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ABSTRACT. We define the notion of inductive invariants for continuous dynamical systems and use
it to present inference rules for safety verification of polynomial continuous dynamical systems. We
present two different sound and complete inference rules, but neither of these rules can be effectively
applied. We then present several simpler and practical inference rules that are sound and relatively
complete for different classes of inductive invariants. The simpler inference rules can be effectively
checked when all involved sets are semi-algebraic.

1 Introduction

The deductive rule for safety verification of sequential and concurrent programs was an
important milestone in the field of formal program verification [6, 10, 13]. A program can
be proved safe by constructing an inductive invariant that is strong enough to prove safety.
Programs can be formally viewed as discrete state transition systems. If the predicate t(~x ,~y)
states that there is a discrete transition from the state ~x to the state ~y in the discrete state
transition system DTS, and if Init and Safe are, respectively, the initial states of DTSand
the hypothesized safe set, then the classical inference rule for safety verification is given as
follows:

(1) ∀~x ~x ∈ Init ⇒ ~x ∈ Inv
(2) ∀~x ,~y ~x ∈ Inv ∧ t(~x ,~y) ⇒ ~y ∈ Inv
(3) ∀~x ~x ∈ Inv ⇒ ~x ∈ Safe

Reach (DTS) ⊆ Safe

This rule essentially says that we can prove that all reachable states of DTSlie inside the safe
set Safe by finding a suitable “inductive invariant” Inv .

A valuable property of the deductive verification rule is that it is both sound and com-
plete. Soundness here means that if a program is proved correct using the rule, then that
program indeed satisfies the safety property. Completeness means that if the given program
is actually safe, then there is an inductive invariant Inv that satisfies the Conditions (1), (2)
and (3) of the deductive verification rule. The above rule, however, applies only to discrete
state transition systems where the “next” states can be effectively specified.
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2 DEDUCTIVE VERIFICATION OF CONTINUOUS SYSTEMS

While discrete state transition systems is a powerful modeling formalism, it is inadequate
for modeling systems that involve physical components. Physical systems are typically
modeled using differential equations as continuous dynamical systems. The formalisms of
continuous dynamical systems and discrete transition systems can be combined to give hy-
brid dynamical systems. Hybrid systems are immensely useful in describing systems that
have physical and computational components, such as embedded and control systems, as
well as, systems that operate at multiple different time scales, such as biological systems.

This paper presents a deductive verification rule for continuous dynamical systems.
When combined with the above rule for discrete state transition systems, we get a deduc-
tive verification rule for hybrid systems. The challenge in coming up with a deductive ver-
ification rule for continuous dynamical systems is that there is no useful notion of a “next”
state. In this paper, we use “continuity” to formulate the deductive verification rule. One
of the technical difficulties here is to obtain a rule that is simultaneously (1) sound, (2) com-
plete, and (3) effectively checkable. It is easy to propose rules that compromise one or more
of these three requirements. The main results of this paper are (a) two distinct sound and
complete rules, but these are not directly checkable, and (b) three simpler sound and effec-
tively checkable rules, that are relatively complete for large and useful classes of systems
and invariants.

Motivation and Related Work

From a purely theoretical perspective, it is appealing to have an effective, sound, and rela-
tively complete inference rule for safety verification of continuous systems. Recently, how-
ever, promising practical techniques have been proposed for safety verification that are
directly based on using such inference rules. One such technique – that is especially ef-
fective for safety verification of continuous and hybrid systems – is bounded verification.
Bounded verification is the dual of bounded model checking. Whereas bounded model
checking searches for a bounded counter example for safety, bounded verification searches
for a bounded proof for safety. The essential idea in bounded verification is to search for
an inductive invariant of a given form. Note that the inference rule for safety verification
requires proving the formula

∃Inv : ∀~x ,~y : φ(Inv ,~x ,~y), (1)

where φ is simply a conjunction of Formulas (1), (2) and (3) from the rule above. This for-
mula involves a second-order quantification. We can eliminate this second-order quantifi-
cation by restricting the form of the inductive invariant Inv . For example, assuming Inv
can be written as ψ(~u,~x), over some unknown parameters ~u, Formula 1 changes to

∃~u : ∀~x ,~y : φ(ψ(~u,~x),~x ,~y). (2)

Formula 2 is now a first-order ∃∀ formula. If this formula is valid, then we know there is
an inductive invariant that proves safety. Further details on bounded verification, can be
found in the work of Gulwani et al. [7] and Gulwani and Tiwari [8].

The formula ψ(~u,~x) can be seen as a template for the invariant. The idea of using
templates is not new. In fact, it is the classical approach used to prove stability in control
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theory. Recently, it has also been used for safety verification for discrete programs [2, 7, 12,
19] and continuous and hybrid systems [18, 16, 1, 21, 8]. These papers use templates for
performing bounded verification, but differ in the details about their use of the inference
rule to construct φ′ in Formula 2 and their use of the constraint solving technique to solve the
∃∀ constraint. Since template-based verification is not the main topic of this paper, but just
used as a motivation, we do not discuss the related literature here. However, the inference
rules used in the papers on verification of continuous and hybrid systems are relevant to
the work in this paper and we discuss them briefly here and in the rest of the article.

If the hypothesized invariant Inv is a polynomial equation, p = 0, then there is a
simple way to check invariance: whenever p = 0, the time derivative of p, dp

dt , should
also be 0. This verification rule for equational invariants was used by Sankaranarayanan
et al. [18]. If the invariant is an inequality, such as p ≥ 0, then there are several sufficient
checks, such as, dp

dt ≥ 0 whenever p ≥ 0. This test is very strong: it requires that p is
increasing everywhere inside the invariant set. This sound, but incomplete, test has been
used by Platzer et al. [15, 14]. We can weaken the test, and check dp

dt ≥ 0 only on points
where p = 0 [16, 8], but this variant is not sound in general. This is discussed in detail later.

Outline of the Paper. We formally define continuous dynamical systems in Section 2 and
present two distinct sound and complete deductive verification rules for continuous dy-
namical systems in Section 3. In Section 4, we first present inference rules that are interest-
ing from a practical point of view and compromise either soundness or completeness. We
then present three sound and relatively complete inference rules.

2 Continuous Dynamical System

DEFINITION 1.[Continuous Dynamical System] A continuous dynamical system CDSis a
tuple (X, Init , f ) where X is a finite set of variables interpreted over the reals R, X = RX is
the set of all valuations of the variables X, Init ⊆ X is the set of initial states, and f : X 7→ X
is a vector field that specifies the continuous dynamics.

Note that RX is isomorphic to the n-dimensional real space Rn where n = |X| is the
number of variables in X. Note also that the continuous dynamical systems we consider
here are autonomous, that is, they have no inputs. We assume that f is Lipshitz, which
guarantees that the ordinary differential equations dX

dt = f (X) have a unique solution. In
fact, the following property [4] of Lipschitz vector fields will be used in the proofs.

PROPOSITION 2.[Theorem 2.3.1, p80 [4]] Consider a Lipschitz vector field f and the initial
value problem dX(t)

dt = f (X(t)), X(0) = ~x0. The solution of this problem, denoted by F(~x0, t),
always exists and is unique. Moreover, F(~x0, t) depends continuously on the initial state~x0.

The meaning of a continuous dynamical system is simply the collection of all possi-
ble trajectories starting from an initial state. Formally, if F(~x0, t) is the solution of dX(t)

dt =
f (X(t)), X(0) = ~x0, then the semantics, [[CDS]], of a continuous dynamical system CDS=
(X, Init , f ) is given as

[[CDS]] := {F1 : [0, ∞) 7→ X | F1(t) = F(~x0, t), ~x0 ∈ Init }



4 DEDUCTIVE VERIFICATION OF CONTINUOUS SYSTEMS

The above semantics using flow functions is broadly referred to as the flow seman-
tics [22]. One can also give a transition semantics using discrete state transition systems [9],
but the distinction [5] is not relevant for this paper.

The set of reachable states for a continuous dynamical system CDS, Reach (CDS), is
given by {~x ∈ X | ∃F ∈ [[CDS]], ∃t ≥ 0 : ~x = F(t)}. A (safety) property, Safe , is sim-
ply a subset of the state space X. A property Safe is an invariant (for the system CDS) if
Reach (CDS) ⊆ Safe . We are interested in solving the following problem in this paper:

DEFINITION 3.[Safety Verification Problem] Given a continuous dynamical system CDSand
a safety property Safe , determine if Safe is an invariant for CDS.

One of the classical methods to solve the safety verification problem is based on finding
stronger invariants that are also inductive. By introducing the extra requirement of induc-
tiveness, the “global” test for invariance, viz. all reachable states are contained in Safe ,
reduces to a simpler “local” test, viz. every single transition out of Safe state goes into only
a Safe state.

3 Sound and Complete Rules

In this section we present two verification rules for solving the problem described in Defi-
nition 3. Each rule replaces the global test for invariance by a local test for inductiveness.

We fix our notation and denote the given continuous dynamical system by CDS =
(X, Init , f ) and the given safety property by Safe . The challenge in defining a local in-
ductiveness test is that, for continuous dynamical systems, there is no clear notion of a
“next” state in the flow semantics. Even if we use the transition semantics, the set of all the
uncountably many next states is equal to the Reach set and hence the distinction between
inductive invariants and general invariants is lost. However, using continuity, instead of
using arbitrary future states, we can look at only states reachable in an ε-future and require
that they remain inside Inv .

DEFINITION 4.[Inductive Invariant] A set Inv ⊂ RX is an inductive invariant for a given
continuous dynamical system CDS:= (X, Init , f ) if the following conditions hold:

(A1) Init ⊆ Inv

(A2) ∀~x ∈ Inv : ∃t0 > 0 : ∀0 ≤ t < t0 : F(~x , t) ∈ Inv

where F is the solution of the initial value problem dX(t)
dt = f (X(t)), X(0) = ~x .

A closed set that is an inductive invariant in the above sense contains all the reachable
states and hence it is indeed an invariant.

PROPOSITION 5. Let Inv be a closed inductive invariant for the continuous dynamical
system CDS:= (X, Init , f ). Then, Reach (CDS) ⊆ Inv .

However, Definition 4 is not directly useful for checking inductiveness because (a) it
uses quantifier alternation (∀∃∀) and (b) it uses the solution F of the differential equations.
For most interesting applications, it may be difficult, if not impossible, to compute F ana-
lytically. Fortunately, there are two different ways in which we can check for inductiveness
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without using F. Before describing them, we first concretize the specification language for
CDSand Safe .

Since we are interested in computability, henceforth, we assume that the continuous
dynamical system CDS:= (X, Init , f ) and the safe set Safe are specified using polynomi-
als. Let L := {Q, +,−, ∗,≥, >, =} be a language containing all rational constants Q, function
symbols +,−, ∗ and predicates ≥, >, =. These symbols are interpreted over the reals in the
usual way. We fix X to be the set of variables. A term over variables X will just be a poly-
nomial in the ring Q[X]. Atomic formulas consist of polynomial equalities and inequalities.
A set S ⊆ Rn is semi-algebraic if it represents the solutions of a (quantifier-free) formula.
A CDS:= (X, Init , f ) is a polynomial CDS if Init is semi-algebraic and the vector field is
specified using only polynomials from Q[X].

For simplicity of presentation, we will initially restrict the set Inv to be of the form
p ≥ 0 for some polynomial p. We will later extend the results to boolean combinations.
Since we are restricting Inv to be in a certain class, we will lose completeness. However,
we are interested in “relative completeness”; that is, if there is an inductive invariant in the
restricted class, then the deductive verification rule should be applicable.

We are now ready to present the two different ways for checking inductiveness without
using F. First, we use a result in Control Theory, called Nagumo’s theorem, that says that a
set Inv is an invariant only if, at every point~x on the boundary of Inv , the vector field f (~x)
at that point points “inwards”. Formally, the set of vectors that point “inwards” at point ~x
define the tangent cone at ~x .

DEFINITION 6.[Tangent Cone, Definition 3.1 in [3]] Let S ⊂ Rn be a closed set. Let ~x ∈ Rn.
The tangent cone to S at ~x is the set

T(S)(x) := {~z ∈ Rn | lim inf
α→0

d(~x + α~z , S)
α

= 0} (3)

where d(~x , S) := inf~y∈S ||~x −~y || is the distance of ~x from S and || · || is any norm in Rn.

Figure 1 (Left) presents an inference rule for safety verification of continuous systems.
Note that Condition (S2) says that for every point on the boundary of Inv , the vector field
f is in the tangent cone at that point. Nagumo’s theorem states that for closed sets Inv ,
Condition (S2) from Figure 1 is equivalent to Condition (A2) from Definition 4. We refer the
reader to the review article by Blanchini for details [3].

The key idea behind the second approach for automating the test of Condition (A2) is
the use of Lie derivatives. Intuitively, we can check that trajectories do not leave p ≥ 0 by
checking that dp

dt is greater-than zero whenever p = 0. Technically, the derivative of p with
respect to time, dp

dt , is called the Lie derivative, L f (p), of p with respect to the vector field f . It

can be computed using the chain rule, as shown below. Let us define the notation L(n)
f (p) to

denote the n-th derivative of p with respect to time. Formally,

L(n)
f (p) :=

 ∑x∈X
∂p
∂x

dx
dt := ~∇p · f := ( ∂p

∂x1
, ∂p

∂x2
, . . .) · ( dx1

dt , dx2
dt , . . .) if n = 1

dL(n−1)
f (p)

dt otherwise
(4)
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(S1) Init (~x) ⇒ p(~x) ≥ 0 (T1) Init (~x) ⇒ p(~x) ≥ 0

(S2) p(~x) = 0 ⇒ f (~x) ∈ T(p ≥ 0)(~x) (T2) p = 0 ⇒ (
k−1∧
i=1

L(i)
f (p) = 0 ⇒ L(k)

f (p) ≥ 0)

for k = 1, 2, . . .
(S3) p(~x) ≥ 0 ⇒ Safe (~x) (T3) p(~x) ≥ 0 ⇒ Safe (~x)

Reach (CDS) ⊆ Safe Reach (CDS) ⊆ Safe

Figure 1: Inference rules for safety verification of continuous system CDS := (X, Init , f )
and safety property Safe ⊆ X.

where the time-derivative, d
dt , is always computed using the chain rule as dg

dt = ~∇g · f . If
f is specified using polynomials (i.e., dx

dt is a polynomial for every variable x) and if p is a
polynomial in Q[X], then Equation 4 shows that L(n)

f (p) is a polynomial in Q[X] and it can
be symbolically computed. The second inference rule for checking inductiveness is shown
in Figure 1(Right). Note that Condition (T2) requires that, for all k, the k-th derivative be
non-negative whenever the first k− 1 derivatives are zero.

We next show that the two deductive verification rules given in Figure 1 are both sound
and (relatively) complete. All proofs can be found in the appendix.

THEOREM 7.[Soundness] Let CDS := (X, Init , f ) be a continuous dynamical system and
Safe ⊆ X be a safety property. If there is a set Inv that satisfies Conditions (S1), (S2)
and (S3) from Figure 1(Left), or alternatively, it satisfies Conditions (T1), (T2) and (T3) from
Figure 1(Right), then Reach (CDS) ⊆ Safe .

We prove relative completeness assuming that Safe is closed.

THEOREM 8.[Relative Completeness] Let CDS := (X, Init , f ) be a CDS and Safe be a
closed set such that Reach (CDS) ⊆ Safe . If there is an inductive invariant p ≥ 0 such that
p ≥ 0 ⇒ Safe , then p ≥ 0 also satisfies Conditions (S1), (S2) and (S3) from Figure 1(Left),
as well as, Conditions (T1), (T2) and (T3) from Figure 1(Right).

Comparing the two inference rules. Since the two sets of conditions in Figure 1 are both
sound and relatively complete for showing inductive invariance, it is tempting to assume
that they are “essentially the same”. These two tests are indeed “globally equivalent”: if
every point on the boundary satisfies Condition (S2), then every point on the boundary also
satisfies Condition (T2), and vice-versa. However, the two tests are distinct tests and they
are not “locally equivalent”; that is, they may disagree on individual points.
Example 1 Consider the constant vector field f ((x, y)) = (1, 0) and consider the candidate in-
variant region, −x2 − y2 + 2y ≥ 0. The candidate invariant set is a circle of radius 1 centered
at (0, 1) and hence clearly the vector field is tangential to the invariant set at the origin; that is,
(1, 0) ∈ T(−x2 − y2 + 2y ≥ 0)((0, 0)). Hence Condition (S2) evaluates to true for point (0, 0).
However, the derivative test fails at (0, 0): though dp

dt at (0, 0) is 0, the second derivative is negative

(everywhere): dp
dt = −2x dx

dt − (2y − 2) dy
dt = −2x, d2 p

dt2 = −2 dx
dt = −2. This shows that Condi-
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(A1) Init (~x) ⇒ p(~x) ≥ 0 (B1) Init (~x) ⇒ p(~x) ≥ 0
(A2) p(~x) = 0 ⇒ L f (p)(~x) ≥ 0 (B2) p(~x) = 0 ⇒ L f (p)(~x) > 0
(A3) p(~x) ≥ 0 ⇒ Safe (~x) (B3) p(~x) ≥ 0 ⇒ Safe (~x)

Reach (CDS) ⊆ Safe Reach (CDS) ⊆ Safe

Figure 2: An unsound, but relatively complete, rule (left) and a sound, but incomplete, rule
(left) for safety verification of polynomial CDS CDS := (X, Init , f ) and safety property
Safe ⊆ X.

tion (T2) fails at (0, 0). Thus, Condition (S2) and Condition (T2) give different answers at the point
(0, 0). However, they both agree globally that the candidate invariant set here is not an invariant.

Although the verification rules in Figure 1 are both sound and relatively complete, they
are not computationally feasible as there is no easy way to verify Condition (S2) and Con-
dition (T2): the former involves reasoning about the tangent cone, whereas the latter is an
infinite set of conditions. In the subsequent sections, we will present computable condi-
tions and prove their soundness or completeness by comparing them to Condition (S2) or
Condition (T2).

4 Practical Rules for Safety Verification of Polynomial CDS

In this section, we present inference rules that can be applied in practice for performing
safety verification of continuous systems. We shall also point to the literature where these
rules have been used. The rules will compromise either soundness or completeness.

Figure 2 presents two approximations of the inference rule in Figure 1(Right). First,
instead of performing the infinitely many checks in Condition (T2)– one for each k – we can
just perform the check for k = 1 and ignore the other checks. Doing this will not compro-
mise relative completeness, but it does make the rule unsound. This unsound, but relatively
complete, inference rule is shown in Figure 2(Left). The following example shows the un-
soundness of the rule in Figure 2(Left) and was mentioned to us by Andre Platzer.
Example 2 Consider the system CDS:= ({x}, {x = 0}, f ) where f (x) = 1 and the safety property
−x2 ≥ 0. Since initially x = 0 and since dx

dt = f (x) = 1, x takes positive values and hence the
safety property is violated. However, the rule in Figure 2(Left) can be applied successfully using −x2

as p. Condition (A2) is verified because the following is a theorem in the theory of reals: −x2 = 0 ⇒
−2x ∗ 1 ≥ 0. This example shows that the rule in Figure 2(Left) is unsound.

Example 2 suggests that we can regain soundness by replacing the check L f (p) ≥ 0 by
the stronger test L f (p) > 0. This gives us the inference rule in Figure 2(Right). However, we
lose completeness.
Example 3 (Incompleteness) Consider the system CDS := ({x}, {x = 0}, f ) where f (x) = 0
and the safety property x ≥ 0. Since initially x = 0 and since dx

dt = f (x) = 0, clearly CDSis safe
with respect to the given safety property. In fact, there is an inductive invariant x ≥ 0 (of the form
p ≥ 0) that can prove this safety property. However, the rule in Figure 2 fails: for any p ∈ Q[x],
L f (p) is always 0, and it is never strictly positive (as required by Condition (B2)).
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(C1) Init ⇒ p ≥ 0 (D1) Init ⇒ p ≥ 0
(C2) p = 0 ⇒ L f (p) ≥ 0 (D2) p = 0 ⇒ L f (p) ≥ 0
(C2′) p = 0 ⇒ ~∇p 6= 0 (D2′) p = 0 ∧ ~∇p = 0 ⇒ ¬neg (p,~x , f (~x))
(C3) p ≥ 0 ⇒ Safe (D3) p ≥ 0 ⇒ Safe

Reach (CDS) ⊆ Safe Reach (CDS) ⊆ Safe

Figure 3: Sound inference rules for safety verification of polynomial CDS CDS :=
(X, Init , f ) and safety property Safe ⊆ X that are also complete for a certain class of
invariants.

The rules in Figure 2 are commonly used. Despite the unsoundness, the inference rule
in Figure 2(Left) has been used in the work by Gulwani and Tiwari [8] and Prajna and
Jadbabaie [16]. The sound, but incomplete, variant in Figure 2(Right) has been used by
Prajna, Jadbabaie and Pappas [17].

Inference Rule Complete for Smooth Invariants

The case that leads to unsoundness or incompleteness is when p(~x) = 0 and L f (p)(~x) = 0.
Intuitively, one expects that the condition L f (p)(~x) = 0 should hold only when the vector
field is “tangential” to the invariant set p ≥ 0. Unfortunately, it also holds in some degen-
erate cases. One such degenerate case is when ~∇p = 0. The inference rule in Figure 3(Left)
explicitly rules out such cases. Let us say that the boundary of a set p ≥ 0 is smooth if,
~∇p(~u) 6= 0 for all points ~u s.t. p(~u) = 0. Condition (C2’) in Figure 3(Left) explicitly checks
that the boundary of the invariant set is smooth. With this additional check, the inference
rule in Figure 3(Left) can be shown to be sound.
Example 4 Consider the dynamical system from Example 2. We notice that we cannot use the rule
in Figure 3. In fact if we use −x2 as the value of p, Condition (C2’) becomes −x2 = 0 ⇒ −2x 6= 0
which is not true in the theory of reals.

The inference rule in Figure 3(Left) is not only sound, but it is also complete for invari-
ants p ≥ 0 whose boundary is smooth. This is the case, for example, when p is linear, which
is a particularly useful class; see, for example, [8].

Nevertheless, the condition that the boundary of the invariant set be smooth is too
strong and fails on invariants that have non-smooth boundaries.
Example 5 Consider the system CDS:= ({x, y, z}, Init , f ), where Init is the set x2 + y2 ≤ z2

and the vector field f is given by f ((x, y, z)) := (−x,−y,−z). Thus, at every point, the vector
field points to the origin and the initial set is a cone. We wish to prove that the set Init is safe; i.e.,
Safe = Init . We first note that there is an inductive invariant, namely z2 − x2 − y2 ≥ 0, that can
prove safety (the reader can verify that Conditions (S1), (S2), and (S3) are satisfied for this choice of
Inv ). We claim that there is no polynomial p such that p ≥ 0 satisfies Conditions (C1), (C2), (C2’)
and (C3). Suppose p is such a polynomial. Then, since the set Init is equal to the set Safe , the set
Inv := {~u | p(~u) ≥ 0} has to be necessarily equal to these two sets (by Condition (C1) and (C3)).
But then, Condition (C2’) will fail because at the boundary point (0, 0, 0) the gradient of p cannot be
nonzero.
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Inference Rule Complete for Quadratic Invariants

We can generalize Condition (C2’) to require that, at all points where p = 0 and ~∇p = 0, the
vector field f is “pointing inside” (Figure 3(Right)). Before we outline the test for “pointing
inside”, we need the following definition.

DEFINITION 9.[Homogeneous decomposition, zero , pos , neg ] A polynomial p ∈ Q[X] is
a homogeneous polynomial of degree k if the total degree of each monomial in p is k. A
homogeneous decomposition of p is obtained by writing p as ∑n

i=1 pi, where pi is homo-
geneous with degree ki and ki < k j for i < j. Let p(~x +~y)i denote the i-th homogeneous
component of p(~x +~y) when viewed as a polynomial in ~y (with coefficients in Q[~x ]). The
predicates zero , pos , neg and kneg are defined as follows:

zero (p,~x ,~u) :=
n∧

i=1

p(~x +~y)i(~u) = 0

pos (p,~x ,~u) :=
n∨

k=1

(p(~x +~y)k(~u) > 0 ∧
k−1∧
i=1

p(~x +~y)i(~u) = 0)

kneg (p,~x ,~u, k) := (p(~x +~y)k(~u) < 0 ∧
k−1∧
i=1

p(~x +~y)i(~u) = 0)

neg (p,~x ,~u) :=
n∨

i=1

kneg (p,~x ,~u, i)

If p is a polynomial and ~x ,~u are two points such that p(~x) = 0, then
(a) pos (p,~x ,~u) is equivalent to ∃α0 > 0 : ∀(0 < α ≤ α0) : p(~x + α~u) > 0.
(b) zero (p,~x ,~u) is equivalent to the fact that p(~x + α~u) = 0 for all α.
(c) neg (p,~x ,~u) is equivalent to ∃α0 > 0 : ∀(0 < α ≤ α0) : p(~x + α~u) < 0.

Using the predicate neg , the inference rule in Figure 3(Right) checks that, for every
point ~x such that p(~x) = 0 and ~∇p(~x) = 0, it is the case that moving along the direction
of the vector field f (~x) at the point ~x , we move inside the invariant set p ≥ 0. Clearly, the
inference rule in Figure 3(Right) generalizes the rule in Figure 3(Left). We will later see that
it is complete for quadratic p.

Inference Rule Complete for Convex Invariants

���
�����������������������������������������

��
��
�

��
��
�

f

g

u

p >= 0

Figure 5: Illustration
for Fig. 4.

Figure 4 presents an inference rule that generalizes the above two
rules and can be shown to be complete for a larger class of invari-
ants that includes linear, smooth and quadratic invariants. The
rule in Figure 4 checks that for each point ~x on the boundary
(p(~x) = 0), either we move inside the set p ≥ 0 as we move from
~x along the vector field direction f (~x), or we move outside but
there is a direction g such that if we go along g, we can make
p = 0 “sufficiently quickly”; see illustration in Figure 5. The fol-
lowing example illustrates the notation from Definition 9 and the
inference rule in Figure 4.
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(F1) Init ⇒ p ≥ 0

(F2) p = 0 ⇒ ¬neg (p,~x , f ) ∨
n∨

k=2
(kneg (p,~x , f , k) ∧

∨
l<k

(∃g : pos (pl , f , g) ∧
∧
j<l

zero (pj, f , g)))

(F3) p ≥ 0 ⇒ Safe

Reach (CDS) ⊆ Safe

Figure 4: Sound, and relatively complete, deductive rule for solving the safety verification
problem for polynomial CDS CDS:= (X, Init , f ) and safety property Safe ⊆ X.

Example 6 Consider CDS := ({x1, x2}, Init , f ), where Init is given by x1 = 2, x2 = 0 and
f (x1) = x2, f (x2) = −x1. Let p be −x2

1 − x2
2 + 4. The set p ≥ 0 is an inductive invariant of this

CDS. Let ~u be a point on the boundary; i.e., p(~u) = 0. Moving the origin to ~u, we get the new
polynomial p(~u +~x) = −(u1 + x1)2 − (u2 + x2)2 + 4 which is equal to (−u2

1 − u2
2 + 4)− 2u1x1 −

2u2x2 − x2
1 − x2

2. Since p(~u) = 0, the constant term of this new polynomial is, as expected, zero,
and hence the new polynomial simplifies to −2u1x1 − 2u2x2 − x2

1 − x2
2. This has two homogeneous

components:

p1 := p(~u +~x)1 := −2u1x1 − 2u2x2 homogeneous with degree k1 = 1
p2 := p(~u +~x)2 := −x2

1 − x2
2 homogeneous with degree k2 = 2

We now verify that −x2
1 − x2

2 + 4 ≥ 0 satisfies Condition (F2):

p1( f (~u)) := −2u1u2 + 2u2u1 = 0 p2( f (~u)) := −u2
1 − u2

2

Since p(~u) = 0, which is −u2
1 − u2

2 + 4 = 0, implies p1( f (~u)) = 0 and p2( f (~u)) < 0, we have
kneg (p,~u, f (~u), 2) holds. Clearly, zero (p,~u, f (~u)) and pos (p,~u, f (~u)) do not hold. Thus, we
see that the direction f (~u) takes the point outside of the invariant set (as in Figure 5). However, there
is a direction g given by (−u1,−u2) such that pos (p1, f (~u), g) holds:

p1( f (~u) +~x) := −2u1(u2 + x1)− 2u2(−u1 + x2) = −2u1x1 − 2u2x2

p1( f (~u) +~x)1 := −2u1x1 − 2u2x2

p1( f (~u) +~x)1(g) := 2u2
1 + 2u2

2 = 2 ∗ 4 = 8 > 0

This verifies Condition (F2).
The rule in Figure 4 is complete for the class of invariants Inv that are convex .

DEFINITION 10. The predicate convex (p ≥ 0) holds for the set p ≥ 0 if, for any points ~u
and ~v , if p(~u) ≥ 0 and p(~v) ≥ 0, then p(~u + α~v) ≥ 0 for all 0 ≤ α ≤ 1.

For example, the set −x2 − y2 + 1 ≥ 0 is convex , but the set −x2 − y2 + 1 = 0, which
can be encoded as −(−x2 − y2 + 1)2 ≥ 0, is not convex .

Soundness and Relative Completeness

Recall that we can prove soundness by showing that the vector field f (~x) at point ~x always
belongs to the tangent cone at the point~x (Condition (S2)). Using Definition 6, we can show
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that f (~x) is in the tangent cone by demonstrating the existence of a direction, g, such that,
for any small α, there is a β such that~x + α f (~x) + βg is inside the invariant set and β

α tends to
0 as α approaches 0. Thus, the rules in Figure 3 can be shown to be sound using the crucial
observation that whenever ~∇p(~x) 6= 0, the role of g can be played by ~∇p(~x). When ~∇p = 0,
the rule in Figure 3(Right) assumes that the~x + α f (~x) is already inside the invariant set and
hence there is nothing more to prove. The rule in Figure 4 explicitly checks for the existence
of g. Hence, soundness of these three rules follows.

THEOREM 11.[Soundness] Let CDS := (X, Init , f ) be a CDS and Safe be a safety prop-
erty. If p ∈ Q[X] is a polynomial that satisfies Conditions (C1), (C2), (C2’) and (C3) of
Figure 3(Left), or alternatively Conditions (D1), (D2), (D2’) and (D3) of Figure 3(Right), or
alternatively, Conditions (F1), (F2) and (F3) of Figure 4, then Reach (CDS) ⊆ Safe .

The inference rules in Figure 3 are complete for certain practically important classes of
invariants.

THEOREM 12. Let CDS := (X, Init , f ) be a CDS and Safe be a closed set such that
Reach (CDS) ⊆ Safe . Let p ≥ 0 be an inductive invariant such that p ≥ 0 ⇒ Safe .
Then, the following claims are true.
(1) If p = 0 ⇒ ~∇p 6= 0, then p ≥ 0 satisfies Conditions (C1), (C2), (C2’) and (C3).
(2) If p is quadratic, then p ≥ 0 satisfies Conditions (D1), (D2), (D2’) and (D3).
(3) If p ≥ 0 is convex , then p ≥ 0 satisfies Conditions (F1), (F2) and (F3).

Theorem 12 shows that the rules in Figure 3 are complete for a large class of practi-
cally useful invariants, namely, linear, quadratic, and convex invariants. Note that for a
polynomial CDS and a semi-algebraic safe set, given a p, the inference rules in Figure 3 are
formulas in the first-order theory of the reals, which is decidable [20]. It appears to be ex-
tremely difficult to come up with a simple and effective rule that is sound and complete for
the class of all invariants of the form p ≥ 0.
Example 7 Consider the set −(−x2 − y2 + 2y)2 ≥ 0, which geometrically is the circumference
of a circle. It is easy to see that this set is not convex . In fact, inference rules in Figure 3 and
Figure 4 will all fail to prove that this set is an inductive invariant under the dynamics given by
dx
dt = 1− y, dy

dt = x.

Discussion

The rule in Figure 4 is related to the earlier rules via the observation that p(~u +~x)1( f (~u)) is
equal to L f (p)(~u). In the special case when ~∇p 6= 0, the role of the witness direction g (in
Figure 4) can be performed by ~∇p. Thus, Figure 4 is also relatively complete for “smooth”
sets and hence it is more powerful than the rules in Figure 3.

The rules above are complete for larger classes that what have been identified above.
For example, the rule in Figure 3(Right) is complete for all p such that p(~x) = 0∧ ~∇(p)(~x) =
0 ⇒ (p(~x +~y)2( f (~x)) 6= 0, but we do not explore those results here.

Since Condition (F2) is based on Nagumo’s criterion, which holds more generally, we
can now easily generalize Condition (F2) from p ≥ 0 to more general boolean combinations
of polynomial inequalities. Let In (p,~x , f ) be a predicate that denotes Condition (F2) applied
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to polynomial p at point ~x with vector field f . When the candidate invariant is p1 ≥ 0 ∧
p2 ≥ 0, Condition (F2) generalizes to (p1(~x) = 0 ∧ p2(~x) > 0 ⇒ In (p1,~x , f )) ∧ (p1(~x) > 0 ∧
p2(~x) = 0 ⇒ In (p2,~x , f )) ∧ (p1(~x) = 0∧ p2(~x) = 0 ⇒ In (p1,~x , f ) ∧ In (p2,~x , f )). Similarly,
when the candidate invariant is p1 ≥ 0 ∨ p2 ≥ 0, then Condition (F2) generalizes to
(p1(~x) = 0 ∧ p2(~x) < 0 ⇒ In (p1,~x , f )) ∧ (p1(~x) < 0 ∧ p2(~x) = 0 ⇒ In (p2,~x , f )) ∧ (p1(~x) =
0 ∧ p2(~x) = 0 ⇒ In (p1,~x , f ) ∨ In (p2,~x , f )).

Hybrid Systems Since hybrid systems extend CDSs with discrete transitions, and since
the rule to handle discrete transitions is standard, the sound inference rules for hybrid sys-
tems can be obtained by combining the rule for continuous systems with the rule for dis-
crete transitions. However, when using the rule for continuous systems, we can use any
rule whose soundness is proved using Condition (A2) (such as rule in Figure 1(Right)),
but we cannot use a rule whose soundness is proved using Condition (S2) (such as rule in
Figure 4). The reason is that, as mentioned in Section 3, Condition (T2) is locally sound,
whereas Condition (S2) is locally unsound, but only globally sound. In hybrid systems, due
to the possibility of the presence of discrete transitions from the boundary, we need a sound
condition that can verify invariance locally at every point.
Example 8 We build a hybrid system to exploit the difference illustrated in Example 1. Consider a
hybrid system that has only one mode, with dynamics f ((x, y)) = (1, 0) and a discrete transition
given by, x := −x whenever x2 + (y− 1)2 = 1 ∧ x > 0. Suppose initially, x2 + (y− 1)2 ≤ 1 and
we want to show that this initial set is also an inductive invariant. We note that this set is not an
invariant because there are trajectories leaving the invariant set from points (0, 1) and (0, 0). But
Condition (S2) holds at both these points, and it also holds on all boundary points from where there
is no discrete transition. The invariant set is inductive with respect to the discrete transitions. This
shows that one has to be careful when generalizing rules based on Condition (S2) to hybrid systems.

5 Conclusions

We presented several inference rules for safety verification of continuous systems and an-
alyzed their soundness and relative completeness. We have a finite and sound rule that
is also complete for the class of invariants containing convex and certain smooth semi-
algebraic sets. It remains a challenge to discover an effectively checkable and sound rule
that is complete for all semi-algebraic invariants.
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A Proofs

Proposition 5. Let Inv be a closed inductive invariant for the continuous dynamical system
CDS:= (X, Init , f ). Then, Reach (CDS) ⊆ Inv .
PROOF. Suppose not. Suppose~x is a state that is in Reach (CDS), but not in Inv . Let~x0 be
the initial state and t ≥ 0 be the time such that ~x = F(~x0, t). Let ~x i denote the state F(~x0, i).
Define T := {i | ~x i 6∈ Inv }. Clearly, t ∈ T. The set T is lower bounded by 0. Hence, let
tm = inf(T). (Case 1) Suppose tm ∈ T. By Condition (A1), tm 6= 0. Since tm is minimal,
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tm − ε 6∈ T. Therefore, for every ε > 0, the state ~x tm−ε is in Inv , and hence states arbitrarily
close to~x tm are in Inv . Since Inv is a closed set,~x tm ∈ Inv , which contradicts tm ∈ T. (Case
2) Suppose tm 6∈ T. Therefore, ~x tm ∈ Inv . By Condition (A2), there is a t′ > 0 such that
~x tm+t′′ ∈ Inv for all 0 ≤ t′′ < t′. Therefore, tm + t′′ 6∈ T and hence, inf(T) ≥ tm + t′, which
contradicts the fact that tm = inf(T).

Theorem 7 [Soundness of Figure 1]. Given a continuous dynamical system CDS :=
(X, Init , f ) and a safety property Safe ⊆ X, if there is a set p ≥ 0 that satisfies Condi-
tions (S1), (S2) and (S3) from Figure 1(Left), or alternatively,satisfies Conditions (T1), (T2)
and (T3) from Figure 1(Right), then then Reach (CDS) ⊆ Safe .
PROOF. (Soundness of Figure 1 Left): By Nagumo’s theorem (Theorem 3.1 in [3]), we
know that Condition (S2) is equivalent to Condition (A2). Therefore, Conditions (S1) and (S2)
are together equivalent to the fact that Inv is an inductive invariant. Hence, by Proposi-
tion 5, we know that Reach (CDS) ⊆ Inv . By Condition (S3), we know that Inv ⊆ Safe
and hence the result follows.

(Soundness of Figure 1 Right): Suppose p satisfies Condition (T1), (T2) and (T3). Since
f is assumed to be given using polynomials, it is analytic and hence the unique solution
F(~x , t) of the differential equations will also be analytic; see for example [11]; and so will be
the case for the polynomial function p(~x(t)) as a function of t. Hence, for sufficiently small
t > 0, the value of p(t) := p(~x(t)) is given by the Taylor expansion,

p(t) = p(0) +
∞

∑
i=1

di p
dti

∣∣∣∣
t=0

ti

i!
(5)

Note that di p
dti is the same thing as L(i)

f (p). If all terms on the right-hand side of Equation 5

are 0, then p(t) = 0 and we have p(t) ≥ 0. If not all terms are zero, then let dk p
dti

∣∣∣
t=0

ti

i! be the
first non-zero term. By Condition (T2), we know this term is also non-negative. Hence, it is
strictly positive and hence we again have p(t) ≥ 0. Thus, in all cases, we have the p(t) ≥ 0
for all sufficiently small t. This fact, along with Condition (T1), shows that p ≥ 0 is an
inductive set and Reach (CDS) is contained in p ≥ 0. Since p ≥ 0 ⇒ Safe (Condition (T3)),
it follows that Reach (CDS) ⊆ Safe .

Theorem 8 [Completeness of Figure 1]. Let CDS := (X, Init , f ) be a continuous dy-
namical system and Safe ⊆ X be a closed set such that Reach (CDS) ⊆ Safe . If there is
an inductive invariant p ≥ 0 such that p ≥ 0 ⇒ Safe , then p ≥ 0 also satisfies Condi-
tions (S1), (S2) and (S3) from Figure 1(Left), as well as, Conditions (T1), (T2) and (T3) from
Figure 1(Right).
PROOF. (Completeness of Figure 1 Left): Let Inv := Cl (Reach (CDS)), where Cl (S) de-
notes the (topological) closure of the set S. Since Reach (CDS) ⊆ Safe and since Safe
is assumed to be closed, it follows that Inv ⊆ Safe (Condition (S3)). Since Init ⊆
Reach (CDS), we have Init ⊆ Inv (Condition (S1)). Finally, we need to show that Con-
dition (S2) also holds. Since, by Nagumo’s theorem (Theorem 3.1 in [3]), Condition (S2) is
equivalent to Condition (A2), we will show that Inv satisfies Condition (A2). Let~x0 ∈ Inv .
We need to show that F(~x0, t) ∈ Inv for all 0 ≤ t < t0 for some t0 > 0. We have two cases:
(Case 1) ~x0 ∈ Reach (CDS): Then, ~x0 = F(~x00, t0) from some ~x00 ∈ Init and t0 ≥ 0 and
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hence the state F(~x0, t), which is the same as the state F(~x00, t0 + t), is also in Reach (CDS).
Hence, for any t ≥ 0, the state F(~x0, t) is in Inv .
(Case 2) If ~x0 ∈ Inv −Reach (CDS), then ~x0 is on the boundary of Reach (CDS). By Propo-
sition 2, we know that F(~x0, t) depends continuously on ~x0. Since ~x0 is arbitrarily close to
a reachable state, the state F(~x0, t) also has to be arbitrarily close to a reachable state (this
can be more formally stated and argued using ε-δ arguments). Hence, F(~x0, t) will be in the
closure of Reach (CDS) and hence it is in Inv .

(Completeness of Figure 1 Right): We only need to show that p satisfies Condition (T2).
Suppose not and suppose that Condition (T2) is violated for some k. This means that there is
a point~x such that p(~x) = 0 and L(i)

f (p)(~x) = 0, for i = 1, . . . , k− 1, and L(k)
f (p)(~x) < 0. Con-

sider the unique trajectory F(~x , t) starting from point ~x . Using Equation 5, it follows that,
for sufficiently small t, p(F(~x , t)) < 0, which contradicts Condition (A2) in the definition of
an inductive invariant.

LEMMA 13. If p is a polynomial and ~u, f are two points such that p(~u) = 0, then
(a) pos (p,~u, f ) is equivalent to the fact that there exists a α0 such that for all 0 < α ≤ α0, we
have p(~u + α f ) > 0.
(b) zero (p,~u, f ) is equivalent to the fact that p(~x + α f ) = 0 for all α.
(c) neg (p,~x , f ) is equivalent to the fact that there exists a α0 such that p(~x + α f ) < 0 for all
0 < α ≤ α0.

PROOF. Using the homogeneous decomposition of p to calculate p(~u + α f ), we have

p(~u + α f ) =
n

∑
i=1

αki p(~u +~x)i( f ) (6)

Since p(~u) = 0, the constant term in p(~u +~x) is zero, and hence k1 ≥ 1. Also, by assumption,
the condition pos (p,~u, f ) is equivalent to the fact that the first nonzero homogeneous com-
ponent in the above summation is positive. For sufficiently small α, the sign of p(~u + α f ) is
determined by the sign of the first nonzero term. This shows the desired equivalence in (a).

The proofs of the equivalence in (b) and (c) follow similarly from Equation 6 and the
definitions of zero and neg .

Let d(~x , S, f ) denote the distance of point ~x from the set S along the direction f .

LEMMA 14. Let p be a polynomial and ~x be a point such that p(~x) = 0. Let f = f (~x).
Suppose k, l, and g are such that l < k and the following holds:

kneg (p,~x , f , k) ∧ pos (pl , f , g) ∧
∧
j<l

zero (pj, f , g)

Then,

lim inf
α→0

d(~x + α f , p ≥ 0, g)
α

= 0.

PROOF. For any real numbers α and β, let us compute the value of p(~x + α f + αβg) using
Equation 6:

p(~x + α f + αβg) =
n

∑
i=1

p(~x +~y)i(α f + αβg) =
n

∑
i=1

αki p(~x +~y)i( f + βg)
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Since we have zero (pj, f , g) for all j < l, by Lemma 13 (b), the first l − 1 terms in the above
summation are zero (for any β). Therefore, for sufficiently small α, the value of p(~x + α f +
αβg) is determined by the value of αkl p(~x +~y)l( f + βg), which is the first nonzero term.
In fact, since pos (pl , f , g) holds, by Lemma 13 (a), we know that this term is positive for
sufficiently small β. Fix β to a value β0 > 0 for which the term p(~x +~y)l( f + βg) is positive.
For this β = β0, we know that p(~x + α f + αβ0g) > 0 for all sufficiently small α (fact1).

Since kneg (p,~x , f , k) holds, we know from Lemma 13 (c) that p(~x + α f ) < 0 for all
sufficiently small α (fact2). Using (fact1) and (fact2) together, we infer that, for sufficiently
small α, there is a βα such that (a) 0 < βα < β0, and (b) p(~x + α f + αβαg) = 0. We will
complete the proof by showing that lim infα→0 βα = 0.

Let us compute the value of p(~x + α f + αβαg) using Equation 6:

p(~x + α f + hβαg) =
n

∑
i=1

αki p(~x +~y)i( f + βαg)

Since p(~x) = 0, ki > 0 for all i. In particular, kl > 0. Divide both sides by αkl and take the
limit as α → 0. The left-hand side is identically zero. On the right-hand side, only the l-th
term remains: the first l − 1 terms are zero and the limit of all terms beyond the l-th term is
zero as α → 0. Thus, we have

0 = lim
α→0

p(~x +~y)l( f + βαg) = p(~x +~y)l( f + (lim
α→0

βα)g)

Recall that for all α, we have 0 < βα ≤ β0 and hence, lim infα→0 βα exists. If it is is equal to a,
then a will lie between 0 and β0. But, we know that p(~x +~y)l( f + βg) > 0 for all 0 < β ≤ β0,
and hence if a > 0 then p(~x +~y)l( f + ag) > 0, which contradicts the above equation. Hence,
a = 0. This completes the proof.

PROPOSITION 15. If lim infα→0
d(~x ,p≥0,g)

α = 0 for some g, then lim infα→0
d(~x ,p≥0)

α = 0.

PROOF. Distance along a specific direction is an over-approximation of the actual distance
of a point from a set. This is also true for our definition above modulo some constant factor
required to normalize the direction vector g.

Theorem 11[Soundness of Figure 3 and Figure 4] Let CDS := (X, Init , f ) be a CDS
and Safe be a safety property. If p ∈ Q[X] is a polynomial that satisfies Conditions (C1),
(C2), (C2’) and (C3) of Figure 3(Left), or alternatively Conditions (D1), (D2), (D2’) and
(D3) of Figure 3(Right), or alternatively, Conditions (F1), (F2) and (F3) of Figure 4, then
Reach (CDS) ⊆ Safe .
PROOF. (Soundness of Figure 3 Left): We will show that Condition (C2) and Condi-
tion (C2’) together imply Condition (S2). Then the result will follow from Theorem 7. Con-
sider any point~x on the boundary of p ≥ 0. From Condition (C2’) we know that ~∇p(~x) 6= 0
and also that L f (p)(~x) ≥ 0. If L f (p)(~x) > 0, then we can use the argument of Theorem 7
to conclude soundness. So, we only need to consider the case when L f (p)(~x) = 0. Since
L f (p) = ~∇p · f (Equation 4) and ~∇p 6= 0, we have that either f (~x) = 0 or f (~x) is a non-zero
vector that is orthogonal to the non-zero vector ~∇p.
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(Case 1) f (~x) = 0. In this case, we have

lim inf
α→0

d(~x + α f (~x), p ≥ 0)
α

= lim inf
α→0

d(~x , p ≥ 0)
α

= lim inf
α→0

0
α

= 0

This shows that Condition (S2) is satisfied at point ~x .
(Case 2) f (~x) 6= 0. We claim that d(~x + α f (~x), p ≥ 0) is at most O(α1.5). Using this claim, we
can complete the proof as follows:

lim inf
α→0

d(~x + α f (~x), p ≥ 0)
α

= lim inf
α→0

O(α1.5)
α

= 0

To prove the claim, we show that the point ~x + α f (~x) + α1.5~∇p lies inside the invariant set
p ≥ 0. This claim follows from the following calculation based on using Taylor expansion:

p(~x + α f (~x) + α1.5~∇p) = p(~x) + ~∇p · (α f (~x) + α1.5~∇p) + O(α2)

= 0 + α~∇p · f (~x) + α1.5~∇p · ~∇p + O(α2) = α1.5~∇p · ~∇p + O(α2)

Since ~∇p 6= 0, the term ~∇p · ~∇p is positive and this concludes the proof.
(Soundness of Figure 3 Right): We use the same proof as above. We only need to check

that Condition (S2) holds for the points ~x such that p(~x) = 0 and ~∇p(~x) = 0. For this case,
Condition (D2’) guarantees that, for sufficiently small α, p(~x + α f (~x)) is inside the invariant
set. Hence Condition (S2) is satisfied at such points.

(Soundness of Figure 4): We prove that Condition (F2) implies Condition (S2) from
Figure 1. Then the claim follows from Theorem 7. Consider any point~u on the boundary of
p ≥ 0. Clearly, p(~u) will be 0. Hence, by Condition (F2), we have one of the following two
different cases, and in each case we show that

lim inf
α→0

d(~u + α f (~u), p ≥ 0)
α

= 0 (7)

(Case 1): ¬neg (p,~u, f (~u)) holds: In this case, by Lemma 13, we have p(~u + α f (~u)) ≥ 0
for all sufficiently small α. This means that ~u + α f (~u) is inside the set p ≥ 0, and hence
Equation 7 holds.
(Case 2):

∨n
k=1(kneg (p,~x , f , k) ∧

∨
l<k(∃g : pos (pl , f , g) ∧

∧
j<l zero (pj, f , g))) holds: Let

k, l and g be such that kneg (p,~u, f , k), pos (pl , f , g), and
∧

j<l zero (pj, f , g) holds. Using
Lemma 14 and Proposition 15, we conclude that Equation 7 holds.
Thus, in each case, Equation 7 holds. However, Equation 7 implies f (~u) ∈ T(p ≥ 0)(~u) and
this means Condition (S2) holds. This completes the proof.

LEMMA 16. Let p be a homogeneous polynomial of degree k > 1 and~u be a point such that
p(~u) < 0. If there exists α0 > 0 such that for each 0 < α ≤ α0, there exists a unit vector gα

and an upper-bounded positive scalar βα,gα such that limα→0+ p(~u +~y)(βα,gα gα) = 0; then
lim infα→0 βα,gα > 0.

PROOF. Let C0 = p(~u) < 0. By standard ε − δ argument, there exists a δ > 0 for ε = C0
2

(note that C0 < 0) such that
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C0

2
≤ p(~u +~y)(βα,gα gα) ≤ −C0

2
(8)

Calculating p(~u +~y)(βα,gα gα) using Equation 6:

p(~u +~y)(βα,gα gα) =
n

∑
i=1

p(~u +~y)i(βα,gα gα)

= p(~u) + βk1
α,gα

p(~u +~y)1(gα) + . . . + βkn
α,gα

p(~u +~y)n(gα)

= C0,α + βk1
α,gα

C1,α + . . . + βkn
α,gα

Cn,α

Note that for all i, Ci,α = p(~u +~y)i(gα) in the above equation. Let g1
α, . . . , gp

α denote the
components of the vector gα. Since ||gα|| = 1, we have ∀1 ≤ i ≤ p, it is the case that
−1 ≤ gi

α ≤ 1. This immediately shows that each Ci,α = p(~u +~y)i(gα) is bounded above for
all α. Therefore ∀i : ∀0 < α < α0 : Ci,α ≤ Ci,max ≤ max(Ci,max, 0) = Ci,m. Since βα,gα > 0, we
have for all 0 < α < α0:

C0 + βk1
α,gα

C1,α + . . . + βkn
α,gα

Cn,α ≤ C0 + βk1
α,gα

C1,m + . . . + βkn
α,gα

Cn,m (9)

Combining equation 8 and 9 we get,

βk1
α,gα

Cm
1 + . . . + βkn

α,gα
Cm

n ≥ −C0

2
.

Since (∀i : Cm
i ≥ 0)∧−C0

2 ≥ 0, every positive solution βα,gα of the above inequality should be
lower bounded by a strictly positive constant independent of α. Therefore lim infα→0 βα,gα >

0. This completes the proof.

LEMMA 17. Let p be a polynomial such that convex (p ≥ 0) holds and let ~u be a point
such that p(~u) = 0. For some direction f , suppose kneg (p,~u, f , m) holds for m > 1 and
f ∈ T(p ≥ 0)(~u). Then, there is a direction g and l < m such that

kneg (p,~u, f , m) ∧ pos (pl , f , g) ∧
∧
j<l

zero (pj, f , g)

PROOF. Consider the point ~u + α f . Since kneg (p,~u, f , m) is true, for sufficiently small α,
p(~u + α f ) < 0 (Lemma 13 (c)). Let α0 be sufficiently small so that the relation holds for all
0 < α ≤ α0. Since f ∈ T(p ≥ 0)(~u), for each α, there is a direction, gα, such that

lim inf
α→0

d(~u + α f , p ≥ 0, gα)
α

= 0.

Let βα,gα denote the value d(~u+α f ,p≥0,gα)
α . Therefore

lim inf
α→0

βα,gα = 0 (10)
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We prove that there is an α ∈ (0, α0] such that for the direction gα, it is the case that
pos (pl , f , gα) ∧

∧
j<l zero (pj, f , gα) holds for some l < m. Suppose this is not the case.

Then, for each direction gα, one of the following two cases must hold:
(Case 1) ∀j < m : zero (pj, f (~u), gα) holds: By definition, p(~u + α f + αβα,gα gα) = 0. Calculat-
ing p(~u + α f (~u) + αβα,gα gα) = 0 using Equation 6:

p(~u + α f + αβα,gα gα) =
n

∑
i=1

αki p(~u +~y)i( f + βα,gα gα)

= αkm p(~u +~y)m( f + βα,gα gα) + . . . + αkn p(~u +~y)n( f + βα,gα gα)

The last step is due to the fact ∀j < m : zero (pj, f (~u), g). The left hand side is identically
zero. Therefore dividing both sides by αkm we get
p(~u +~y)m( f + βα,gα gα) + αkm+1

αkm p(~u +~y)m+1( f + βα,gα gα) + . . . + αkn

αkm p(~u +~y)n( f + βα,gα gα) =
0.

For all i ≥ m + 1, we have ki > km, and therefore, taking limα→0 on both sides we get

lim
α→0

p(~u +~y)m( f + βα,gα gα) = 0

Since kneg (p,~u, f , m) is true, p(~u +~y)m( f ) < 0. Therefore, applying Lemma 16, we get
lim infα→0 βα,gα > 0. This contradicts Equation 10. Hence this case is not possible.
(Case 2) ∀gα : ∃l < m : (neg (pl , f (~u), gα) ∧ (∀j < l : zero (pj, f (~u), gα))) holds: Calculating
p(~u + α f (~u) + αβgα) = 0 using Equation 6 and removing the zero terms:

p(~u + α f (~u) + αβgα) = αkl p(~u +~y)l( f + βgα) + . . . + αkn p(~u +~y)n( f + βgα) (11)

Since neg (pl , f (~u), gα) holds, we know that for sufficiently small β, pl( f (~u) + βgα) < 0.
Further since gα is a unit vector and hence bounded for all α, we can find a sufficiently
small β1 > 0 such that ∀α : ∀0 < β < β1 : pl( f (~u) + βgα) < 0. From 10, we know that
lim infα→0 βα,gα = 0. Therefore we can find an α1 < α0 such that βα1,gα1

< β1. We have the
following facts.

1. p(~u) = 0 holds.
2. By definition of βα1,gα1

, we have p(u + α1( f (~u) + βα1,gα1
gα1)) = 0.

3. If we keep β fixed at βα1,gα1
and calculate p(u + α( f (~u) + βα1,gα1

gα1)) then we find that
p(~u + α( f (~u) + βα1,gα0

gα1)) < 0 for a sufficiently small α < α1. This is because the first
term in the expansion αkl p(~u +~y)l( f + βα1 , gα0 gα1) is negative and dominates.

Since p(~u) = 0 and p(~u + α1( f (~u) + βα1,gα1
gα1)) = 0, ~u and ~u + α1( f (~u) + βα1,gα1

gα1) are
points in the region p ≥ 0. Since convex (p ≥ 0) holds, this region is convex and therefore
all points on the line joining ~u and ~u + α1( f (~u) + βα1,gα1

gα1) must be in the region. How-
ever from the fact above we find that there exists 0 < α ≤ α1 such that p(~u + α( f (~u) +
βα1,gα1

gα1)) < 0 and hence there is a point on the line joining ~u and ~u + α1( f (~u) + βα1,gα1
gα1)

which is not in the region. This is a contradiction. Hence this case is not possible as well.
This proves the lemma.

Theorem 12 Let CDS := (X, Init , f ) be a CDS and Safe be a closed set such that
Reach (CDS) ⊆ Safe . Let p ≥ 0 be an inductive invariant such that p ≥ 0 ⇒ Safe . Then,
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the following claims are true.
(1) If p = 0 ⇒ ~∇p 6= 0, then p ≥ 0 satisfies Conditions (C1), (C2), (C2’) and (C3).
(2) If p is quadratic, then p ≥ 0 satisfies Conditions (D1), (D2), (D2’) and (D3).
(3) If p ≥ 0 is convex , then p ≥ 0 satisfies Conditions (F1), (F2) and (F3).
PROOF. (Relative completeness of Figure 3 Left) This follows from completeness of the
rule in Figure 1(Right) (Theorem 8).

(Relative completeness of Figure 4 Right) We need to argue that for quadratic p, if
p ≥ 0 is an inductive invariant, then Condition (D2’) holds. Suppose not. Let ~x be a point
s.t. p(~x) = 0, ~∇p(~x) = 0, and neg (p,~x , f (~x)) all hold true. Since p is quadratic, p(~x) = 0
and ~∇p(~x) = 0, it follows that p(~x +~y) is a homogeneous polynomial (in ~y ) with degree
2. Since neg (p,~x , f (~x)) holds, there is an α > 0 s.t. p(~x + α f (~x)) < 0. Since p ≥ 0 is an
inductive invariant, we know that Condition (S2) holds at ~x . Hence, we can use Lemma 16
to get a contradiction with Condition (S2).

(Relative completeness of Figure 4) We skip the proof for Conditions (F1)and (F3) since
they are straightforward. For Condition (F2) we prove by contradiction. Assume Condi-
tion (S2) holds, but Condition (F2) does not hold. Since Condition (F2) fails, this means there
is a point ~u such that p(~u) = 0, but Condition (F2) evaluates to false at ~u.

Since Condition (S2) holds for p ≥ 0, we have ∀~x : p(~x) = 0 ⇒ f (~x) ∈ T(p ≥ 0)(~x).
Since ~u is a point such that p(~u) = 0, we conclude that f (~u) ∈ T(p ≥ 0)(~u). Using the
definition of the tangent cone, this means

lim inf
α→0

d(~u + α f (~u), p ≥ 0)
α

= 0 (12)

Since Condition (F2) is violated at point ~u, we infer that neither zero (p,~u, f (~u)) nor
pos (p,~u, f (~u)) is true. But, this means that, for some m, kneg (p,~u, f (~u), m) must hold.
This further implies that we can apply Lemma 17 and therefore we have a direction g and
l < m such that

kneg (p,~u, f (~u), m) ∧ pos (pl , f (~u), g) ∧
∧
j<l

zero (pj, f , g)

holds. This contradicts the assumption that Condition (F2) fails.


