0 and get the following simplified formula
after 27.45 seconds of system time and 1897 qepcad calls:

b− 14 < 3200c < 16− b ∧ 6− b < 1200c < b− 4

The variable we is eliminated automatically. Thus, for ex-
ample, we can choose b = 10 and c = 1/600. This proves
that, under the assumptions made, the error we is always
eventually bounded.

The choice of bounds on the assumptions may seem arbi-
trary. In fact, we can formulate the problem by replacing
the concrete values for the bounds by symbolic constants
and get the following formula.

φ := (intwe
2 ≤ e ∧ (L− L∗)2β2 ≤ d ∧ we

2 ≥ a)

⇒ dV

dt
< 0 (21)

The ∃∀ formula obtained from quantifying the above for-
mula is contained in File adaptive-hard.red [32]. Eliminat-
ing quantifiers from this formula proceeds as before, and
redlog successfully eliminates all universal quantifiers ex-
cept we. However, slfq is unable to simplify the resulting
formula (in 30 minutes of real time).

Finally consider the case when only the kernel functions
used by the learning module (β) are known to be bounded.
Under this assumption, we wish to search for a nonincreasing
positive semidefinite function of the form,

V := aintwe
2 + (we + bintwe)2 + c(L− L∗)2 (22)

where a, b, c are unknown constants to be determined such
that the resulting function V is nonincreasing. This is stated
in the following formula, under the assumption that β re-
mains bounded.

φ := (β2 ≤ 1⇒ dV

dt
≤ 0); (23)

where the derivative of V is easily calculated using the defi-
nition of V in Equation (22) and the dynamics of the system
defined in Equation (18). Thus, we get the quantified for-
mula ∀we, intwe, β, L, L∗ : φ in File adaptive-final.red [32].
Virtual substitution is successful in eliminating all the quan-
tified variables. This quantifier-free formula is simplified
by slfq in 60 milliseconds and using 29 qepcad calls to

11b = 5 ∧ 1000c = b ∧
(a+ 2b2 − 10b− 20)a+ (b2 − 10b+ 45)b2 ≤ 100(b− 1)

which suggests b = 5/11, c = 1/2200, a = 5 as one pos-
sible solution. (In fact, a can be any number in the in-
terval [3, 21]). This proves bounded stability of the adap-
tive PI controller assuming that the kernel functions remain
bounded.

3.4 Inverted Pendulum:
Synthesizing Stable Controller

A classic problem in control pertains to maintaining an in-
verted pendulum around its unstable equilibrium by control-
ling the force on the cart on which the pendulum is mounted.
The state of the inverted pendulum can be described using
four continuous variables, the position x of the cart, the
velocity v of the cart, the angular deviation θ of the pen-
dulum from its unstable equilibrium point θ = 0, and the
angular velocity ω of the pendulum. The dynamics of the
inverted pendulum are obtained by balancing forces and can
be rewritten in state space form as

dx

dt
= v

dv

dt
=

(F −mlω2 sin(θ) +mg cos(θ) sin(θ))

(M +m−m cos(θ) cos(θ))

dθ

dt
= ω (24)

dω

dt
= (g sin(θ) + cos(θ)

dv

dt
)/l

where g = 10 is the acceleration due to gravity, m = 0.5 is
the mass of the pendulum, M = 0.5 is the mass of the cart,
l = 0.3 is the length of the pendulum, and F is the force on
the cart.

Since we cannot perform quantifier elimination on formu-
las containing trigonometric functions, and since we know
that θ remains close to 0, we approximate the trigonometric



functions by the first few terms of their Taylor expansions.
We assume that we have three modes available to us to con-
trol the pendulum depending on the force F we apply: we
can choose F = 2, or F = −2, or F = 0. After substituting
the values for the parameters and Taylor approximations of
the trigonometric functions, we get the following equations
for the dynamics of θ and ω.

dθ

dt
= ω (25)

dω

dt
= 50θ − ω2θ/2− 100θ3/3 + 3ω2θ3/4

+F (10/3− 5θ2 + 5θ4/3)

where F ∈ {+2, 0,−2} in the three modes.
We wish to keep the pendulum inside a safe region, namely,

safe := (20θ2 ≤ 1)

The goal is to design a controller that will take the system to
the region safe and keep it there. The controller takes the
form of logical conditions for switching between the three
modes. Assume that initially the pendulum is in a state
that satisfies the constraint −1 ≤ 20θ ≤ 1 ∧ ω = 0.

We solve the problem by synthesizing an inductive con-
trolled invariant for the problem. We assume that the user
specifies the following template for searching for a controlled
invariant V ≥ 0 where

V := −θ2 − bω2 + c

Thus, we need to find b, c such that V ≥ 0 becomes an induc-
tive controlled invariant. This happens when the formula φ
becomes valid:

φ := φ1 ∧ φ2 ∧ φ3

φ1 := ((−1 ≤ 20θ ≤ 1 ∧ ω = 0)⇒
(−θ2 − ω2b+ c ≥ 0));

φ2 := (−θ2 − ω2b+ c ≥ 0⇒ 1 ≥ 20θ2);

φ3 := (−θ2 − ω2b+ c = 0⇒

(
dV

dt

∣∣∣∣
Mode1

≥ 0 ∨ dV

dt

∣∣∣∣
Mode2

≥ 0 ∨ dV

dt

∣∣∣∣
Mode3

≥ 0))

where dV/dt in the three modes is easily computed symbol-
ically. This way we get the universally quantified formula
∀θ, ω : φ with free variables b, c (File inverted-pend.red [32]).

We use virtual substitution of redlog to eliminate the
inner universal variables. It successfully eliminates θ, but
it fails to eliminate ω. Neither qepcad succeeds in reason-
able time (5 minutes user time) to eliminate ω, nor slfq is
successful in simplifying the formula. However, the formula
produced by redlog has a conjunct c ≥ 1/400. We pick
an arbitrary value, 1/100, for c that is greater than 1/400.
Now the quantifier elimination problem is much simpler (File
inverted-pend-easy.red [32]) and after virtual substitution
eliminates θ, qepcad is able to eliminate ω in 190 millisec-
onds to give the constraint 4801b − 300 ≥ 0 on b. Thus,
we get the following controlled inductive invariant for the
inverted pendulum system:

−θ2 − (300/4801)ω2 + (1/100) ≥ 0

Using this controlled invariant, we can now synthesize an al-
gorithm for switching between the three modes of the system
so that the system remains inside the set safe. A sample
simulation of the synthesized system is shown in Figure 4.

0 2 4 6 8 10 12 14 16 18 20
−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

time

th
e

ta

Figure 4: Inverted pendulum simulation. Plot of θ
when a mode switching controller is synthesized us-
ing the generated controlled invariant. By switch-
ing mode as soon as the boundary of the controlled
invariant is reached, we guarantee that θ remains
inside the safe set.

4. RELATED WORK AND CONCLUSION
Quantifier elimination has been applied earlier to solve

nonlinear control system design [20]. However, this early
work focused only on continuous (and not switched) sys-
tems, and moreover only on simple properties. Properties
like safety and stability were not considered – partly because
they cannot be captured as semialgebraic sets in a sound
and complete way. We give up completeness and generate
an ∃∀ formula that is only sufficient for the verification or
synthesis problem. Consequently, whenever the ∃∀ formula
is valid, we successfully verify the system (or synthesize a
correct system), but when the formula is not valid, it does
not mean the system is faulty (or unsynthesizable).

The classical way of proving stability by finding Lyapunov
functions is an instance of certificate-based verification. In
this classical approach, the search for a Lyapunov function
of a particular form is reduced to solving an ∃∀φ formula,
where φ is an atomic fact. Numerical techniques in the form
of semidefinite programming exist for solving such prob-
lems [22, 5]. The work on barrier certificates [23] moves
this overall approach from stability to safety.

There is plenty of work on certificate-based verification of
hybrid systems [30, 26, 18], but none of it has used CAD or
substitute-and-simplify methods and instead relied on ap-
proximate methods to eliminate quantifiers. In a recent pa-
per [29], we used qepcad to solve ∃∀ formulas arising from
certificate-based synthesis. This paper builds upon [29] by
proposing certificate-based analysis as a uniform approach
for verification and synthesis, presenting several different
benchmarks, and solving them using a combination of sym-
bolic tools for quantifier elimination and simplification. Re-
cently, Anai [1] used a combination of numerical methods
(sum-of-squares) and symbolic quantifier elimination meth-
ods to solve problems arising in control, and such an inte-
gration is left for future work here.

It might be noteworthy that there has been considerable
theoretical research on real quantifier elimination beyond
the methods discussed here [17, 25, 3]. Most unfortunately,
this appears not to have led to practically applicable soft-
ware so far. An interesting step towards making alternative
approaches practically useful has been made in [19] recently.

In summary, the certificate-based approach for verification
and synthesis is a promising technique for formal analysis
of complex cyber-physical systems. Its success is, however,
crucially dependent on real quantifier elimination methods.



Certificate-based approach reduces verification and synthe-
sis problems for continuous and switched systems to first-
order formulas over the reals. An automatic combination of
various software components for quantifier elimination and
simplification was used to successfully process the first-order
formulas. Our case studies described here provide an inter-
esting set of benchmarks for real quantifier elimination.

Acknowledgments
We would like to thank Andreas Weber for encouraging and
supporting the first author in visiting SRI.

5. REFERENCES
[1] H. Anai. A symbolic-numeric approach to nonlinear

dynamical system analysis, 2010. SIAM/MSRI

workshop on hybrid method. for symb.-numeric comp.

[2] D. S. Arnon, G. E. Collins, and S. McCallum.
Cylindrical algebraic decomposition I: The basic
algorithm. SIAM J. Computing, 13(4):865–877, 1984.

[3] S. Basu, R. Pollack, and M.-F. Roy. On the
combinatorial and algebraic complexity of quantifier
elimination. J. of the ACM, 43(6):1002–1045, 1996.

[4] California PATH: Partners for advanced transit and
highways. http://www.path.berkeley.edu/.

[5] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan.
Linear matrix inequalities in system and control
theory. SIAM, 1994.

[6] C. W. Brown. QEPCAD B: a program for computing
with semi-algebraic sets using CADs. ACM SIGSAM
Bulletin, 37(4):97–108, 2003.

[7] C. W. Brown and C. Gross. Efficient preprocessing
methods for quantifier elimination. In CASC, volume
4194 of LNCS, pages 89–100. Springer-Verlag, 2006.

[8] G. E. Collins. Quantifier elimination for real closed
fields by cylindrical algebraic decomposition –
preliminary report. ACM SIGSAM Bulletin,
8(3):80–90, Aug. 1974.

[9] G. E. Collins and H. Hong. Partial cylindrical
algebraic decomposition for quantifier elimination. J.
Symbolic Computation, 12(3):299–328, Sept. 1991.

[10] J. H. Davenport and J. Heintz. Real quantifier
elimination is doubly exponential. J. of Symbolic
Computation, 5(1–2):29–35, Feb.–Apr. 1988.

[11] W. Decker et al. Singular 3-1-2 — A computer
algebra system for polynomial computations, 2010.
http://www.singular.uni-kl.de.

[12] A. Dolzmann and T. Sturm. Redlog: Computer
algebra meets computer logic. ACM SIGSAM
Bulletin, 31(2):2–9, June 1997.

[13] A. Dolzmann and T. Sturm. Simplification of
quantifier-free formulae over ordered fields. J. of
Symbolic Computation, 24(2):209–231, Aug. 1997.

[14] A. Dolzmann, T. Sturm, and V. Weispfenning. A new
approach for automatic theorem proving in real
geometry. J. Automated Reasoning, 21(3), 1998.

[15] D. Gayme, M. Fazel, and J. C. Doyle. Complexity in
automation of SOS proofs: An illustrative example. In
45th IEEE Conf. on Decision and Control, 2006.

[16] D. Godbole and J. Lygeros. Longitudinal control of
the lead car of a platoon. IEEE Transactions on
Vehicular Technology, 43(4):1125–35, 1994.

[17] D. Grigoriev. Complexity of deciding Tarski algebra.
Journal of Symbolic Computation, 5(1-2):65–108, 1988.

[18] S. Gulwani and A. Tiwari. Constraint-based approach
for analysis of hybrid systems. In Proc. 20th CAV,
volume 5123 of LNCS, pages 190–203. Springer, 2008.

[19] H. Hong and M. Safey El Din. Variant real quantifier
elimination: algorithm and application. In ISSAC,
pages 183–190. ACM, 2009.

[20] M. Jirstrand. Nonlinear control system design by
quantifier elimination. J. Symb. Comput.,
24(2):137–152, 1997.

[21] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic
reachability computations for families of linear vector
fields. J. Symbolic Computation, 32(3):231–253, 2001.

[22] P. A. Parrilo. SOS methods for semi-algebraic games
and optimization. In HSCC 2005, volume 3414 of
LNCS, page 54. Springer, 2005.

[23] S. Prajna, A. Jadbabaie, and G. J. Pappas. A
framework for worst-case and stochastic safety
verification using barrier certificates. IEEE Trans. on
Automatic Control, 52(8):1415–1428, 2007.

[24] A. Puri and P. Varaiya. Driving safely in smart cars.
In Proc. 1995 American Control Conference, 1995.

[25] J. Renegar. On the computational complexity and
geometry of the first-order theory of the reals. Journal
of Symbolic Computation, 13(3):255–352, Mar. 1992.

[26] S. Sankaranarayanan, H. Sipma, and Z. Manna.
Constructing invariants for hybrid systems. In HSCC,
volume 2993 of LNCS, pages 539–554. Springer, 2004.

[27] A. Taly, S. Gulwani, and A. Tiwari. Synthesizing
switching logic using constraint solving. In VMCAI,
volume 5403 of LNCS, pages 305–319. Springer, 2009.

[28] A. Taly and A. Tiwari. Deductive verification of
continuous dynamical systems. In FSTTCS, volume 4
of LIPIcs, pages 383–394, 2009.

[29] A. Taly and A. Tiwari. Switching logic synthesis for
reachability. In EMSOFT, 2010.

[30] A. Tiwari. Approximate reachability for linear
systems. In Proc. 6th HSCC, volume 2623 of LNCS,
pages 514–525. Springer, 2003.

[31] A. Tiwari. Bounded verification of adaptive flight
control systems. In Proc. AIAA Infotech@Aerospace,
2010. AIAA-2010-3362.

[32] A. Tiwari. Certificate-based verification: Tools and
benchmarks, 2011.
http://www.csl.sri.com/~tiwari/existsforall/.

[33] A. Tiwari and G. Khanna. Series of abstractions for
hybrid automata. In HSCC, volume 2289 of LNCS,
pages 465–478. Springer, 2002.

[34] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi.
Computational techniques for the verification of
hybrid systems. Proc. of the IEEE, 91(7), 2003.

[35] V. Weispfenning. The complexity of linear problems in
fields. J. of Symbolic Computation, 5(1&2):3–27, 1988.

[36] V. Weispfenning. Quantifier elimination for real
algebra—the cubic case. In Proc. ISSAC, pages
258–263. ACM Press, New York, 1994.

[37] V. Weispfenning. Quantifier elimination for real
algebra—the quadratic case and beyond. Applicable
Alg. in Eng. Comm. Comp., 8(2):85–101, 1997.


