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Abstract. Box invariant sets are box-shaped positively invariant sets.
We show that box invariants are computable for a large class of nonlin-
ear and hybrid systems. The technique for computing these invariants
is based on nonlinear constraint solving. This paper also shows that the
class of multiaffine systems, which has been used successfully for model-
ing and analyzing regulatory and biochemical reaction networks, can be
generalized to the class of componentwise monotone and componentwise
quasi monotone systems without losing any of its nice properties.

Introduction

A positively invariant set is a subset of the state space of a dynamical system
with the property that, if the system state is in this set at some time, then it
will stay in this set in the future [1].1 A rectangular box, Box (l,u), specified
using two diagonally opposite points l and u in <n, where l < u (interpreted
componentwise), and its vertices and faces are defined as follows.2

Box (l,u) = {x ∈ <n | li ≤ xi ≤ ui, for all i}
Vert(l,u) = {x ∈ <n | xi = li or xi = ui, for all i}

Faces(l,u) =
n⋃

j=1

(Lj(l,u) ∪U j(l,u))

Lj(l,u) = {x ∈ Box (l,u) | xj = lj}
U j(l,u) = {x ∈ Box (l,u) | xj = uj}
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1 A positively invariant set, as defined above, is called an inductive property in com-
puter science terminology. An invariant, in computer science, is a subset of the state
space that is a superset of the set of all reachable states.

2 With some additional work, most of the results described in this paper can be
adapted to the case when we consider boxes that are unbounded in certain coordi-
nates (that is, we have −∞ and +∞ as bounds on some components) or degenerate
in some coordinates (that is, certain components are fixed to have a constant value).
In this paper, we do not consider these other cases to keep the presentation simple.



We are interested in the case when Box (l,u) is a positively invariant set [2,
3]. We say a hybrid system is box invariant if there exists a box that is also a
positively invariant set. This is formally defined below.

Definition 1. A hybrid system HS is said to be box invariant if there exists a
finite rectangular box, Box (l,u), such that
(a) for each mode q with continuous dynamics ẋ = f q(x) and invariant Inv(q),
for any point y ∈ Faces(l,u), it is the case that, for all j, f q

j(y) ≥ 0 whenever
y ∈ Lj(l,u) ∩ Inv(q) and f q

j(y) ≤ 0 whenever y ∈ U j(l,u) ∩ Inv(q), and
(b) for each discrete transition from mode q to q′ — with guard G(q, q′) ⊆ <n

and a reset map R that resets state y to some state in R(q, q′,y) ⊆ <n — and
for each point y in Box (l,y) that satisfies the invariant, y ∈ Inv(q), and the
guard, y ∈ G(q, q′), if y′ ∈ R(q, q′,y) then y′ ∈ Box (l,u).

Note that the above definition requires that (a) each of the constituent con-
tinuous dynamical system in the hybrid system be box invariant with respect
to the same box, and (b) starting from any point in the box, any reset (on a
discrete transition) can only result in a point that is also in the same box. The
motivation for our interest in a single global positively invariant box is that the
hybrid systems of interest to us are approximations of high-dimensional contin-
uous dynamical systems and we are interested in positively invariant sets for the
original system.

The above definition can be extended to systems with inputs u by treating
u as state variables whose derivative is 0. It corresponds to requiring that the
state variables be bounded assuming the inputs are bounded.

It is easy to see that a box invariant set, as defined above, is indeed a posi-
tively invariant set for the hybrid system. Although we have defined the concept
in its generality, all examples in this paper are restricted to either continuous dy-
namical systems or hybrid systems with identity resets. Note that Condition (b)
of Definition 1 becomes trivial when we have only identity reset maps.

Related Work Computational results on box invariance of linear systems [3]
and some preliminary results for nonlinear and hybrid systems [2] have been
presented before. This paper develops these results further and identifies the
classes of monotone, quasi-monotone, and uniformly quasi-monotone systems on
which box invariants computation can be reduced to constraint solving. Sankara-
narayanan et. al. [8] used constraint solving to search for invariants of a given
form. Our work here is a specialization to box-shaped invariants, and develops
the necessary and sufficient approaches for this special case. The “barrier cer-
tificates” proposed by Prajna, Jadbabaie and Pappas [9–12] are also essentially
inductive invariants. Tiwari [13] generated linear inductive invariants for linear
systems and techniques for computing inductive invariants for nonlinear systems
were suggested by Tiwari and Khanna [14]. Rodriguez-Carbonell and Tiwari [15]
showed that the best (strongest) possible polynomial equational invariant was
computable for hybrid systems with linear dynamics in each mode. Pappas et
al. have also considered the problem of computing invariants, but only for linear



systems, using interesting techniques [16, 17]. In contrast to all these works, the
work in this paper is focused on a very simple form of invariant. Our goal here
is to maintain efficiency and scalability, while compromising on the generality of
the form of invariants.

Specialized forms of the notion of box invariance have been studied previously
in the literature in the form of componentwise asymptotic stability [4, 5] and
Lyapunov stability under the infinity vector norms [6, 7], but this paper differs
in two significant ways: it considers the computational aspects of box invariance
and focuses on nonlinear systems.

Polynomial Hybrid Systems

In polynomial hybrid systems, the dynamics are specified using polynomials over
the state variables and the guards, invariants, and resets are specified using semi-
algebraic sets. For such systems, the conditions in Definition 1 can be written
as a formula in the first-order theory of reals

∃l, u.∀q.∀x.
∧

1≤j≤n ((x ∈ Lj ∧ x ∈ Inv(q) ⇒ pq
j(x) ≥ 0) ∧

(x ∈ U j ∧ x ∈ Inv(q) ⇒ pq
j(x) ≤ 0)), (1)

where pq specifies the dynamics in mode q. In the presence of resets, we need
additional formulas to express that resets do not take the dynamics out of the
box. This is also expressible in the first-order theory of reals (assuming that
the invariants, guards, and resets are specified using polynomials.) Since the
first-order theory of reals is decidable [18, 19], the following result follows.

Theorem 1. Box invariance of polynomial hybrid systems is decidable. ut

While this is a useful theoretical result, it is not very practical due to the
high complexity of the decision procedure for real-closed fields. We specialize the
above result to a subclass of polynomial systems that is a generalization of the
class of multiaffine systems.

Monotone Systems

A function f : < 7→ < is monotonically increasing if f(x) ≤ f(x′) whenever
x < x′, and f(x) is monotonically decreasing if f(x) ≥ f(x′) whenever x < x′. A
function f(x1, . . . , xn) is said to be monotonic with respect to xi if for every choice
c1, . . . , cn of values for the variables, the function f(c1, . . . , ci−1, xi, ci+1, . . . , cn)
if either monotonically increasing or monotonically decreasing. For example, the
function x1x3 − x2x3 is monotonic with respect to x3 since if we fix the values
c1, c2 (for x1, x2 respectively), we notice that the function c1x3−c2x3 will always
be either monotonically increasing (if c1 − c2 ≥ 0) or monotonically decreasing
(if c1 − c2 ≤ 0).

A system ẋ = p(x) is monotone if each function pi is monotonic with respect
to each variable xj . Note that every multiaffine system [20, 21] is also monotone.



The converse is not true; for example, the system dx1/dt = x3
1 + x1 is monotone

but not multiaffine.
Monotone systems not only generalize multiaffine systems, but also inherit

some of their nice properties that have been used to build powerful analysis
tools and techniques for analysis of multiaffine systems [22]. In particular, the
following variant of Corollary 1 from Kloetzer and Belta [22] holds for monotone
functions.

Proposition 1. If f : <n 7→ < is a function that is monotonic (with respect to
all of its argument variables) and Box (l,u) is a box defined by the diagonally
opposite points l and u, then for any point c ∈ Box (l,u), we have

min({f(x) | x ∈ Vert(l,u)}) ≤ f(c) ≤ max({f(x) | x ∈ Vert(l,u)}).

Consequently, f(x) ∼ 0 everywhere in Box (l,u) if and only if f(x) ∼ 0 for all
vertices x ∈ Vert(l,u), where ∼∈ {=,≤,≥}.

Quasi Monotone Systems

We further generalize the class of monotone systems and call a system ẋ = p(x)
quasi monotone if each function pi is monotonic with respect to variable xj

for all j 6= i. In other words, we drop the requirement that pi be monotone
with respect to xi. A hybrid quasi monotone system is a hybrid system in which
each constituent mode is a quasi monotone system. Every monotone system is
naturally also quasi monotone. The system over variable x1 defined by dx1

dt =
1− x2

1 is quasi monotone but it is not monotone (and not multiaffine).
Recall that box invariance of a polynomial system ẋ = p(x) can be reduced to

deciding (the satisfiability of) Formula ??. Formula ?? is a logical statement for
the fact that the vector field points “inwards” on all faces of the box. Consider
one of the faces, say Lj . The requirement is that pj(x) ≥ 0 for all points x
on the face Lj . In a quasi monotone system, the function pj(x) is monotonic
with respect to all variables xi for i 6= j. Once we fix xj to aj the function
pj(x1, . . . , xj−1, aj , xj+1, . . . , xn) is monotonic with respect to all its variables.
Hence, we can use Proposition 1 and conclude that we only need to check that
pj is non-negative on the vertices of the face Lj . Using the same argument for
each face, we conclude the following.

Proposition 2. A quasi monotone system ẋ = p(x),x ∈ <n is box invariant
iff there exist two points l,u ∈ <n such that for each point c ∈ Vert(l,u), we
have pj(c) ≤ 0 if cj = uj and pj(c) ≥ 0 if cj = lj for all j; that is,

∃l, u.
∧

c∈Vert(l,u),1≤j≤n

αj(c)pj(c) ≥ 0, (2)

where αj(c) = 1 if cj = lj and αj(c) = −1 if cj = uj. ut



Formula ?? had both existential and universal quantifiers. Quasi-monotonicity
has allowed us to eliminate the universal quantifier and obtain simply a con-
junction of n2n (existentially quantified) constraints shown in Formula 2. Any
constraint solving engine that can handle nonlinear constraints can now be used
(and we do not necessarily need a quantifier elimination procedure).

The test for box invariance of a hybrid quasi monotone system with no re-
sets simply involves putting together these n2n constraints – guarded by the
mode invariants – for each of the modes and solving them simultaneously. This
is expressed in the following formula, which is again a existentially quantified
formula with no universal quantifiers.

∃l, u.
∧

q∈Q,c∈Vert(l,u),1≤j≤n

(c ∈ Inv(q) ⇒ αj(c)pq
j(c) ≥ 0), (3)

where αj and pq are defined as before.

Quasi Uniformly Monotone Systems

Proposition 2 still requires checking satisfiability of an exponential number of
(nonlinear) constraints. However, for a very useful subclass of quasi monotone
systems, we can reduce the number of constraints (from n2n) to 2n. We use the
notion of uniform monotonicity. A function f : Rn 7→ R is uniformly monotonic
with respect to a variable xj in domain Inv if for all points x ∈ Inv and x′ ∈ Inv
that differ only in the j-th component, f(x) ≤ f(x′) (or f(x) ≥ f(x′)) whenever
xj < x′j ; that is,

∀x,x′ ∈ Inv .(
∧
i 6=j

xi = x′
i ∧ xj = x′

j ⇒ f(x) ≤ f(x′)), or,

∀x,x′ ∈ Inv .(
∧
i 6=j

xi = x′
i ∧ xj = x′

j ⇒ f(x) ≥ f(x′)).

Note that the definition of uniform monotonicity with respect to xj requires
that f be monotonic in the same way (that is, either increasing or decreasing)
across all choices of values for other variables. For example, x1x3 − x2x3 is not
uniformly monotonic with respect to x3, whereas it is monotonic with respect
to x3. However, x1x3 − x2x3 is uniformly monotonic with respect to x1 in the
domain Inv := {x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}. A system ẋ = p(x) is said to be a
quasi uniformly monotone system in the domain Inv if, for each i, pi is uniformly
monotonic with respect to xj in the domain Inv for each j 6= i.

Proposition 3. Let ẋ = p(x) be a quasi uniformly monotonic system in the
domain Inv such that Box (l,u) ⊆ Inv. Then, the n2n constraints in Formula 2
of Proposition 2 are equivalent to a subset of 2n constraints. ut

Proof. Consider the fact Lj(l,u) and the corresponding 2n−1 constraints:∧
c∈Vert(l,u),cj=lj

pj(c) ≥ 0



Consider the single constraint pj(d) ≥ 0 where for all i, di = li if either i =
j or pj is uniformly increasing with respect to xi and di = ui if i 6= j and
pj is uniformly decreasing with respect to xi. It is easy to see that pj(d) =
min({pj(c) | c ∈ Vert(l,u), cj = lj}) and hence the single constraint pj(d) ≥ 0
subsumes all the 2n−1 constraints given above.

Example 1. Consider the following Phytoplankton Growth Model (see [23] and
references therein):

ẋ1 = 1− x1 − x1x2
4 , ẋ2 = (2x3 − 1)x2, ẋ3 = x1

4 − 2x2
3,

where x1 denotes the substrate, x2 the phytoplankton biomass, and x3 the intra-
cellular nutrient per biomass. This system is not multi-affine in the sense of [20]
and it is not monotonic, but it is monotonic over the domain Inv := {x1 ≥
0, x2 ≥ 0, x3 ≥ 0}. It is quasi monotonic and even quasi uniformly monotonic.
Hence, by Proposition 2, its box invariance is equivalent to the existence of l,u
s.t. n2n = 3 · 23 = 24 constraints are satisfied. Moreover, by Proposition 3, these
24 constraints are subsumed by the following 6 constraints:

1− u1 − u1l2
4 ≤ 0, u2(2u3 − 1) ≤ 0, u1

4 − 2u2
3 ≤ 0,

1− l1 − l1u2
4 ≥ 0, l2(2l3 − 1) ≥ 0, l1

4 − 2l23 ≥ 0.

One possible solution for these constraints is given by l = (0, 0, 0) and u =
(2, 1, 1/2) indicating that the box formed by these two points as diagonally
opposite vertices is a positive invariant set. ut
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