
1

Invisible Formal Methods for Embedded Control
Systems

A. Tiwari, N. Shankar, and J. Rushby

Abstract— Embedded control systems typically comprise con-
tinuous control laws combined with discrete mode logic. These
systems are modeled using a hybrid automaton formalism, which
is obtained by combining the discrete transition system formalism
with continuous dynamical systems. This paper develops auto-
mated analysis techniques for asserting correctness of hybrid sys-
tem designs. Our approach is based on symbolic representation of
the state space of the system using mathematical formulas in an
appropriate logic. Such formulas are manipulated using symbolic
theorem proving techniques.

It is important that formal analysis should be unobtrusive and
acceptable to engineering practice. We motivate a methodology
called “invisible formal methods” that provides a graded sequence
of formal analysis technologies ranging from extended typecheck-
ing, through approximation and abstraction, to model checking
and theorem proving. As an instance of invisible formal meth-
ods, we describe techniques to check inductive invariants, or ex-
tended types, for hybrid systems and compute discrete finite state
abstractions automatically to perform reachability set computa-
tion. The abstract system is sound with respect to the formal
semantics of hybrid automata. We also discuss techniques for
performing analysis on non-standard semantics of hybrid au-
tomata. We also briefly discuss the problem of translating mod-
els in Simulink/Stateflow language, which is widely used in prac-
tice, into the modeling formalisms, like hybrid automata, for which
analysis tools are being developed.

Index Terms—Hybrid dynamical systems, Inductive invariants,
Abstraction.

I. I NTRODUCTION

HYBRID systems involve a combination of discrete and
continuous dynamics and are used for modeling embed-

ded control systems. Many of the embedded control systems
are safety critical and require formal guarantees of safe opera-
tion. Formal design and analysis of hybrid system models has
received much attention in the research community recently,
from both the computer science and control theory worlds.

The systems that have been traditionally studied in the com-
puter science community have been discrete. Such systems
evolve in discrete time steps over a countable state space and
are formalized usingdiscrete transition systems. Typical exam-
ples include hardware circuit designs, network communication
protocols, and software components. Good advances have been
made in the techniques and tools for analyzing discrete tran-
sition systems [9, 24]. Some of the most effective techniques

Research supported by DARPA under the MoBIES and SEC programs ad-
ministered by AFRL under contracts F33615-00-C-1700 and F33615-00-C-
3043, and the NASA Langley Research Center contract NAS1-00108 to Ran-
noch Corporation.

All authors are with the Computer Science Laboratory, SRI Interna-
tional, 333 Ravenswood Ave, Menlo Park, CA 94025, U.S.A. E-mail:
{tiwari,shankar,rushby }@csl.sri.com

includemodel checkingand abstraction. Abstraction is typi-
cally used to reduce the possibly infinite state space system into
a finite state space abstract system, and model checking is sub-
sequently used to exhaustively search through all behaviors of
the finite abstraction.

Hybrid systems differ from purely discrete systems in that
they also contain a continuous component. Such systems evolve
in continuous time with discrete jumps at particular time in-
stances. The techniques developed for discrete systems are thus
not directly applicable. First, the state space now is uncountably
infinite. Second, a continuous evolution results in uncountably
many successor states from a given state of the hybrid system.
Furthermore, the problem of checking if a hybrid system ever
reaches a certain bad state is known to be intractable (unde-
cidable) for even simple classes of hybrid systems (for exam-
ple, systems whose continuous dynamics involves variables that
proceed at two constant slopes [18]).

One approach to overcoming undecidability involves restrict-
ing the continuous dynamics of the hybrid system so that suit-
able abstractions can be successfully applied to yield conserva-
tive discrete transition systems. Timed automata [2], multirate
automata [1], and rectangular automata [18] are some such ex-
amples. Another approach is to restrict the discrete transitions
and the continuous flows so that finite abstractions can again
be constructed. The idea of o-minimal hybrid systems [25] is
motivated by this.

There is a huge gap between the interesting large and com-
plex systems that are typically used in practice, and the re-
stricted and simple systems that are tractable by known auto-
mated analysis techniques. Moreover, the available techniques
are still far removed from the tools engineers most often use in
practice to design embedded control systems. As a result, huge
amounts of effort is spent on validating the models through ex-
tensive simulation and testing on particular scenarios developed
by the engineer. In this paper, we describe a range of formal
analysis technology to incrementally establish properties that
hold for all behaviors of the model, thus replacing the tedious
task of testing.

Our approach is based on using a symbolic representation for
the state space of the system. In contrast to simulation, where
a state is represented by the numerical values for the state vari-
ables, we represent states symbolically using a mathematical
formula over some language. Whereas states are updated using
numerical techniques in simulation, the symbolic representa-
tion of states is manipulated using symbolic inferential analysis
in our approach.

Typechecking is a simple kind of formal analysis technol-
ogy that has been successfully used for early error detection

2

in software development. The simple notion of types, where
each state variable is specified to be either an integer, real, or
boolean, can be extended to a more general notion, say that
of non-zero integers, positive reals, and even to more complex
subsets specified using formulas. Typechecking these more
complex type specifications is equivalent to inductive invariant
checking. For discrete transition systems, this can be accom-
plished by verifying validity of certain formulas, see SectionV-
C. In SectionV-D we show how to generalize this to hybrid
systems.

Typechecking is a simple, though powerful, technique for
early error detection in designs. However, it might not be suffi-
cient to establish all the correctness properties of interest in the
design. A hybrid dynamical system evolves in time via differ-
ent trajectories through its state space. The complete behavior
of the system is given by the set of all its trajectories under all
possible input vectors. Simulation techniques test single trajec-
tories from this set. An exhaustive search through all the system
behaviors over the state space is required to verify any given
property of the system. However, for hybrid systems, owing to
the presence of continuous dynamics, it is not clear how this
process, called model-checking, can be done. In SectionV-E
we describe the technique of creating sound finite state abstrac-
tions for the hybrid system, which preserve the behaviors of the
system relevant to the property of interest. In the final step, the
finite state system is model-checked against the property.

The paper is organized as follows. Discrete transition sys-
tems, continuous dynamical systems, and hybrid automata are
formalized in SectionsII , III , andIV respectively. While these
are mathematical models, in practice tools like Simulink and
Stateflow from MathWorks Inc. are used to create models of
hybrid systems. The issues related to bridging the gap between
designs in Simulink/Stateflow and the mathematical formalisms
are discussed in SectionIV-A . SectionV is devoted to a de-
scription of a broad range of analysis techniques and SectionVI
presents related work and conclusion.

A. Notation

We denote the set of natural numbers byN, rationals byQ,
and reals byR. We use capital letters, likeX,Y , with possible
subscripts, to denote sets of real variables andQ to denote a set
of boolean variables. A valuation of a setX of real variables is
an assignment of real values to the variables inX and similarly,
a valuation of a setQ of boolean variables is an assignment of
boolean values (true, false) to the variables inQ. We denote
the set of all valuations ofX andQ by X andQ, respectively.
Clearly,X is isomorphic toR|X| andQ is isomorphic to2|Q|.
If X andQ represent the set of all real and boolean variables in
a system, then the setQ ×X represents thestate spaceof this
system.

Our formal analysis approach is based on representing sub-
sets of the state space symbolically by a first-order formula over
variablesX andQ. Such formulas are constructed using sym-
bols from a set of function symbols{+,−, ·}, constantsQ, and
predicate symbols{=, >,≥, <,≤}. The set of terms over a set
X of variables corresponds to the set of polynomialsQ[X] over
the variablesX and coefficients fromQ. The setATM (X),
defined as{p ∼ 0 : p ∈ Q[X] and ∼∈ {=, <,≤, >,≥}},

is the set of allatomic formulas. The setWFF (X) of first-
order formulas (overX) is defined as the smallest set contain-
ing ATM (X) and closed under the boolean operations (con-
junction∧, disjunction∨, implication⇒, and negation¬) and
quantification (existential∃ and universal∀). The first-order
theoryof reals, denoted by<, is defined as the set of all first-
order formulas over the above signature (and a countable set of
variables) that are true over the real numbers. We use the no-
tation< |= φ to denote the fact that the (first-order) formula
φ is true in the theory of reals. The first-order theory of the
real closed fields is a complete theory, that is every sentence in
WFF (X) is either true or its negation is true in this theory, and
is known to be decidable [34,13].

Since hybrid systems will be described using both real val-
ued variablesX and boolean variablesQ, we extend the set
of atomic formulas to also include the set{true, false} ∪ Q.
The resulting first-order theory is then an extension of the the-
ory of real closed fields with boolean variables and constants.
This resulting theory, denoted by<e, is still decidable, since
the boolean variables can only take values in a 2-valued do-
main {true, false}. We denote formulas inWFF (X,Q) by
φ, ψ, possibly with subscripts and usep to denote polynomials
in the setQ[X]. We say a polynomialp occurs in a formulaφ if
there is an atomic formulap ∼ 0 in φ. The rest of the notation
follows the standard practice in hybrid systems literature.

II. D ISCRETETRANSITION SYSTEMS

A discrete state transition systemDS is a tuple(Q, Init , t)
whereQ is a finite set of boolean variables,Q denotes the
(countable) set of all valuations of the variablesQ, Init ⊆ Q
is a set of initial states, andt ⊆ Q × Q is a set of transi-
tions. The semantics,[[DS]], of a discrete state transition system
DS = (Q, Init , t) is the collection of all mappingsθ : N 7→ Q
satisfying
(a) initial condition:θ(0) ∈ Init , and
(b) discrete evolution: for alli ∈ N, (θ(i), θ(i+ 1)) ∈ t.

The transition relationt can be specified in many different
ways. Typically, it is given using a guarded command syntax:

φ(Q) −→
∧
i q
′
i = ei(Q)

with the meaning that there is a transition from stateq ∈ Q to
q′ ∈ Q whenever the valuationq makes the guard expression
φ(Q) evaluate to true andq′ is obtained fromq using the as-
signments, on the right-hand side of the arrow above. There is
one assignmentq′i = ei(Q) for eachqi ∈ Q. Hereei(Q) is a
boolean formula over the variablesQ. Note thatq′i denotes the
value of state variableqi after the transition is completed.

The guardφ(Q) can be any boolean formula over the boolean
variables inQ. Later, when we consider hybrid systems over
boolean variablesQ and real variablesX, the guard would be
any formula inWFF (Q,X). Here we have assumedQ to only
contain boolean variables. In general,Q could contain integer
variables, and variables interpreted over finite domains as well.

III. C ONTINUOUS DYNAMICAL SYSTEMS

A continuous dynamical systemCS is a tuple(X, Init , f)
whereX is a finite set of variables interpreted over the reals

3

R, X = R
X is the set of all valuations of the variablesX,

Init ⊆ X is the set of initial states, andf : X 7→ TX is a
vector field that specifies the continuous dynamics. HereTX
denotes the tangent space ofX. We assume thatf satisfies the
standard assumptions for existence and uniqueness of solutions
to ordinary differential equations. Note that the continuous dy-
namical systems we consider here are autonomous, that is, they
have no inputs.

The semantics,[[CS]], of a continuous dynamical system
CS = (X, Init , f) over an intervalI = [τa, τz] ⊆ R is a
collection of mappingsσ : I 7→ X satisfying
(a) initial condition:σ(τa) ∈ Init , and
(b) continuous evolution: for allτ ∈ (τa, τz), σ̇(τ) =

f(σ(τ)).
In case the intervalI is left unspecified, it is assumed to be the
interval[0,∞).

We assume that the flow derivative,f , is specified using
polynomial expressions over the state variablesX, that isf ∈
(Q[X])|X|, whereQ[X] denotes the set of polynomials over
the indeterminatesX and coefficients inQ, and |X| denotes
the cardinality ofX. These polynomials can be nonlinear in
general.

Example 1:As an example of a purely continuous system,
we consider simplified leader control from the design of auto-
mated highway systems [33]. Suppose vehicle A is following
vehicle B in a lane. Letgap denote the distance between the
two vehicles,v0 be the velocity of vehicle A,a0 be the accel-
eration of vehicle A, andv1 be the velocity of vehicle B. In the
leader control mode, vehicle A follows vehicle B by suitably
adjusting its accelerationa0 based on the sensor readings for
gap, v0, v1, anda0. Let us assume that the dynamics of the
system are given by the following equations:

v̇0 = a0

ȧ0 = −4v0 + 3v1 − 3a0 + gap
˙gap = v1 − v0

We consider the velocityv1 of vehicleB as a parameter, that is,
an unspecified symbolic constant. We have changed variables
in the above to make[0, 0, 0, 0] an equilibrium point so that the
two cars collide whengap = −10. Let us say that the ini-
tialization condition, or equivalently the condition under which
this control mode is triggered, is given bya0 = 0 ∧ 10 ≤
v0, v1 ≤ 20 ∧ gap ≥ 20. The problem is to show that the rear
car does not crash into the car in front, that is,gap ≥ −10 at all
times. In Example7 we show how toprovethis automatically.

Example 2: In the same setting as Example1, consider now
that the following simplified dynamics of the system:

v̇1 = a1

v̇0 = a1 + v1 − v0

˙gap = v1 − v0

Let us say that the initialization condition, or equivalently the
condition under which this control mode is triggered, is given
by gap ≥ 2 andv1 ≥ v0. The problem is to show that the rear
car does not crash into the car in front, that is,gap ≥ 0 at all

times. In this case, we assume that the velocity of the front car
is changing according to an uncontrolledinputa1.

We remark here that although we have excluded parameters
and input variables in the formal definition of continuous dy-
namical systems (to keep the definition simple), they can be eas-
ily incorporated into the analysis methods we shall outline later
in SectionV. A simulation of the above systems given in Exam-
ples1 and2 for a specific initial valuation for the state variables
can be done using available tools, like Simulink. However, mul-
tiple simulation runs can not provably demonstrate the safety of
the control laws. See Examples4 and7 for an analysis using
symbolic techniques that reason about the complete state space.

A. Simulink Simulation Semantics

For purposes of simulation, several tools use either a fixed-
step or variable-step numerical solver and approximate the dif-
ferential equation by a difference equation. Assuming the
use of a fixed-step solver with step sizeδ, the fixed-step
(non-standard) semantics of the continuous dynamical system
(X, Init , f) over an intervalI = [τa, τz] is the collection of
mappingsσ : I 7→ X satisfying condition (a) from before and
the new condition
(b) continuous evolution: for all natural numbersn such that

0 ≤ n < (τz − τa)/δ, σ(τa + (n+ 1)δ) = σ(τa + nδ) +
δf(σ(τa + nδ)), andσ(τa + nδ + δ′) = σ(τa + nδ) for
all 0 < δ′ < δ.

In case of a variable-step solver, the variable-step (non-
standard) semantics of the continuous dynamical system
(X, Init , f) over an intervalI = [τa, τz] is the collection of
mappingsσ : I 7→ X satisfying condition (a) from before and
the new condition
(b) continuous evolution: for allτ ∈ (τa, τz], there exists a

δ > 0 such thatσ(τ) = σ(τ − δ) + δf(σ(τ − δ)).
There is usually an upper-bound onδ in this case.

In SectionV, we describe different techniques that handle
the continuous dynamics in different ways, based on the what
semantics we wish to use for analysis.

IV. H YBRID SYSTEMS

Hybrid systems involve the interaction of discrete and con-
tinuous dynamics. They are formalized using hybrid automata,
which combine a discrete transition system with a continuous
dynamical system. An autonomous hybrid automatonHS is a
tuple(Q,X, Init , t, f), whereQ is a finite set of discrete vari-
ables,X is a set of continuous variables,Init ⊆ Q×X is a set
of initial states,t ⊂ Q×X×Q×X is a set of (guarded) dis-
crete transitions,f : Q 7→ (X 7→ TX) is a mapping from the
discrete states to vector fields that specify the continuous flow
in that discrete state. We refer to(q,x) ∈ Q ×X as thestate
of the hybrid automatonHS.

The semantics of hybrid automata is defined in terms of
discrete and continuous evolutions. Formally, the semantics
of an hybrid automatonHS = (Q,X, Init , t, f) over an in-
terval I = [τa, τz] is a collection[[HS]] of runs σ : I 7→
Q×X, whereI is a dense interval defined as the multiset union
∪l+1
i=0[τ ′i−1, τi] of an ordered collection, called ahybrid time

trajectory, {[τa, τ0], [τ ′0, τ1], . . . , [τ ′l−1, τl], [τ
′
l , τz]} with τa =

4

τ ′−1 ≤ τ0 = τ ′0 ≤ τ1 = τ ′1 ≤ · · · ≤ τl = τ ′l ≤ τz = τl+1,
satisfying
(a) initial condition:σ(τa) ∈ Init ,
(b) continuous evolution: for alli such thatτ ′i 6= τi+1, the

projectionσX of σ overX is continuous over[τ ′i , τi+1]
and for allτ ∈ (τ ′i , τi+1) such thatτ ′i 6= τi+1, ˙σX(τ) =
f(σQ(τ ′i))(σX(τ)) with σQ(τ) remaining unchanged,

(b’) for all i such thatτ ′i = τi+1, σ(τ ′i) = σ(τi+1), and
(c) discrete evolution: for alli such that0 ≤ i ≤ l, it is the

case that(σQ(τi), σX(τi), σQ(τ ′i), σX(τ ′i)) ∈ t.
Here we have usedσQ : I 7→ Q andσX : I 7→ X to denote the
projections ofσ : I 7→ Q×X so thatσ(τ) = (σQ(τ), σX(τ)).
Thus, a hybrid automaton can either make discrete jumps at
time points possibly changing its discrete and continuous state
components (condition (c)), or evolve according to the flow
equations in time while keeping the discrete state component
unchanged (condition (b)). Condition (b’) allows for the possi-
bility of multiple discrete jumps at the same time instance.

These are the standard semantics of hybrid automata. How-
ever, one can consider other options where the continuous dy-
namics are interpreted using the simulation semantics given ear-
lier. Again, for simplicity, we have assumed that there are no
inputs, parameters, and invariant sets, which can all be handled
by the analysis methods described later. A parameter behaves
just like other variable except that its value remains unchanged
through a run of the hybrid system. An invariant set for a dis-
crete mode specifies a region of state space that the system can
not leave while it is in that mode.

Example 3:As a simple example of a hybrid system, con-
sider a thermostat that controls the temperaturex of a room.
The thermostat senses the temperature and turns a heater on and
off if the threshold valuesxmin andxmax are reached, where
0 < xmin < xmax andxmin, xmax ∈ R+. When the heater is
off, the temperature of the room decreases and when the heater
is turned on, the temperature increases according to the follow-
ing dynamics:

off : ẋ = −Kx on : ẋ = −K(x− h)

Here, the parameterK ∈ R+ is the room constant and the pa-
rameterh > xmin, xmax is a real-valued constant that depends
on the power of the heater.

The discrete logic to switch between these two modes is
given by the following two guarded transitions:

state = off ∧ x ≤ xmin −→ state ′ = on
state = on ∧ x ≥ xmax −→ state ′ = off

Let us say that the initial condition is given byx ≥ xmin ∧
x ≤ xmax and the heater is off. This thermostat exam-
ple can be formally modeled as the hybrid automatonHS =
(Q,X, Init , t, f), whereQ = {q1} (here the boolean vari-
able q1 is true when the heater is on, and false when it is
off), X = {x1} (herex1 is the temperature of the room),
Init = {(q1 = false, x1 = x) : xmin < x < xmax},
t = {(q1 = true, x1 = x, q1 = false, x1 = x) : x ≥ xmax} ∪
{(q1 = false, x1 = x, q1 = true, x1 = x) : x ≤ xmin},
andf(q1 = true) = −K(x − h) andf(q1 = false) = −Kx.
Note that this is a parametric hybrid automaton with parameters

K,h, xmin, andxmax. There are also invariant sets in the two
modes which make sure that the discrete transitions are taken
when they are enabled.

A. Expressive Power of the Modeling Formalism

One of the most extensively used tools for modeling, simula-
tion, and rapid prototyping of control designs for embedded ap-
plications is the Simulink/Stateflow development suite provided
by MathWorks Inc. Hence, it is of considerable interest to study
the problem of translating models in Simulink/Stateflow to the
kinds of formalisms for which we are building analysis capabil-
ities. This would offer benefits in early error detection and more
complete assurance of the designs in Simulink/Stateflow. But
this dream is hampered by the lack of formal and rigorous se-
mantics for the modeling language of this tool. It is potentially
valuable, therefore, to provide formal semantics and to develop
formal analysis techniques for important features of the model-
ing language provided by the MathWorks tool.

MathWorks’ Simulink/Stateflow development suite consists
of two modeling languages: Simulink is used to model the con-
tinuous dynamics and Stateflow is used to specify the discrete
control logic and the modal behavior of the system. We have
developed a formal semantics for the Stateflow modeling lan-
guage by translating a Stateflow model into a set ofcommuni-
cating pushdown automata. We skip the details of this transla-
tion in this paper and refer the reader to [35] for details. The one
non-trivial feature of this translation was the need of an infinite
stack, which we describe briefly.

The Stateflow modeling language is based on hierarchical
state machines with discrete transitions between states. A State-
flow chart consists of states, transitions between states, events
that enable or disable transitions, and a hierarchy on the states.
A state could itself consist of several substates with transition
between them and can be classified as AND- or OR-state. The
semantics of Stateflow models is specified informally through
examples in the Matlab documents. Broadly speaking, an in-
put evente causes execution of the root state. A stateexecutes
by firing any of its transitions that can be fired. If none of the
transitions can be fired, the state causes execution of its (either
one or all, depending on if it is an OR-state or AND-state) de-
scendants. When the descendents have finished executing, the
control returns to the parent state. A transition can fire if the
condition on it is true (and the triggering event present). A tran-
sition fires by inactivating the source state (recursively if it is an
non-leaf AND- or OR-state), performing condition actions, ac-
tivating the destination state, and performing transition actions.
Actions could change the value of a variable or broadcast an
event. Broadcasting an event is like a function call invocation
in imperative programming languages. Hence, there is a need
of a global stack to keep track of the control passing informa-
tion during the execution of a Statechart model. Each state is
mapped onto a pushdown automaton (a pushdown automata is
a discrete transition system, but with access to an infinite stack)
and the full Stateflow chart gets translated into a composition
of these pushdown automata, which is itself a single pushdown
automaton.

The informal semantics of Stateflow is clearly different from
the semantics of Statecharts. Stateflow works only on one

5

event at a time and there is no notion of “maximal and non-
conflicting” transitions. Event broadcasting is recursive. More-
over, after an event is processed, control needs to return to the
state that generated that event. We need a stack to store this
additional information. The communication between different
pushdown automata allows for passing of control between any
two automata and not only between automata adjacent in the
hierarchyspecified in the original model. This is required for
the translation of important features likesupertransitionsand
directed event broadcastingin the Stateflow language. In addi-
tion, the automata share a global pushdown stack that is used to
keep track of events that have been broadcast.

The Stateflow chart represented as a pushdown system can
be statically analyzed. By using the algorithm for reachability
in pushdown systems [10], it can be determined if a pushdown
system requires a bounded or an unbounded stack depth. An
unbounded stack depth corresponds to infinite recursive event
broadcasting in the Stateflow charts. The Simulink/Stateflow
tool detects loops in event broadcasting at simulation time. To
perform the bounded stack depth analysis, all non-boolean data
variables are abstracted and the analysis is performed on a fi-
nite state abstraction. The pushdown system can also be ana-
lyzed to detect any nondeterminacy in the Stateflow chart and
other such properties. All of this analysis can be performed
in an completely automated and non-intrusive way. For some
theoretical results on analysis of recursive state machines, the
reader is referred to [3].

The Simulink component of the MathWorks tool suite is used
to model the continuous dynamical component of hybrid sys-
tems. However, again the semantics of the Simulink environ-
ment are not formally specified in the MathWorks documenta-
tion. But, a large class of Simulink designs can be captured us-
ing the continuous dynamical system and hybrid automaton for-
malisms. Note here that we have a choice on the semantics for
the continuous dynamics—using either the standard one, or the
simulation semantics where the differential equations are dis-
cretized into difference equations (the discretization parameter
is either fixed or left symbolic), the latter is used for Simulink
models in MathWorks tool suite.

V. A NALYSIS TECHNIQUES FORHYBRID SYSTEMS

We now describe formal analyses techniques for hybrid sys-
tems. Analysis tools for Simulink/Stateflow or hybrid models
include symbolic simulation, invariance checking, typecheck-
ing, abstraction, and model checking. This tool set provides a
graded sequence of formal analysis technologies. On one end
are completely automated techniques that determine bounds on
recursive event calls and perform extended typechecking. Al-
though such analysis helps in early error detection, it does not
provide full verification. Abstraction and invariant generation is
used to make the model amenable for exhaustive search. Thus,
complete assurance can be provided using theorem proving and
model checking.

In SectionV-A, we generalize the notion of simulation to
symbolic simulation and show how it can be useful. Symbolic
simulation refers to computing the set of next states reached
from the set of current states using either the continuous or dis-
crete transition. We show how this can be done for the simula-

tion semantics of hybrid systems. Symbolic simulation can be
used in different ways to do forward and backward propagation,
reachability computation, invariance checking, and typecheck-
ing.

For the standard semantics of hybrid systems, we describe
techniques to perform extended typechecking (inductive invari-
ant checking) and creating sound abstractions of hybrid models.
For hybrid systems described using only polynomial expres-
sions, both of these technique can be completely automated. In
case of the abstractor, the resulting abstraction is always a finite
state discrete transition system, which we model-check using a
generic explicit state model-checker.

Prototype implementations of the techniques described in
this paper have been built over the Symbolic Analysis Labora-
tory (SAL) framework. The extended SAL framework provides
a specification language for hybrid automata and models can be
explicitly discretized using a fixed or symbolic step for further
analysis, or they can be analyzed as is using the qualitative ab-
stractor and model-checking technologies.

A. Symbolic Simulation

The Matlab Simulink tool provides extensive simulation fa-
cility. Simulation refers to traversing one trajectory of the sys-
tem behavior from the possible infinite. To run a simulation, the
designer must (a) specify initial conditions by giving values of
all state variables, (b) choose a particular input function (in case
the system has inputs coming from the environment), (c) give
some default values to all parameters used in the modeling of
the system, and optionally (d) choose a solver and/or a sample
time for certain blocks. The simulation tool then computes the
system behavior under these specific choices.

Even after doing several simulations with different choices
for (a)–(d) above, the designer cannot be sure that the system
works correctly inall possible scenarios. For instance, in the
leader control system of Example2, simulation would show the
behavior of the system under a particular profile of the accel-
eration of the car in front. But, safety requires that there be no
crash undereverypossible acceleration maneuver of the lead-
ing car. Similarly, running simulation on the thermostat model
of Example3 will show that the thermostat works as desired for
the particular values of parametersh, K, xmin, andxmax that
were chosen for the simulation.

Symbolic simulationrefers to performing simulation on sets
of states represented symbolically. Thus, symbolic simulation
differs from regular simulation in two respects. First, it simul-
taneously traverses a bunch of trajectories instead of a single
trajectory through the state space. Second, a set of states is rep-
resented symbolically rather than explicitly. This allows rep-
resentation of a potentially infinite number of states and sim-
ulation of a potentially infinite number of trajectories in one
symbolic simulation.

We use the language of first-order logic to symbolically rep-
resent sets of states. We recall that a state is a valuation of all
the state and output variables. A set of states can be specified
using a first-order formula over the state variables. A crucial
step in performing symbolic simulation is the computation of
the set of all states that are reachable from the current set of

6

states (represented as a first-order formula). Ifφ(Q,X) is a
first-order formula that represents the current set of states, and

ψ(Q,X,U) −→
∧
i(x
′
i = ei(Q,X,U)) ∧∧

i(q
′
i = bi(Q,X,U))

is a guarded transition with guardψ(Q,X,U) and assignments
xi = ei(Q,X,U), qi = bi(Q,X,U), whereQ,X are state
variables andU is the input set of variables,ei andbi are expres-
sions over these state variables that evaluate to a real number
and boolean constant respectively, then the set of states reached
after taking this transition is given by

∃(Q̄, X̄, Ū) : [φ(Q̄, X̄) ∧ ψ(Q̄, X̄, Ū) ∧∧
i(xi = ei(Q̄, X̄, Ū)) ∧∧
i(qi = bi(Q̄, X̄, Ū))].

For a system represented by a set of guarded transitions, the
set of states reached from the setφ(Q,X) by one step applica-
tion of a guarded transition can be computed by combining all
such formulas, one for each guarded transition, by disjunction.
The resulting formula, denoted bypost(φ(Q,X)), represents
the set of states reached from the setφ(Q,X) by following one
step of the system. For suitable discretizations of the continu-
ous dynamics of the hybrid systems, as described in previous
sections, this can be done.

Note also that the input variablesU are existentially quanti-
fied, which means no assumption is being made on them. How-
ever, if the input is known to satisfy certain constraints, then
these can be incorporated as a conjunct in the above formula as
well. The existential quantifier in the expression forpost must
be eliminated to ensure that the formulas do not get arbitrarily
large very soon, and we discuss this in SectionV-B.

Other approaches to performing simulation that are not based
on the use of a quantifier elimination procedure have been dis-
cussed in the literature as well. A particular case of symbolic
simulation is the idea of using intervals to represent sets of
states. The polygonal state space can then be simulated using
particular numerical methods. There is a need to do an over-
approximation whenever the state set is not representable by
a polygon [12]. Similarly, level set methods represent the set
of states as level sets [31] and appropriately compute thepost
operator in that representation.

B. Quantifier Elimination

The cylindrical algebraic decomposition (CAD) algo-
rithm [13, 21] decides the full first-order theory (equality and
the greater-than relation included) of ordered real closed fields.
Given a set of polynomials overn variables, the CAD proce-
dure decomposes the realn-dimensional space into a finite set
of regions where each polynomial’s evaluation is sign-invariant.
The quantifier elimination procedure for real closed fields is ob-
tained as a side effect of the CAD decomposition. Over the last
25 years, the CAD algorithm has been improved and made more
efficient [28,27,19]. One such efficient implementation is avail-
able via the tool QEPCAD [20], which is built over a symbolic
algebra library called SACLIB [11].

The tool QEPCAD can be used to perform quantifier elimi-
nation over the first-order theory of real closed fields and, con-
sequently, it can be used as a decision procedure for the same

theory. As seen above, quantifier elimination is a crucial step
in symbolic simulation and reachability algorithms. Note that
the QEPCAD tool cannot handle variables that are not of type
real, and hence it can be used only on formulas in which all the
non-real variables can be eliminated by suitable preprocessing.
In our applications, the boolean variables are the only non-real
variables, and they can be easily eliminated by expansion.

Example 4:Following up on Examples2, we now show a
symbolic simulation step for a variable step discretization of
the system in Example2:

φ0 : gap ≥ 2 ∧ v1 ≥ v0

φ1 : ∃(¯gap, v̄1, v̄0, ā1, δ) : ¯gap ≥ 2 ∧ v̄1 ≥ v̄0 ∧
v1 = v̄1 + δā1 ∧
v0 = v̄0 + δ(ā1 + v̄1 − v̄0) ∧
gap = ¯gap + δ(v̄1 − v̄0) ∧
0 < δ ≤ 1

φ′1 : (gap > 2 ∧ v1 − v0 − gap + 2 ≥ 0 ∨
(v0 ≤ v1 ∧ gap+ v0 − v1 − 2 ≥ 0)

Note thatδ is used as a symbolic discretization time step. Here
φ′1 is obtained from quantifier elimination onφ1. We have
shown only one simulation step in the example above because
we canprove that gap ≥ 0 always using the results from this
one symbolic propagation step. See Example5.

The quantifier elimination problem has a high time and space
complexity. Consequently, techniques for simplification are re-
quired before the quantifier elimination tool can be used. In
particular, we perform the following two simplifications:
• Solving for quantified variable: Certain quantified vari-

ables can be easily eliminated by solving for them. For
example, given the equalityx+ y = z + 5, one can solve
for x to obtainx = z + 5− y. Thus, a quantified formula
∃x : x + y = z + 5 ∧ φ(x) is equivalent to the formula
φ(x/z+5−y), wherex/z+5−y denotes that we replace
all occurrences ofx in φ by the expressionz + 5− y.

• Logical simplification: We can use logical equivalences to
reduce the size of the formula that is given to the quanti-
fier elimination tool. One of the tautologies that is very
useful is(∃x : φ(x) ∧ ψ) ↔ (∃x : φ(x)) ∧ ψ, if x
does not occur inψ. This allows us to move parts of the
formula that do not contain the quantified variable outside
the scope of the quantifier, thus reducing the size of the
quantified formula in the process.

Finally, the quantifier elimination procedure is quite sensitive
to the ordering of quantified variables. Logically equivalent
quantified formulas∃x∃y : φ(x, y) and∃y∃x : φ(x, y) may
take drastically different time and space resources for computa-
tion.

C. Invariant Generation and Checking

Symbolic simulation can be used to compute the reachability
region as well. In thei-th simulation step, the symbolic simula-
tion procedure yields the set of states that are reached in exactly
i transitions. Thus, in order to compute the reachable state set,
one must collect the set of all states that are reachable ini-steps

7

for i = 0, 1, 2, Each successive iteration would then yield
successive approximations of the reachable state set. The exact
reachable state space is obtained only in the condition that this
process terminates. In case of termination, the set of reachable
states is obtained as a formula, which by definition is also the
strongest invariant for the given transition system.

Example 5: In Example4 we showed a symbolic simulation
step for the the leader control system. Assuming the same no-
tation and same formulasφi’s from before, successive approxi-
mationsψi’s of the reachability set would be

ψ0 = φ0 = gap ≥ 2 ∧ v1 ≥ v0
ψ1 = ψ0 ∨ φ′1

The formulaψ1 is logically equivalentto the formulagap ≥
2 ∧ v1 ≥ v0. This logical equivalence can also be shown using
the quantifier elimination decision procedure that is used in the
symbolic simulation steps. This establishes that the formula
ψ0 is an invariant of the system. The invariantψ0 implies that
gap > 0, and this establishes that the rear car never crashes
onto the car in front under the given leader control law.

The method outlined above for generating an invariant as-
sertion by computing the exact reachable region using forward
symbolic propagation is, in general, not sufficient in many
cases. In some of these other cases, a combination of ap-
proaches based on forward and backward propagation with suit-
able narrowing and widening might be required. See [37] for
the details. For an example of some of these ideas, see also
Example6.

However, the technology outlined above issufficientfor in-
variantchecking. A formulaφ is an inductive invariant if (i) the
formula describing the initial states implies the formulaφ and
(ii) the result of symbolic propagation starting from the formula
φ (logically) implies the formulaφ, that is,post(φ) ⇒ φ is
valid in the theory<e. Both of these tests can be done using a
quantifier elimination procedure. In fact, Examples4 and5 can
also be seen as checking that the formula given as the initial
condition is an inductive invariant. Note that inductive invari-
ants are over-approximations for the set of reachable states.

Simple invariants on the values of variables can also be spec-
ified using types. Richer type system allows specification of
more complex relations between the values of different vari-
ables. Invariant checking can be used to performtypechecking
on such rich type systems. The designer can easily annotate
his Simulink/Stateflow model by such type information using
additional Simulink blocks.

To illustrate that the symbolic propagation method can in fact
generateinvariants, we consider the thermostat example.

Example 6:The thermostat hybrid system discussed in Ex-
ample3 can be symbolically discretized using the variableδ
which is constrained to be between0 and1/K.

q1 = false ∧ x1 ≤ xmin −→ q′1 = true
q1 = true ∧ x1 ≥ xmax −→ q′1 = false
q1 = true ∧ x1 < xmax ∧ δ > 0 ∧ Kδ ≤ 1 −→

x′1 = x1 + δ(−K)(x1 − h)
q1 = false ∧ x1 > xmin ∧ δ > 0 ∧ Kδ ≤ 1 −→

x′1 = x1 + δ(−Kx)

The parametersxmin, xmax, andh satisfy the condition0 <
xmin < xmax < h (this is part of the specification of the prob-
lem). We do not explicitly mention this conjunct in the expres-
sions below, but it is implicitly assumed in the computation.

Starting with an initial state in which we assume nothing on
the value ofx andstate variables, symbolic simulation gives
the following:

φ0 : true
φ1 : (∃(q̄1) : q̄1 = false ∧ x1 ≤ xmin ∧ q1 = true

∨ (∃(q̄1) : q̄1 = true ∧ x1 ≥ xmax ∧ q1 = false)
∨ (∃(x̄1, δ) : q1 = true ∧ x̄1 < xmax ∧

0 < δ ≤ 1/K ∧ x1 = x̄1 −Kδ(x̄1 − h))
∨ (∃(x̄1, δ) : q1 = false ∧ x̄1 > xmin ∧

0 < δ ≤ 1/K ∧ x1 = x̄1 −Kδx̄1)
φ1 : (q1 = true ∧ (x1 ≤ xmin ∨ x1 < h)) ∨

(q1 = false ∧ (x1 ≥ xmax ∨ x1 > 0)) ∨
φ1 : (q1 = true ∧ x1 < h) ∨ (q1 = false ∧ x1 > 0)

We do not show the rest of the computation here, but it can be
checked that we get the same formula after the second symbolic
simulation step as well. Thus, the set of states represented by
φ1 is an invariant of the system.

Note that we can get a stronger invariant if we make a
stronger assumption on the parameterδ. As δ is constrained to
be in a smaller neighborhood of0+, the upper and lower bound
onx in the invariant gets closer toxmax andxmin, so that in the
limit, the invariant is(state = on ∧ x1 ≤ xmax) ∨ (state =
off ∧ x1 ≥ xmin).

We emphasize here that in this computation, no assumption
was made on (i) the values for the parametersh, xmin, and
xmax, or (ii) the initial state of the system.

D. Hybrid Systems with Standard Semantics

The techniques described in SectionsV-A and V-C are
generic techniques that have been developed for discrete tran-
sitions systems. Hence, they can be used on hybrid systems
only when we consider the simulation semantics of the contin-
uous components, which allows for a translation of the hybrid
system model into a discrete transition system model. We now
describe analysis techniques to deal with the standard semantics
of hybrid systems.

The procedure to test for inductive invariants for transition
systems was considered in SectionV-C. Since the same tech-
nique works for discrete transitions of a hybrid system, we now
restrict our attention to proving inductive invariants for contin-
uous dynamical systems. Letφ(X) be a formula representing a
set of states that we need to test for being inductive over some
continuous dynamical system. Assume that the formulaφ(X)
is of the form

∨
i ψi(X), where eachψi(X) is of the form∧

j

pj > 0 ∧
∧
j

qj = 0 ∧
∧
j

rj ≥ 0,

wherepj , qj , andrj are polynomials over the variablesX. A
sufficientcondition to establish thatφ(X) is inductive over the

8

continuous dynamics is that for eachψi, the following implica-
tion be valid in<:

ψi ⇒
∧
j

ṗj ≥ 0 ∧
∧
j

q̇j = 0 ∧
∧
j

(rj = 0⇒ ṙj ≥ 0),

whereṗj , q̇j , and ṙj denote the expressions obtained by sym-
bolically differentiating the polynomialspj , qj , andrj with re-
spective to the continuous dynamics. To prove that this con-
dition is sufficient, note that ifpj is positive in a state and the
above implication is true, theṅpj would be non-negative, and
hencepj would continue to remain positive. The case ofqj is
similar. If rj ≥ 0 in a state andrj = 0 ⇒ ṙj ≥ 0, thenrj
can not ever be negative. For example, consider a simple ex-
ponential decay systeṁx = −x. For this system, ifx > 0
in the initial state, then it is easily proved thatx ≥ 0 is an
inductive invariant using the above sufficient condition since
x = 0 ⇒ ẋ ≥ 0 is valid in<. Validity in the theory<, or<e
in general (when we consider hybrid systems), can be checked
by using either a suitable extension of the quantifier elimina-
tion procedure described in SectionV-B or some other decision
procedure for these theories.

E. Abstracting the Continuous Component

An abstraction of a system is any system that exhibits all the
behaviors (trajectories) of the original system, possibly more.
Abstract systems are usually smaller and are obtained by suit-
able generalization or pruning of information from the origi-
nal system. Abstraction is essential for analyzing systems con-
taining a large number of state variables. Since fairly effi-
cient model checking tools are available for searching through
a large, but finite, (discrete) state space, one of the challenges
in building analysis tools for hybrid systems is to come up with
suitable abstractions for the continuous components that are re-
fined enough to suffice for proving the properties of interest.

We construct sound finite state abstractions for continuous
dynamical systems by mapping the uncountable state space into
a finite state space by an abstraction function. More specifi-
cally, if CS = (X, Init , f) is a continuous dynamical system
such that|X| = n, then then-dimensional real spaceRn is
partitioned into zones which are sign-invariant for all polyno-
mials in some finite setP , say{p1, p2, . . . , pm}. The number
of abstract states is bounded by3m as each polynomial can be
either positive, negative, or zero in each zone. Formally, the set
of state variablesQ in the corresponding abstract discrete sys-
temDS = (Q, Init , t) contains exactly one new variable for
each polynomialp ∈ P . Thus,Q = {qp : p ∈ P}. These
new variables are interpreted over the domain{pos,neg , zero}
and consequently the setQ of all discrete states is the set
{pos,neg , zero}Q of all valuations of the variablesQ over this
domain. We shall represent any such valuation by the corre-
sponding conjunction of atomic formulas. For example, the
valuation〈qp1 7→ pos, qp2 7→ neg , qp3 7→ zero〉 will be thought
of as the formulap1 > 0 ∧ p2 < 0 ∧ p3 = 0. We shall use
such conjunctions and valuations interchangeably. The set of all
conjunctions representing such valuations will also be denoted
by Q. Note that these conjunctions are in the setWFF (X) of
formulas over free variablesX.

The continuous dynamics are mapped onto the abstract sys-
tem using qualitative reasoning. We add an abstract transition
(ψ1, ψ2) ∈ t if all of the following conditions hold (for all poly-
nomialsp ∈ P):
(a) if p < 0 is a conjunct inψ1, then (a1) if< |= ψ1 ⇒ ṗ ≤ 0,
thenp < 0 is a conjunct inψ2; (a2) otherwise, eitherp < 0 or
p = 0 is a conjunct inψ2;
(b) if p = 0 is a conjunct inψ1, then (b1) if< |= ψ1 ⇒ ṗ < 0,
thenp < 0 is a conjunct inψ2; (b2) if < |= ψ1 ⇒ ṗ = 0, then
p = 0 is a conjunct inψ2; (b3) if < |= ψ1 ⇒ ṗ > 0, then
p > 0 is a conjunct inψ2; and (b4) if the valuation oḟp cannot
be deduced fromψ1, then eitherp > 0, p = 0, or p < 0 is a
conjunct inψ2;
(c) if p > 0 is a conjunct inψ1, then (c1) if< |= ψ1 ⇒ ṗ ≥ 0,
thenp > 0 is a conjunct inψ2; (c2) otherwise, eitherp > 0 or
p = 0 is a conjunct inψ2.

The initial set of states inCS can be mapped onto an ini-
tial set of states inDS. For complete details on the abstraction
technique and its proof of correctness, see [36]. The effective-
ness of the constructed abstract system crucially depends on the
choiceP of polynomials. In general, the setP is constructed
by starting with a small setP0 of polynomials of interest and
adding to this set the time derivatives of polynomials inP0 and
their derivative and so on. The initial setP0 could contain, for
example, the polynomials that appear in the statement of the
property of interest that we want to establish for the given con-
tinuous system, or the polynomials that occur in the guards of
mode change transitions for exiting a mode in a hybrid system,
etc. Adding more polynomials toP results in finer abstractions.

Although the procedure for constructing an abstraction is de-
scribed using polynomials, the method is general and works for
other function choices as well. There are two issues to consider
in that case: first, polynomials guarantee that the partition of
the real space will be finite. For other functions, for example,
trigonometric functions, there could be infinitely many sign-
invariant regions. Second, as long as everything is polynomial,
we can use a decision procedure for the reals to construct the
abstraction. For more general functions, we might need addi-
tional inference engines to deal with them.

For linear systems, effective abstractions can be constructed
using eigenvectors of the transpose of the matrix specifying
the continuous dynamics corresponding to real-valued eigen-
values. The details of this method will be described in a future
paper. However, it is worth pointing out here that this obser-
vation gives a way to go beyond the known decidability results
for reachability set computation for certain classes of linear sys-
tems. In particular, it is known that the reachability sets can be
computed for linear systems specified by (a) nilpotent matrices,
(b) diagonalizable matrices with rational eigenvalues, (c) diag-
onalizable matrices with purely imaginary eigenvalues with ra-
tional imaginary part. In case where even a single eigenvalue
is (a) zero, or (b) real, or (c) purely imaginary, we can create
non-trivial abstractions using corresponding eigenvectors. The
more eigenvalues are real or purely imaginary, the more refined
abstraction can be created.

The abstraction technique is completely automatic for hy-
brid systems specified using polynomials (possibly nonlinear)
for flows, transition guards, and resets. We are currently inves-

9

tigating novel approaches to enrich the setP of polynomials
so that finer abstractions are created for non-linear systems as
well.

Example 7:For the adaptive cruise control law given in Ex-
ample1, let [v0, v1, a0, gap]T be the state vector. It is easily
established that the the characteristic polynomial of the4 × 4
matrix

A =

0 0 1 0
0 0 0 0
−4 3 −3 1
−1 1 0 0

corresponding to the dynamical system of Example1 is l3 +
3l2 + 4l + 1 = 0, which has a negative real root. The eigen-
vector of the transposeAT of A, corresponding to this neg-
ative real eigenvalue, is[r3,−r3 − 1, r4, 1]T , where r3 =
l2 + 3l and r4 = l. Hence, the corresponding polynomial
p = gap− r3v1 + r3v0 − v1 + r4a0 is used to construct an ab-
straction of the continuous dynamical system. The reason this
is useful is the fact that for this polynomial, the derivativeṗ is l
timesp, and for negative real valuel, the value ofpwould expo-
nentially decrease on each trajectory of the dynamical system.
The resulting abstraction allows us to prove collision avoidance
for sets of initial states wherep > 0 (assuming a bound on the
maximum deceleration). The initial condition specified in Ex-
ample1 satisfies this formula. We have assumed here that the
velocity of the leading carv1 is an unspecified symbolic con-
stant.

Example 8:Consider the thermostat hybrid model from Ex-
ample3. Starting with the setP0 = {x1} of seed polynomials,
the saturation process adds new polynomials from the specifi-
cation of the thermostat and the property to be proved. The final
set of polynomials generated is

P = {−Kx1 +Kh, x1, xmin − x1, x1 − xmax}

Note here that−Kx1 +Kh is the derivative ofx1 in the heater
“on” mode. The second derivative of−Kx1 + Kh in this
mode would be−K2(h − x1), which is a constant multiple
of −Kx1 +Kh and hence it is not added to the setP .

Using this set of polynomials and the known relationships
on the parametersxmin, xmax, andh, the abstract system is
created. Model-checking the abstract system against the safety
property that the temperature is betweenxmin andxmax shows
that this property is valid always.

VI. CONCLUSION

Due to large scale deployment of embedded processors
in several physical systems, many of which are safety crit-
ical, automated tools for analysis of embedded control sys-
tems is becoming an important and challenging task. Much
work has been done in the design and analysis of hybrid sys-
tems [14,7,4,8,17]. This paper describes tools and techniques
for performing formal analysis on hybrid models using a sym-
bolic approach to represent states and manipulate these repre-
sentations using formal techniques such as theorem provers and
decision procedures. The attractive features of this methodol-
ogy is that it avoids the theoretical intractability results by pro-
viding a graded sequence of tools to perform incremental anal-
ysis and provide incremental assurance. Since the techniques

are based on symbolic representations and manipulations, they
promise to scale more easily to larger systems.

We have presented a wide range of formal technologies for
hybrid control systems starting from completely automated and
invisible techniques like static analysis of simple program prop-
erties and symbolic simulation, through extended typechecking,
to abstraction and invariant generation. These analysis tools can
be embedded into design languages like Stateflow/Simulink to
provide greater assurance and quick error detection.

Stateflow design language is based on the concept of hier-
archical automata from Statecharts [15], but the semantics of
Stateflow diagrams is different from the semantics of State-
charts in several ways. There have been efforts at providing
semantics to Statecharts [16]. Hierarchical automata were used
for this purpose in [29], and a set of several different semantics
for Statecharts was given in [38].

Quantifier elimination tools have been used in the hybrid
system world in a variety of contexts. Formulas and expres-
sions over the first-order theory of real closed fields arise natu-
rally when linear and non-linear control systems are described.
Many problems in control theory can be reduced to finding so-
lutions of systems of polynomial equations, disequations, and
inequalities [22]. Quantifier elimination is also used in obtain-
ing decidability results for reachability in safety-critical embed-
ded systems and hybrid systems [26]. Many applications, espe-
cially in mechanical engineering and in numerical analysis, lead
to formulas with trigonometric functions involved [32]. In fact,
CAD-based quantifier elimination procedures have been used to
solve problems regarding stationarity, stability, and reachability
of control system designs [23]. Requiem [30] is a tool for per-
forming exact reachability state set computation for linear sys-
tems specified using nilpotent matrices. It uses the quantifier
elimination procedure implemented inside Mathematica. The
computation of the reach set for parametric inhomogenous lin-
ear differential systems is done using implicitization and quan-
tifier elimination in [6].

A finite decomposition of the real spaceRn into open sets
and points such that each partition element preserves a first-
order formula over reals is crucial not only for getting a de-
cision procedure for the first-order theory, but also for obtain-
ing finite abstractions of certain hybrid systems [5]. In fact,
a model-theoretic structure over the reals in which every (first-
order) definable subset ofRn is afiniteunion of points and open
intervals is called ao-minimalstructure. It is shown in [5] that
hybrid systems that are definable over some o-minimal struc-
ture admit finite abstractions. The class of o-minimal structures
over the reals includes structures with richer signatures as well.

The techniques for verification of hybrid systems described
in this paper are being extended in several different ways. First,
compositional techniques for creating the abstract transition
system are being developed. This will make the tools scalable
to handle larger system designs. Second, new techniques for
identifying interesting polynomials to partition the state space
are required to create fine abstractions for non-linear systems.
The basic premise is that even though the general reachability
problem might be intractable, there should be ways to extract
sufficient, though incomplete, information from the model de-
scriptions to prove the properties of interest for a given sys-

10

tem. Finally, the abstraction technique relies strongly on the
ability to check validity of formulas in a given theory. If
good decision procedures for this problem can be developed
for richer theories, then the abstraction method can be used on
non-polynomial systems as well. A unique feature in our way
of using the decision procedures is that our algorithm is tolerant
to failures of the decision procedure. More specifically, even if
the procedure fails to prove a theorem which was valid, the ab-
straction algorithm continues to remain sound, though it might
result in weaker abstractions.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine.
The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(3):3–34, 1995.
1

[2] R. Alur and D. Dill.
A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.
1

[3] R. Alur, K. Etessami, and M. Yannakakis.
Analysis of recursive state machines.
In G. Berry, H. Comon, and A. Finkel, editors,Com-
puter Aided Verification, 13th International Conference,
CAV 2001, Paris, France, July 18-22, 2001, Proceed-
ings, volume 2102 ofLecture Notes in Computer Science.
Springer, 2001.
5

[4] R. Alur, T. Henzinger, and E. D. Sontag (eds.).
Hybrid Systems III.
Springer-Verlag, Berlin, 1996.
volume 1066 ofLecture Notes in Computer Science.
9

[5] Rajeev Alur, Tom Henzinger, Gerardo Lafferriere, and
George J. Pappas.
Discrete abstractions of hybrid systems.
Proceedings of the IEEE, 88(2):971–984, July 2000.
9

[6] H. Anai and V. Weispfenning.
Reach set computations using real quantifier elimination.
In M. D. Di Benedetto and A. Sangiovanni-Vincentelli,
editors,Hybrid Systems: Computation and Control HSCC
2001, volume 2034 ofLNCS, pages 63–76. Springer-
Verlag, 2001.
9

[7] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.).
Hybrid Systems II.
Springer-Verlag, Berlin, 1995.
volume 999 ofLecture Notes in Computer Science.
9

[8] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.).
Hybrid Systems IV.
Springer-Verlag, Berlin, 1997.
volume 1273 ofLecture Notes in Computer Science.
9

[9] Gérard Berry, Hubert Comon, and Alain Finkel, editors.
Computer Aided Verification, 13th International Confer-
ence, CAV 2001, Paris, France, July 18-22, 2001, Pro-
ceedings, volume 2102 ofLecture Notes in Computer Sci-
ence. Springer, 2001.
1

[10] A. Bouajjani, J. Esparza, and O. Maler.
Reachability analysis of pushdown automata: Application
to model-checking.
In A. W. Mazurkiewicz and J. Winkowski, editors,CON-
CUR 97: 8th International Conference on Concurrency
Theory, volume 1243 ofLNCS, pages 135–150. Springer-
Verlag, 1997.
5

[11] B. Buchberger, G. E. Collins, M. J. Encarnacion, H. Hong,
J. R. Johnson, W. Krandick, R. Loos, A. M. Mandache,
A. Neubacher, and H. Vielhaber.
SACLIB 1.1 user’s guide.
In RISC-Linz Report Series, Tech Report No 93-19. Kurt
Gödel Institute, 1993.
www.eecis.udel.edu/ ∼saclib/ .
6

[12] Alongkrit Chutinam and Bruce H. Krogh.
Verification of polyhedral-invariant hybrid automata using
polygonal flow pipe approximations.
In Frits W. Vaandrager and Jan H. van Schuppen, editors,
Hybrid Systems: Computation and Control, volume 1569
of LNCS, pages 76–90. Springer-Verlag, 1999.
6

[13] G. E. Collins.
Quantifier elimination for the elementary theory of real
closed fields by cylindrical algebraic decomposition.
In Proc. Second GI Conf. Automata Theory and Formal
Languages, pages 134–183, 1975.
Vol. 33 of Lecture Notes in Comp. Sci., Springer, Berlin.
2, 6

[14] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel
(eds.).
Hybrid Systems.
Springer-Verlag, Berlin, 1993.
volume 736 ofLecture Notes in Computer Science.
9

[15] D. Harel.
Statecharts: A visual formalism for complex systems.
Sci. Comput. Program., 8:231–274, 1987.
9

[16] D. Harel and A. Naamad.
The statemate semantics of statecharts.
ACM Transactions on Software Engineering and Method-
ology, 5(4):293–333, October 1996.
9

[17] T. Henzinger and S. Sastry (eds.).
Hybrid Systems: Computation and Control.
Springer-Verlag, Berlin, 1998.
volume 1386 ofLecture Notes in Computer Science.
9

[18] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata?

11

Journal of Computer and System Sciences, 57:94–124,
1998.
1

[19] H. Hong.
An improvement of the projection operator in cylindrical
algebraic decomposition.
In Proc. ISAAC 90, pages 261–264, 1990.
6

[20] H. Hong.
Quantifier elimination in elementary algebra and geome-
try by partial cylindrical algebraic decomposition version
13.
In The world wide web, 1995.
http://www.gwdg.de/ ∼cais/systeme/-
saclib, www.eecis.udel.edu/ ∼saclib/ .
6

[21] Mats Jirstrand.
Cylindrical algebraic decomposition - an introduction.
Technical Report LiTH-ISY-R-1807, Dept of EE.
Linköping University, S-581 83 Link̈oping, Sweden, Dec
1995.
Available by anonumous ftp at ftp.control.ee.liu.se.
6

[22] Mats Jirstrand.
Algebraic methods for modeling and design in control.
Licentiate thesis LIU-TEK-LIC-1996:05 Linkping Stud-
ies in Science and Technology. Thesis No 540, Depart-
ment of Electrical Engineering, Li, 1996.
9

[23] Mats Jirstrand.
Nonlinear control system design by quantifier elimination.
Journal of Symbolic Computation, 24(2):137–152, Aug
1997.
9

[24] Warren A. Hunt Jr. and Steven D. Johnson, editors.
Formal Methods in Computer-Aided Design, Third Inter-
national Conference, FMCAD 2000, Austin, Texas, USA,
November 1-3, 2000, Proceedings, volume 1954 ofLec-
ture Notes in Computer Science. Springer, 2000.
1

[25] G. Lafferriere, G. J. Pappas, and S. Sastry.
O-minimal hybrid systems.
Mathematics of Control, Signals, and Systems, 13(1):1–
21, 2000.
1

[26] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine.
Symbolic reachability computations for families of linear
vector fields.
J. Symbolic Computation, 2001.
To appear.
9

[27] D. Lazard.
An improved projection for cylindrical algebraic decom-
position.
Technical Report, Informatique, Universite Paris IV, F-
75252 Paris Cedex 05, France, 1990.
6

[28] S. McCallum.

An improved projection operator for cylindrical algebraic
decomposition of three dimensional space.
J. Symbolic Computation, 5:141–161, 1988.
6

[29] E. Mikk, Y. Lakhnech, and M. Siegel.
Hierarchical automata as model for statecharts.
In Asian Computing Science Conference (ASIAN’97), vol-
ume 1345 ofLNCS. Springer-Verlag, 1997.
9

[30] P. Mishra and G. J. Pappas.
Reachability using quantifier elimination.
In University of Pennsylvania hybrid systems group web-
page, 2001.
www.seas.upenn.edu/hybrid/requiem.html .

9
[31] I. Mitchell and C. Tomlin.

Level set methods for computation in hybrid systems.
In Hybrid Systems: Computation and Control HSCC
2000, 2000.
LNCS 1790.
6

[32] Petru Pau and Josef Schicho.
Quantifier elimination for trignometric polynomials by
cylindrical algebraic trignometric decomposition.
www.risc.uni-linz.ac.at/people/ppau, Research Institute
for Symbolic Computation, Johannes Kepler University,
A-4040 Linz, Austria, 1999.
9

[33] A. Puri and P. Varaiya.
Driving safely in smart cars.
In Proceedings of the 1995 American Control Conference,
1995.
3

[34] A. Tarski.
A Decision Method for Elementary Algebra and Geome-
try.
University of California Press, 1948.
Second edition.
2

[35] A. Tiwari.
Formal semantics and analysis methods for Simulink
Stateflow models.
Technical report, SRI International, 2001.
http://www.csl.sri.com/ ∼tiwari/-
stateflow.html .
4

[36] A. Tiwari and G. Khanna.
Series of abstractions for hybrid automata.
In C. J. Tomlin and M. R. Greenstreet, editors,Hybrid
Systems: Computation and Control HSCC, volume 2289
of LNCS, pages 465–478. Springer, March 2002.
8

[37] A. Tiwari, H. Rueß, H. Säıdi, and N. Shankar.
A technique for invariant generation.
In Tiziana Margaria and Wang Yi, editors,TACAS 2001 -
Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 ofLNCS, pages 113–127, Genova,

12

Italy, April 2001. Springer-Verlag.
7

[38] M. von der Beek.
A comparison of stateflow variants.
In L. de Roever and J. Vytopil, editors,Formal techniques
in real-time and fault tolerant systems, volume 863 of
LNCS, pages 128–148. Springer-Verlag, 1994.
9

	Introduction
	Notation

	Discrete Transition Systems
	Continuous Dynamical Systems
	Simulink Simulation Semantics

	Hybrid Systems
	Expressive Power of the Modeling Formalism

	Analysis Techniques for Hybrid Systems
	Symbolic Simulation
	Quantifier Elimination
	Invariant Generation and Checking
	Hybrid Systems with Standard Semantics
	Abstracting the Continuous Component

	Conclusion
	References

