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Abstract. We describe an abstract domain for representing useful in-
variants of heap-manipulating programs (in presence of recursive data
structures and pointer arithmetic) written in languages like C or low-level
code. This abstract domain allows representation of must and may equal-
ities among pointer expressions. Pointer expressions contain existentially
or universally quantified integer variables guarded by some base domain
constraint. We allow quantification of a special form, namely ∃∀ quan-
tification, to balance expressiveness with efficient automated deduction.
The existential quantification is over some dummy non-program vari-
ables, which are automatically made explicit by our analysis to express
useful program invariants. The universal quantifier is used to express
properties of collections of memory locations. Our abstract interpreter
automatically computes invariants about programs over this abstract
domain. We present initial experimental results demonstrating the effec-
tiveness of this abstract domain on some common coding patterns.

1 Introduction

Alias analysis attempts to answer, for a given program point, whether two pointer
expressions e1 and e2 are always equal (must-alias) or may be equal (may-
alias). Keeping precise track of this information in the presence of recursive
data-structures is hard because the number of expressions, or aliasing relation-
ships, becomes potentially infinite. The presence of pointer arithmetic makes
this even harder.

We describe an abstract domain that can represent precise must and may-
equalities among pointer expressions that are needed to prove correctness of
several common code patterns in low-level software. It is motivated by the early
work on representing aliasing directly using must-alias and may-alias pairs of
pointer expressions [2, 15, 4, 5]. However, there are two main differences. (a) The
language of our pointer expressions is richer: The earlier work built on con-
structing pointer expressions from (pre-defined) field dereferences; however our
expressions are built from dereferencing at arbitrary integer (expression) offsets.
This gives our abstract domain the ability to handle arrays, pointer arithmetic,

? The second author was supported in part by the National Science Foundation under
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struct List {int Len, *Data; List* Next;}
ListOfPtrArray(struct List* x)

1 for (y := x; y 6= null; y := y→next)
2 t :=?; y→len := t; y→data := malloc(4t);
3 for (y := x; y 6= null; y := y→next)
4 for (z := 0; z < y→len; z := z + 1) y→data→(4z) := ...;

Fig. 1. An example of a pattern of initializing the pairs of dynamic arrays and their
lengths inside each list element and later accessing the array elements.

and recursive structures in one unified framework. (b) Apart from the integer
program variables, we also allow integer variables (in our expressions) that are
existentially or universally quantified. This allows our abstract domain to rep-
resent nontrivial properties of data-structures in programs. 3

We allow only a special form of quantification in our abstract domain, namely
∃∀ quantification, to balance expressiveness with potential for automated deduc-
tion. The quantification is over integer variables that are not program variables.
The existentially quantified variables can be seen as dummy program variables
that are explicitly needed to express common program invariants. The univer-
sally quantified variables describe properties of (potentially unbounded) collec-
tions of memory locations.

Our abstract domain uses only two base predicates, must and may equality,
unlike the common approach of using a pre-defined set of richer predicates [13, 20,
19, 14]. As a result, reasoning in our abstract domain does not require any special
deduction rules, thereby yielding comparative simplicity and easier automation.

Consider, for example, the program shown in Figure 1. The input variable
x points to a list (unless qualified, list refers to an acyclic singly-linked list in
this paper), where each list element contains two fields, Data and Len, apart
from the Next field. Data is a pointer to some array, and Len is intended to be
the length of that array. In the first while loop, the iterator y iterates over each
list element, initializing Data to point to a newly created array and Len to the
length of that array. In the second while loop, the iterator y iterates over each
list element accessing the array pointed to by Data. The proof of memory safety
of this commonly used code pattern requires establishing the invariant that for
all list elements in the list pointed to by x, Len is the length of the array Data.
This quantified invariant is expressed in our abstract domain as

∃i.List(x, i, next) ∧ ∀j[0 ≤ j < i ⇒ Array(x→nextj→data, 4× x→nextj→len)] (1)

where x→nextj is an (pointer) expression in our language that denotes the mem-
ory location obtained by performing j dereferences at offset next starting from
x. The predicates List and Array are abbreviations for the following definitions.

List(x, i, next) ≡ i ≥ 0 ∧ x→nexti = null ∧ ∀j[0 ≤ j < i ⇒ Valid(x→nextj)]
Array(x, t) ≡ ∀j[(0 ≤ j < t) ⇒ Valid(x + j)]

3 A limited form of quantification over integer variables was implicitly hidden in the
set representation used for representing may-aliases in the work by Deutsch [5].



Intuitively, List(x, i, next) denotes that x points to a list of length i (with next
as the next field) and Array(x, t) denotes that x points to a region of memory of
length t. The predicate Valid(e) is intended to denote that e is a valid pointer
value, which is safe to dereference (provided the subexpressions of e are safe to
dereference)4, and can be encoded as the following must-equality:

Valid(e) ≡ e→β = valid

where β is a special symbolic integer offset that is known to not alias with any
other integer expression, and valid is a special constant in our expression lan-
guage.We automatically generate invariants, like the one described in Equation 1,
by performing abstract interpretation (whose transfer functions are described in
a full version of this paper [11]) over our abstract domain.

This paper is organized as follows. Section 2 describes our program model,
which closely reflects the memory model of C modulo some simple assumptions.
We then formally describe our abstract domain and present its semantics in
relation to our program model (Section 3). We then describe the procedure
to check implication in this abstract domain (Section 4). Section 5 discusses
preliminary experimental results, while Section 6 describes some related work.

2 Program Model

Values A value v is either an integer, or a pointer value, or is undefined. A
pointer value is either null or a pair of a region identifier and a positive offset.

v ::= c | 〈r, d〉 | null | ⊥

Program State A program state ρ is either undefined, or is a tuple 〈D,R, V, P 〉,
where D represents the set of valid region identifiers, R is a region map that
maps a region identifier in D to a positive integer (which denotes size of that
region), V is a variable map that maps program variables to values, and P is
a memory that maps non-null pointer values to values. We say that a pointer
value 〈r, d〉 is valid in a program state 〈D,R, V, P 〉 if r ∈ D and 0 ≤ d < R(r).
We say that a pointer value is invalid if it is neither valid nor null.

Expressions The program expressions e that occur on the right side of an as-
signment statement are described by the following language.

e ::= c | x | e1 ± e2 | c× e | e1→e2 | null | ?

e1→e2 represents dereference of the region pointed to by e1 at offset e2 (i.e.,
∗(e1 +e2) in C language syntax). The above expressions have the usual expected
semantics with the usual restrictions that it is not proper to add or subtract two

4 This assumption is important because we want to treat Valid as an uninterpreted
unary predicate, which allows us to encode it as a simple must-equality. However
this necessitates that validity of all valid subexpressions be described explicitly.



[[null]]ρ = null
null

[[e1]]ρ = 〈r, d〉 [[e2]]ρ = c r ∈ D 0 ≤ d + c < R(r)

[[e1→e2]]ρ = P (〈r, d + c〉)
deref

[[e1]]ρ and [[e2]]ρ are ints

[[e1 ± e2]]ρ = [[e1]]ρ + [[e2]]ρ
intArith

[[x1]]ρ and [[x2]]ρ are ints

[[x1 rel x2]]ρ = [[x1]]ρ rel [[x2]]ρ
IntCompare

[[c]]ρ = c
cons

rel ∈ {6=, =} [[x1]]ρ, [[x2]]ρ are null or valid pointers

[[x1 rel x2]]ρ = [[x1]]ρ rel [[x2]]ρ
ptrCompare

[[e1]]ρ = 〈r, d〉 [[e2]]ρ = int c

[[e1 ± e2]]ρ = 〈r, d± c〉
ptrArith

V (y) = 〈r, i〉 r ∈ D 0 ≤ i < R(r)

[[free(y)]]ρ = 〈D − {r}, R, V, P 〉
Free

Let c be a non-det int

[[?]]ρ = c
nonDet

[[x := e]]ρ = 〈D, R, V [x 7→ [[e]]ρ], P 〉
varUpdate

[[x]]ρ = V (x)
var

V (x) = 〈r, i〉 [[e1]]ρ = j r ∈ D 0 ≤ i + j < R(r)

[[x→e1 := e2]] ρ = 〈D, R, V, P [〈r, i + j〉 7→ [[e2]]ρ]〉
MemUpdate

[[e]]ρ ≥ 0 Let r be some fresh region identifier

[[x := malloc(e)]]ρ = 〈D ∪ {r}, R[r 7→ [[e]]ρ], V [x 7→ 〈r, 0〉], P 〉
Malloc

Fig. 2. Semantics of Expressions, Predicates, and Statements in our language. ρ denotes
the state 〈D, R, V, P 〉. In a program state, an expression is evaluated to a value, a
predicate is evaluated to a boolean value, and a statement is evaluated to a program
state. Evaluation of an expression, or statement in a state s.t. none of the above rules
apply yields a ⊥ value or ⊥ state respectively.

pointer values, and that only a valid pointer value can be dereferenced. ? denotes
a non-deterministic integer and is used to conservatively model other program
expressions whose semantics we do not precisely capture (e.g., those that involve
bitwise arithmetic). Given a program state ρ, an expression e evaluates to some
value, denoted by [[e]]ρ, according to the formal semantics given in Figure 2.

Statements The assignment statements, x := e and ∗x := e, have standard
semantics. The memory allocation assignment, x := malloc(e), assigns a pointer
value with a fresh region identifier to x. The statement free(e) frees the region
pointed to by e. The formal semantics of these statements is given in Figure 2.

Predicates The predicates that occur in conditionals are of the form x1 rel x2,
where rel ∈ {<,≤, 6=,=}. Without loss of any generality, we assume that x1 and
x2 are either program variables or constants. These predicates have the usual
semantics: Given a program state ρ, a predicate evaluates to either true or
false. Pointer-values can be compared for equality or disequality, while integer
values can be compared for inequality too; see Figure 2.

Memory Safety and Leaks We say that a procedure is memory-safe and leak-free
under some precondition, if for any program state ρ satisfying the precondition,
the execution of the procedure yields program states ρ′ that have the following



properties respectively: (a) ρ′ 6= ⊥, (b) if ρ′ = 〈D,R, V, P 〉, then for all region
identifiers r ∈ D, there exists an expression e s.t. [[e]]ρ′ = 〈r, d〉.

Intuitively, a procedure is memory-safe if all memory dereferences and free
operations are performed on valid pointer values. Observe that our definition of
memory safety precludes dangling pointer dereferences also. Similarly, a proce-
dure is leak-free if all allocated regions can be traced by means of some expres-
sion.

Relation with C programs The semantics of our program model closely reflects
the C language semantics under the following assumptions: (a) All memory ac-
cesses are at word-boundaries and the size of each object read or written is at
most a word. (b) The free(x) call frees a valid region returned by malloc even if
x points somewhere in middle of that region (some implementations of C insist
that x point to the beginning of a region returned by malloc). Our program
model can be easily adapted to capture other possible semantics of C while not
depending on the above assumptions. The current choice has been made to sim-
plify presentation. We can thus test if a C program is memory-safe and leak-free
by checking for the respective properties in our model.

3 Abstract Domain

The elements of our abstract domain describe must and may equalities between
expressions. However, we need a richer language of expressions (as compared to
the language of program expressions described in Section 2) to describe useful
program properties. Hence, we extend the expression language as follows:

e ::= c | x | e1 ± e2 | c× e | e1→ee3
2 | valid | null

valid is a special constant in our domain that satisfies valid 6= null. The
constant valid is used to represent that certain expressions contain a valid
pointer value (as opposed to null or uninitialized or dangling etc) in the Valid
predicate defined on Page 3 in Section 1.

The new construct e1→ee3
2 denotes e3 de-references of expression e1 at offset

e2, as is formalized by following semantics (If e3 is 1, we write e1→ee3
2 as e1→e2).

[[e1→ee3
2 ]]ρ =


[[e1]]ρ if [[e3]]ρ = 0
[[(e1→e2)→ee3−1

2 ]]ρ if [[e3]]ρ > 0
⊥ otherwise

Must-equality is a binary predicate over pointer expressions denoted using
“=” and is used in an infix notation. This predicate describes equalities between
expressions that have the same value at a given program point (in all runs of
the program). May-equality is also a binary predicate over pointer expressions.
It is denoted using “∼” and is used in an infix notation. This predicate describes
an over-approximation of all possible expression equalities at a given program



point (in any run of the program). Disequalities are deduced from absence of
(transitive closure of) may-equalities. The reason for keeping may-equalities in-
stead of disequalities is that the former representation is often more succinct in
the common case when most memory locations are not aliased (i.e., have only
one incoming pointer).

3.1 Abstract Elements

An abstract element F in our domain is a collection of must-equalities M , and
may-equalities Y , together with some arithmetic constraints C on integer expres-
sions. Apart from the program variables, the expressions in M , Y , and C may
contain extra integer variables that are existentially or universally quantified.
Each must-equality and may-equality is universally quantified over integer vari-
ables Uf that satisfy some constraints Cf. The collection of these must-equalities
M , may-equalities Y and constraints C may further be existentially quantified
over some variables. Thus, the abstract element is a ∃∀ formula. The constraints
C and Cf are arithmetic constraints on expressions in a base constraint domain
that is a parameter to our algorithm.

F ::= ∃U : C,M, Y

M ::= true | M ∧ ∀Uf(Cf ⇒ (e1 = e2))
Y ::= true | Y ∧ ∀Uf(Cf ⇒ (e1 ∼ e2))

The existentially quantified variables, U , can be seen as dummy program vari-
ables that are needed to express the particular program invariant. The universal
quantification allows us to express properties of collections of entities (expres-
sions in our case).

Formal Semantics of Abstract Elements An abstract element F represents a
collection of program states ρ, namely those states ρ that satisfy F (as defined
below). A program state ρ = 〈D,R, V, P 〉 satisfies the formula F = ∃U : C,M, Y
(denoted as ρ |= F ) if there exists an integer substitution σ for variables in U
such that the following holds: If ρe = 〈D,R, V σ, P 〉, (where V σ denotes the
result of mapping v to σ(v), for all v, in V ) then,

– ρe |= C, i.e., for each predicate e1 rel e2 ∈ C, [[e1 rel e2]]ρe evaluates to true.
– ρe |= M , i.e., for all facts (∀Uf(Cf ⇒ (e1 = e2))) ∈ M , for every integer

assignment σf to variables in Uf, if ρf |= Cf then [[e1]]ρf = [[e2]]ρf, where
ρf = 〈D,R, V σσf , P 〉. In the special case when e1 = e2 is of the form
e→β = valid, then [[e]]ρf = 〈r, c〉, r ∈ D, and 0 ≤ c + [[β]]ρf < R(r).

– For all expressions e1 and e2, if there is a state ρ′ s.t. ρ′ |= C, ρ′ |= Y
(treating may-equality as must-equality and using the above definition of
|=), [[e1]]ρ′ 6= ⊥, [[e2]]ρ′ 6= ⊥, and [[e1]]ρ′ 6= [[e2]]ρ′, then [[e1]]ρe 6= [[e2]]ρe.
Informally, if e1 ∼ e2 is not implied by Y , then [[e1]]ρe 6= [[e2]]ρe.



The top element > in our abstract domain is represented as:∧
x,y

∀i1, i2, j1, j2[(x→ij11 ) ∼ (y→ij22 )]

In standard logic with equality and disequality predicates, this would be rep-
resented as true. However, since we represent the disequality relation by rep-
resenting its dual, we have to explicitly say that anything reachable from any
variable x may be aliased to anything reachable from any variable y.

Observe that the semantics of must-equalities and may-equalities is liberal
in the sense that a must-equality e1 = e2 or may-equality e1 ∼ e2 does not
automatically imply that e1 or e2 are valid pointer expressions. Instead the
validity of an expression needs to be explicitly stated using Valid predicates
(defined on Page 3 in Section 1).

Observe that there cannot be any program state that satisfies a formula whose
must-equalities are not a subset of (implied by the) may-equalities. Hence, any
useful formula will have every must-equality also as a may-equality. Therefore,
we assume that in our formulas all must-equalities are also may-equalities, and
avoid duplicating them in our examples.

3.2 Expressiveness

In this section, we discuss examples of program properties that our abstract
elements can express.
(a) x points to an (possibly null) acyclic list: ∃i : List(x, i, next). The predicate
List is as defined on Page 2.
(b) x points to a region (array) of t bytes: Array(x, t). The predicate Array is
as defined on Page 2.
(c) x points to a cyclic list: ∃i : i ≥ 1 ∧ x = x→nexti ∧ ∀k(0 ≤ k < i ⇒
Valid(x→nextk))
(d) Lists x and y share a common tail: ∃i, j : i ≥ 0∧j ≥ 0∧x→nexti = y→nextj

(e) y may point to some node in the list pointed to by x.

∃i : x→nexti ∼ y or, equivalently, ∀i(x→nexti ∼ y)

Observe that existential quantification and forall quantification over may-equalities
has the same semantics.
(f) The (reachable) heap is completely disjoint, i.e., no two distinct reachable
memory locations point to the same location: true. Observe that disjointedness
comes for free in our representation, i.e., we do not need to say anything if we
want to represent disjointedness.
(g) y may be reachable from x, but only by following left or right pointers.
Such invariants are useful to prove that certain iterators over data-structures
do not update certain kinds of fields. The expression language described above
is insufficient to represent this invariant precisely. However, a simple extension
in which disjunctions of offsets (as opposed to a single offset) are allowed can
represent this invariant precisely as follows: ∀i ≥ 0 : x→(left‖right)i ∼ y. The



semantics of the abstract domain can be easily extended to accomadate disjunc-
tive offsets as above. A formal treatment of disjunctive offsets was avoided in
this paper for the purpose of simplified presentation.

Regarding limitations of the abstract domain, we can not express arbitrary
disjunctive facts and invariants that requires ∀∃ quantification (such as the in-
variants required to analyze the Schorr-Waite algorithm [12]). We plan to enrich
our abstract domain in the future.

4 Automated Deduction over the Abstract Domain

In this section, we briefly describe the key ideas behind our sound procedure for
checking implication in our abstract domain.5 For lack of space, the remaining
transfer functions (namely, Join, Meet, Widen, and Strongest Postcondition
operations) needed for performing abstract interpretation over our abstract do-
main are described in a full version of this paper [11].

The first step in deciding if F implies F ′, where F, F ′ are abstract elements, is
to instantiate the existentially quantified variables in F ′ in terms of existentially
quantified variables in F . We do this by means of a heuristic that we have
found to be effective for our purpose. After this step, we can treat the existential
variables as constants. Now consider the simpler problem of checking whether
F implies e1 = e2 or whether F implies e1 6= e2. For the former, we compute
an under-approximation of must-aliases of e1 from the must-equalities of F and
then check whether e2 belongs to that set. For that latter, we compute an over-
approximation of may-aliases of e1 from the may-equalities of F and then check
whether e2 does not belong to that set.

The function MustAliases(e, F ) returns an under-approximation A of all
must-aliases of expression e such that for every e′ ∈ A, we can deduce that F ⇒
e = e′. Similarly, the function MayAliases(e, F ) returns an over-approximation
A of all may-aliases of expression e such that if F ⇒ e ∼ e′, then e′ ∈ A. Since
these alias sets may have an infinite number of expressions, we represent the alias
sets of an expression e using a finite set of pairs (C, e′), where (C, e′) denotes all
expressions e′ that satisfy the constraint C. 6

The pseudo-code for MustAliases and MayAliases is described in Figure 3.
The key idea in our algorithm for MustAliases is to do a bounded number of
transitive inferences on the existing must-equalities. The key idea in MayAliases

5 We have not investigated decidability of the entailment relation in our abstract
domain. Results about ∃∀ fragment of first-order logic are not directly applicable
because of integer variables in our terms. In this work, the focus was on obtaining
an abstract domain for building a sound abstract interpreter that can generate useful
invariants. Theoretical issues, such as decidability, are left for future work.

6 This representation is motivated by the one used by Deutsch [5] except that the
constraints in his formalism were pure linear arithmetic facts with no support for un-
interpreted function subterms, and the expressions did not have support for pointer
arithmetic. Moreover Deutsch used this representation only for computing may-
aliases, and there was no support for must-aliases in his framework.



MustAliases(e, F )
A := {〈true, e〉}
While change in A and not tired

Forall (∀V (C ⇒ e1 = e2)) ∈ F and

〈C′, e′〉 ∈ A
If ((σ, γ) := MatchExpr(e′, e1) 6= ⊥)

A := A ∪ {〈C′ ∧ Cσ, (e2σ)→γ〉}
return A

MayAliases(e, F )
A := {〈true, e〉}
While change in A

Forall (∀V (C ⇒ e1 ∼ e2)) ∈ F and

〈C′, e′〉 ∈ A
If ((σ, γ) := MatchExpr(e′, e1) 6= ⊥)

A := A ∪ {〈C′ ∧ Cσ, (e2σ)→γ〉}
A := OverApprox(A)

return A

Inputs:

e = x
F1 = {x = x→n

j}
F2 = {∀i((0 ≤ i < j) ⇒

x→n
i = x→n

i+1→p)}
Outputs:

MustAliases(e, F1) =
{x→n

j , x→n
2j}

MustAliases(e, F2) =
{x→n→p, x→n→p→n→p}

MayAliases(e, F1) =
{x→n

t | t ≥ j}
MayAliases(e, F2) =

{x→(n‖p)t | 0 ≤ t} or
{x→(t1)

t2 | 0 ≤ t2 ∧ ` ≤ t1 ≤ u}
where ` = min(n, p), u = max(n, p)

(a) Algorithm (b) Examples

Fig. 3. The functions MustAliases and MayAliases. In (b), the first choice for
MayAliases(e, F2) is better than the second choice (if the n and p fields are not laid out
successively), but will be generated only if we allow disjunctive offsets, as addressed in
Section 3.2. Even though MayAliases is a conservative overapproximation it helps us
prove that x does not alias with, for example, x→data.

is to do transitive inferences on may-equalities until fixed-point is reached. A
function, OverApprox, for over-approximating the elements in the set is used to
guarantee termination in a bounded number of steps. (Similar widening tech-
niques have been used for over-approximating regular languages [21].) Due to
the presence of universal variables, the application of transitive inference re-
quires matching and substitution, as in the theory of rewriting. The function
MatchExpr(e′, e1) returns either ⊥ or a substitution σ (for the universally quan-
tified variables in e1) and a subterm γ s.t. e′ and e1σ→γ are syntactically equal.

Observe that the above algorithm for MustAliases lacks the capability for
inductive reasoning. For example, even if the transitive inference goes on forever,
it cannot deduce, for example, that x→ni→pi is a must-alias of x, for any i, given
F2 of Figure 3. However, such inferences are not usually required.

5 Experiments

We have implemented a tool that performs an abstract interpretation of pro-
grams over the abstract domain described in this paper. Our tool is implemented
in C++ and takes two inputs: (i) some procedure in a low-level three-address
code format (without any typing information) (ii) precondition for the inputs of
that procedure expressed in the language of our abstract domain.



Program Property Discovered (apart from memory safety) Precondition Used

ListOfPtrArray Input is a list

ListReverse Reversed list has length n Input is list of size n

List2Array Corresponding array and list elmts are same Input is a list

Fig. 4. Examples on which we performed our experiments. Our prototype implementa-
tion took less than 0.5 seconds for automatic generation of invariants on these examples.
We also ran our tool in a verification setting in which we provided the loop invariants
and the tool took less than 0.1 seconds to verify the invariants.

Our experimental results are encouraging. We chose the base constraint do-
main to be the conjunctive domain over combination of linear arithmetic and
uninterpreted function terms [10]. We were successfully able to run our tool on
the example programs shown in the table in Figure 4. These examples have
been chosen for the following reasons: (i) These examples represent very com-
mon coding patterns. (ii) We do not know of any automatic tool that can verify
memory safety of these programs automatically in low-level form, where pointer
arithmetic is used to compute array offsets and even field dereferences.

ListOfPtrArray This is the same example as described in Figure 1. Our tool gen-
erates the following non-trivial loop invariant required to establish the property
in Equation 1, which is required to prove memory safety in the second loop.

∃i, j′ : List(x, i, next) ∧ 0 ≤ j′ ≤ i ∧ y = x→nextj′
∧

∀j[(0 ≤ j < j′) ⇒ Array(x→nextj→data, 4× (x→nextj→len))]

We now briefly describe how the above invariant is automatically generated.
We denote Array(x→nexti→data, 4 × (x→nexti→len)) by the notation S(i).
For simplicity, assume that the length of the list x is at least 1 and the body
of the loop has been unfolded once. The postcondition operator generates the
following must-equalities F l and F r (among other must-equalities) before the
loop header and after one loop iteration respectively.

F l = (y = x→next ∧ S(0)) F r = (y = x→next2 ∧ S(0) ∧ S(1))

Our join algorithm computes the join of these must-equalities as

∃j′ : 1 ≤ j′ ≤ 2 ∧ y = x→nextj′
∧ ∀j(0 ≤ j < j′ ⇒ S(j))

which later gets widened to the desired invariant. Note the power of our join
algorithm [11] to generate quantified facts from quantifier-free inputs.

ListReverse This procedure performs an in-place list reversal. The interesting
loop invariant that arises in this example is that the sum of the lengths of the list
pointed to by the iterator y (i.e., the part of the list that is yet to be reversed)
and the list pointed to by the current result result (i.e., the part of the list that
has been reversed) is equal to the length n of the original input list.

∃i1, i2 : i1 + i2 = n ∧ List(y, i1, next) ∧ List(result, i2, next)



List2Array(x)
struct {int Data, *Next}*x;

1 ` := 0;
2 for(y := x; y 6= null; y := y→n)
3 ` := ` + 1;
4 A := malloc(4`); y := x;
5 for(k := 0; k < `; k := k + 1)
6 A→(4k) := y→d; y := y→n;

7 return A

π Invariant at π

1 ∃i : List(x, i, n)

2 ∃i : ` = 0, List(x, i, n)

3 ∃i : 0 ≤ ` < i, List(x, i, n), y = x→n`

4 List(x, `, n)

5 List(x, `, n), Array(A, 4`)

6 List(x, `, n), Array(A, 4`), 0 ≤ k < `, y = x→nk

∀j((0 ≤ j < k) ⇒ x→nj→d = A→(4j + d)

7 List(x, `, n), Array(A, 4`), y = null

∀j((0 ≤ j < `) ⇒ x→nj→d = A→(4j + d))

Fig. 5. List2Array example. We assume that the structure fields Data and Next are
at offsets d = 0 and n = 4 respectively. The table on the right lists selected invariants
at the corresponding program points that were discovered by our implementation. The
List and Array predicates are as defined on Page 2.

List2Array This example flattens a list into an array by using two congruent
loops - one to compute the length of the input list to determine the size of the
array, and the second to copy each list elements in the allocated array. Figure 5
describes this example and the useful invariants generated by our tool.

This example reflects a common coding practice in which memory safety
relies on inter-dependence between different loop iterations. In this example, it
is crucial to compute the invariant that ` stores the length of the input list.

6 Related Work

Alias/Pointer analysis Early work on alias analysis used two main kinds of ap-
proximations to deal with recursive data-structures: summary nodes that group
together several concrete nodes based on some criteria such as same allocation
site (e.g., [2]), or k-limiting which does not distinguish between locations obtained
after k dereferences (e.g., [15]), or a combination of the two (e.g., [4]). However,
such techniques had limited expressiveness and precision. Deutsch proposed re-
ducing the imprecision that arises as a result of k-limiting by using suitable
representations to describe pointer expressions (and hence alias pairs) with po-
tentially unbounded number of field dereferences [5]. The basic idea was to use
new variables to represent the number of field dereferences and then describe
arithmetic constraints on those variables. Deutsch analysis did not have any
must information.

Most of the new techniques that followed focused on defining logics with
different kinds of predicates (other than simple must-equality and may-equality
predicates, which were used by earlier techniques) to keep track of shape of heap-
structures [13, 20, 19, 14]. There is a lot of recent activity on building abstract
interpreters using these specialized logics [6, 17, 9]. In this general approach, the
identification of the “right” abstract predicates and automation of the analysis
are challenging tasks. In some cases, the analysis developer has to provide the
transfer functions for each of these predicates across different flowchart nodes.



Additionally, the focus of the above mentioned techniques has been on recur-
sive data structures, and they do not provide good support for handling arrays
and pointer arithmetic. Recently though, there has been some work in this area.
Gopan, Reps, and Sagiv have suggested using canonical abstraction [20] to cre-
ate a finite partition of (potentially unbounded number of) array elements and
using summarizing numeric domains to keep track of the values and indices of
array elements [8]. However, the description of their technique has been limited
to reasoning about arrays of integers. Calcagno et al. have used separation logic
to reason about memory safety in presence of pointer arithmetic, albeit with use
of a special predicate tailored for a specific kind of data-structure (multi-word
lists) [1]. Chatterjee et al. have given a formalization of the reachability pred-
icate in presence of pointer arithmetic in first-order logic for use in a modular
verification environment where the programmer provides the loop invariants [3].

The work presented in this paper tries to address some of the above-mentioned
limitations. Our use of quantification over two simple (must and may-equality)
predicates offers the benefits of richer specification as well as the possibility of
automated deduction. Additionally, our abstract domain has good support for
pointer arithmetic in presence of recursive data structures.

Data-structure Specifications McPeak and Necula have suggested specifying and
verifying properties of data-structures using local equality axioms [18]. For ex-
ample, the invariant associated with the program List2Array (after execution of
the first loop) in Figure 5 might be specified at the data-structure level as saying
that the field Len is the length of the array field Data. Similar approaches have
been suggested to specify and verify properties of object-oriented programs [16],
or locking annotations associated with fields of concurrent objects [7].

These approaches might result in simpler specifications that avoid universal
quantification (which has been made implicit), but they also have some disad-
vantages: (a) They require source code with data-structure declarations, while
our approach also works on low-level code without any data-structure decla-
rations. (b) Sometimes it may not be feasible to provide specifications at the
data-structure level since the related fields may not be local (i.e., not present in
the same data-structure). (c) Programmers have to provide the intended spec-
ifications for the data-structures which can be a daunting task for large legacy
code-bases, (d) It is not clear what such a specification would mean when these
fields are set only after some computation has been performed. Perhaps some-
thing like pack/unpack of Boogie methodology [16] or the temporary invariant
breakage approach [18] may be used for a well-defined semantics, but this re-
quires additional annotations for updates to additional (non-program) variables.

7 Conclusion and Future Work

This paper describes an abstract domain that gives first-class treatment to
pointer arithmetic and recursive data-structures. The proposed abstract domain
can be used to represent useful quantified invariants. These quantified invari-
ants can be automatically discovered by performing an abstract interpretation



of programs over this domain - without using any support in the form of user-
specified list of predicates. Future work includes performing more experiments
and extending these techniques to an interprocedural analysis.
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