
Computing Procedure Summaries for
Interprocedural Analysis

Sumit Gulwani1 and Ashish Tiwari2

1 Microsoft Research, Redmond, WA 98052, sumitg@microsoft.com
2 SRI International, Menlo Park, CA 94025, tiwari@csl.sri.com

Abstract. We describe a new technique for computing procedure sum-
maries for performing an interprocedural analysis on programs. Proce-
dure summaries are computed by performing a backward analysis of
procedures, but there are two key new features: (i) information is propa-
gated using “generic” assertions (rather than regular assertions that are
used in intraprocedural analysis); and (ii) unification is used to simplify
these generic assertions (thus generalizing our recent technique of using
unification to simplify regular assertions in intraprocedural analysis [6]).
We describe conditions under which this technique yields efficient inter-
procedural analyses. We illustrate this technique by applying it to two
abstractions: unary uninterpreted functions and linear arithmetic. In the
first case, we get a PTIME algorithm for a special case of the long-
standing open problem of interprocedural global value numbering (the
special case being that we consider unary uninterpreted functions instead
of binary). This also requires developing efficient algorithms for manip-
ulating singleton context-free grammars, and builds on an earlier work
by Plandowski [13]. In linear arithmetic case, we get new algorithms for
precise interprocedural analysis of linear arithmetic programs with com-
plexity matching that of the best known deterministic algorithm [11].

1 Introduction

Precise interprocedural analysis (also referred to as full context-sensitive anal-
ysis) is provably harder than intraprocedural analysis [14]. One way to do pre-
cise interprocedural analysis is to do procedure-inlining followed by an intra-
procedural analysis. There are two potential problems with this approach. First,
in presence of recursive procedures, procedure-inlining may not be possible. Sec-
ond, even if there are no recursive procedures, procedure-inlining may result in
an exponential blow-up of the program. For example, if procedure P1 calls pro-
cedure P2 two times, which in turn calls procedure P3 two times, then procedure
inlining will result in 4 copies of procedure P3 inside procedure P1. In general,
leaf procedures can be replicated an exponential number of times.

A more standard way to do interprocedural analysis is by means of computing
procedure summaries [20]. Each procedure is analyzed once (or a few times in
case of recursive procedures) to build its summary. A procedure summary can be
thought of as some succinct representation of the behavior of the procedure that
is also parametrized by any information about its input variables. However, there

main(){
1 x := 0; y := 1; a := 2; b := 4;
2 P (); Assert(y = 2x + 1);
3 x := 0; y := 0; a := ?; b := 2a;
4 P (); Assert(y = 2x);
5 y := x + 3; a := ?; b := a;
6 P (); Assert(y = x + 3);
7 }

P (){
1 if (*) {
2 x := x + a;
3 y := y + b;
4 }
5 else P ()
6 }

Fig. 1. An example program.

is no automatic recipe to efficiently construct or even represent these procedure
summaries, and abstraction specific techniques are required.

The original formalism proposed by Sharir and Pnueli [20] for computing
procedure summaries was limited to finite lattices of dataflow facts. Sagiv, Reps
and Horwitz generalized the Sharir-Pnueli framework to build procedure sum-
maries using context-free graph reachability [15], even for some kind of infinite
domains. They successfully applied their technique to detect linear constants
interprocedurally [17]. However, their generalized framework requires appropri-
ate distributive transfer functions as input - and such transfer functions are not
known for any natural abstract domain more powerful than linear constants.

In this paper (Section 3), we describe a general technique for constructing
precise procedure summaries. This technique can be effectively used for a useful
class of program abstractions (over infinite domains). We apply this technique
to obtain precise interprocedural analyses for two useful abstractions - unary
uninterpreted functions, and linear arithmetic (which is more powerful than
the domain of linear constants used by Sagiv, Reps and Horwitz). The former
(described in Section 4) gives a polynomial-time algorithm for a special case of
the long-standing open problem of interprocedural global value numbering, while
the latter (described in Section 5) yields a new algorithm for interprocedural
linear arithmetic analysis with the same complexity as that of the best known
deterministic algorithm [11].

Our procedure summaries are in the form of constraints (on the input vari-
ables of the procedure) that must be satisfied for some appropriate generic as-
sertion (involving output variables of the procedure) to hold at the end of the
procedure. A generic assertion is an assertion that involves some context vari-
ables that can be instantiated by symbols (or more formally, by terms with holes)
of the underlying abstraction. For example, consider procedure P shown in Fig-
ure 1 with input variables x, y, a, b and output variables x, y. αx + βy = γ is a
generic assertion in the theory of linear arithmetic involving variables x, y (and
context variables α, β, γ, which denote unknown constants). Using the technique
described in this paper, we compute the summary of procedure P as “αx+βy = γ
holds at the end of procedure P iff αa + βb = 0 ∧ αx + βy = γ holds at the
beginning of procedure P”. After computing such a procedure summary for P ,
we can use it to verify the assertions in the Main procedure. To verify the first
assertion y = 2x + 1, we first match it with the generic assertion αx + βy = γ
to obtain the substitution α 7→ −2, β 7→ 1 and γ 7→ 1 for the context variables.

2

We then instantiate the procedure summary with this substitution to obtain the
precondition b − 2a = 0 ∧ y − 2x = 1. We then check that this precondition
is satisfied in procedure Main immediately before the first call to procedure P .
Similarly, we can verify the other two assertions.

The key idea in computing such procedure summaries is to compute weak-
est preconditions of generic assertions. However, a naive weakest precondition
computation may be exponential in the number of operations performed (each
conditional node can double the size of the precondition), and may not even
terminate (in presence of loops). To guarantee efficiency, we use some tech-
niques for strengthening and simplifying the weakest preconditions (without
any loss of precision. This simplification is based on recent connections be-
tween unification and assertion checking (described in Section 2.2). For ex-
ample, consider computing the weakest precondition of the generic assertion
x = βy in the theory of unary uninterpreted functions for the procedure Q in
Figure 3. (Here β represents some unknown sequence of uninterpreted functions.)
The naive weakest precondition computation will not terminate and will yield
x = βy ∧ fx = βfy ∧ ffx = βffy ∧ However, our simplification procedure
will simply (and strengthen) the first two conjuncts to x = βy ∧ βf = fβ, de-
noting that the relationship x = βy holds at the end of procedure only if (β
is of the form such that) βf = fβ and x = βy holds at the beginning of the
procedure. It turns out that the constraints thus obtained βf = fβ ∧ x = βy
form a fixed-point, and hence our weakest precondition computation terminates
immediately.

2 Preliminaries

We start with a description of our program model, and some background on
connections between unification and assertion checking in this section.

2.1 Program Model

We assume that each procedure in a program is abstracted using the flowchart
nodes shown in Figure 2. In the assignment node, x refers to a program variable
while e denotes some expression in the underlying abstraction. We refer to the
language of such expressions as expression language of the program. Following
are examples of the expression languages for the abstractions that we refer to in
this paper:

– Linear arithmetic. e ::= y | c | e1 ± e2 | c× e
Here y denotes some variable while c denotes some arithmetic constant.

– Unary Uninterpreted functions. e ::= y | f(e)
Here f denotes some unary uninterpreted function.

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that our abstraction
cannot handle precisely.

3

(a) Assignment
Node

Fig. 2. Flowchart nodes in our abstracted program model.

A join node has two incoming edges. Note that a join node with more incom-
ing edges can be reduced to multiple join nodes with two incoming edges.

Non-deterministic conditionals, represented by ∗, denote that the control
can flow to either branch irrespective of the program state before the condi-
tional. They are used as a safe abstraction of guarded conditionals, which our
abstraction cannot handle precisely. We abstract away the guards in conditionals
because otherwise the problem of assertion checking can be easily shown to be
undecidable even when the program expressions involves operators from simple
theories like linear arithmetic [10] or uninterpreted functions [9]. This is a very
commonly used restriction for a program model while proving preciseness of a
program analysis for that model.

For simplicity, we assume that the inputs and outputs of a procedure are
passed as global variables. Hence, the procedure call node simply denotes the
name of the procedure to be called. Also, we assume that we are given the whole
program with a special entry procedure called Main.

2.2 Unification and Assertion Checking

A regular assertion is a conjunction of equalities e = e′ between two expressions.
A substitution σ is a mapping from variables to expressions. A substitution σ
is applied to an expression e (or assertion ψ), by replacing all variables x by
σ(x) in the expression (assertion). The result is denoted in postfix notation by
eσ (or ψ[σ]). A program state is a substitution on program variables. A regular
assertion ψ is said to hold at a program point π if ψ[σ] is valid (in the underlying
theory) for every program state σ reached at π (along any path).

A substitution σ is a unifier for ψ if ψ[σ] is valid. A substitution σ1 is more-
general than a substitution σ1 if there is a substitution σ3 s.t. xσ2 = xσ1σ3 for
all x. A theory is unitary if for all equalities e = e′ in that theory, there exists
a unifier that is more-general than any other unifier of e = e′. A substitution σ
can be treated as the formula

∧
x x = σ(x). For a unitary theory T, we denote

the conjunction representing the most-general unifier for ψ by UnifT(ψ).
The formula Unif(ψ) logically implies ψ, but it is, in general, not equiv-

alent to ψ. Since it is often “simpler” than ψ, we may wish to replace ψ by
Unif(ψ). The basic result formally stated in Property 1 is that, in many useful
abstractions, the formulas ψ and Unif(ψ) are “equivalent” as far as invariance
of assertions is concerned.

4

Property 1 ([5]). Let π be any location in a program that is specified using the
flowchart nodes in Figure 2 and expressions from some unitary theory T. An
equality e = e′ holds at π iff UnifT(e = e′) holds at π.

The above property is stated and proved in [5]. The key insight is that runs of a
program are just substitutions and if every run validates an assertion, then every
run should also validate a more-general unifier of that assertion. Property 1 is
used at two places in our generic weakest-precondition computation based tech-
nique for interprocedural analysis: (a) for simplification of formulas for efficiency
purpose (Section 3.2), (b) for detecting fixed-point computation (Section 3.2).

Note that we present our results in the context of unitary theories for effi-
ciency reasons; otherwise both Property 1 and our general approach of Section 3
can be generalized.

3 General Technique for Interprocedural Analysis

Our technique for interprocedural analysis uses the standard two phase summary-
based approach. The two phases are described in Section 3.2 and Section 3.3.

3.1 Generic Assertions

A generic assertion is an assertion that involves context-variables apart from
regular program variables. A context-variable represents some unknown term
with holes, with the constraint that this unknown term does not involve any
program variables (i.e., it only involves symbols from the underlying theory
or abstraction). An important consequence of this constraint is that generic
assertions are closed under weakest precondition computation across assignments
to program variables.

We say that a generic assertion A1 is more general than another generic
assertion A2 if there exists an instantiation σ of the context variables of A1 such
that A2 = A1[σ]. We define a set of generic assertions to be complete w.r.t. a
given set of program variables V if for any generic assertion A1 in the underlying
theory involving program variables V , there exists a generic assertion A2 in the
set such that A2 is more general than A1.

For the theory of linear arithmetic, the singleton set {
∑

i αixi = α} consti-
tutes a complete set of generic assertions with respect to the set of variables
{xi}i. Here α, αi denote unknown constants. For the theory of unary uninter-
preted functions, the set {αx1 = βx1 | x1, x2 ∈ V, x1 6≡ x2} is a complete set
of generic assertions with respect to the set of variables V . Here α, β represent
unknown strings (applications) of unary uninterpreted functions.

3.2 Phase 1: Computing Procedure Summaries

Let P be a procedure with V as the set of its output variables. Let G be some
complete set of generic assertions with respect to V for the underlying abstrac-
tion. The summary of procedure P is a collection of formulas ψi, one for each

5

generic assertion Ai in G. The formula ψi is the weakest precondition of the
generic assertion Ai denoting that the generic assertion Ai holds at the end of
procedure P iff the formula ψi holds at the beginning of procedure P . Each
formula ψi itself is a conjunction of generic assertions. (Observe that weakest
precondition computation involves substitution of regular variables by program
expressions and performing conjunctions of formulas. Hence, conjunctions of
generic assertions are closed under weakest precondition computation.)

Computing summary for procedure P requires computing the weakest pre-
condition of each generic assertion in G one by one. The weakest precondition
of a given generic assertion A across a procedure is computed by computing a
formula ψ at each procedure point using the following transfer functions across
flowchart nodes. The correctness of the following transfer functions is immediate.

Initialization: The formula at all procedure points except the procedure exit
point is initialized to true. The formula at the exit is initialized to the generic
assertion A.

Assignment Node: See Figure 2(a). The formula ψ′ before an assignment node
x := e is obtained from the formula ψ after the assignment node by substituting
x by e in ψ, i.e. ψ′ = ψ[x 7→ e].

Non-deterministic Assignment Node: See Figure 2(b). The formula ψ′ before a
non-deterministic assignment node x :=? is obtained from the formula ψ after the
non-deterministic assignment node by universally quantifying out the variable
x. However, for the case when program expressions come from a unitary theory,
we can simplify ∀x(ψ) to ψ[x 7→ c1]∧ψ[x 7→ c2], where c1 and c2 are two distinct
constants (or provably unequal terms) in the underlying theory. The proof of
correctness of this step is given in Appendix B.

Non-deterministic Conditional Node: See Figure 2(c). The formula ψ before a
non-deterministic conditional node is obtained by taking the conjunction of the
formulas ψ1 and ψ2 on the two branches of the conditional, i.e., ψ = ψ1 ∧ ψ2.

Join Node: See Figure 2(d). The formulas ψ1 and ψ2 on the two predecessors of a
join node are same as the formula ψ after the join node, i.e., ψ1 = ψ and ψ2 = ψ.

Procedure Call Node: See Figure 2(e). Let ψ ≡
∧k

i=1Ai. Let A′
i ∈ G be such that

A′
i is more general than Ai and let σi be the instantiation such that Ai = A′

i[σi].
Let ψ′i be the formula in the summary of procedure P ′ that represents the
weakest precondition of A′

i before procedure P ′. Then, ψ′ =
∧k

i=1 ψ
′
i[σi].

Simplification

Property 1 says that we do not need to distinguish between two regular assertions
that have the same set of unifiers. We can generalize this to generic assertions.
We say two formulas (conjunctions of generic assertions) ψ and ψ′ are essentially

6

equivalent, denoted by ψ
 ψ′, if ψσ and ψ′σ have the same set of unifiers for
every substitution σ that assigns every context variable in ψ,ψ′ to a term with a
hole (in the underlying theory). We denote by ψ ⇀ ψ′ the fact that every unifier
of ψσ is also a unifier of ψ′σ (for every σ).

We can simplify ψ at any program point by replacing it by another essentially
equivalent formula ψ′. The soundness and completeness of this transformation
follows from Property 1. This simplification is needed to bound the size of the
formula ψ because otherwise a naive computation of weakest precondition may
lead to an exponential blowup in the number of operations performed. In case of
linear arithmetic, this simplification simply involves removing linearly dependent
equations. In case of unary uninterpreted functions, this simplification involves
strengthening the formula.

Observe that the number of conjuncts in the formula computed before any
node (in particular the procedure call node) is at most quadratic in the maxi-
mum number of conjuncts in any simplified formula. Hence, the time required to
simplify any such formula can be bounded by TT(k), which is as defined below.

Definition 1 (Simplification Cost TT(k)). For any theory T, let ST(k) denote
the maximum number of conjunctions (of generic assertions) in any simplified
formula over k program variables. Let TT(k) denote the time required to simplify
a formula over k program variables with at most (ST(k))2 generic assertions.

Fixed-point Computation

In presence of loops (inside procedures as well as in call-graphs), we iterate
until fixed-point is reached. The standard way to perform such an iteration is to
maintain a worklist that stores all program points whose formulas have changed
with respect to the formulas in the previous iteration, but whose change has not
yet been propagated to its predecessors.

Let ψ be the formula computed at some program point π, and let ψ′ be
the formula at π in the previous iteration. If ψ and ψ′ are logically equivalent,
then it is intuitive that the formula at π has not changed from the previous
iteration (and hence does not require any further propagation to the predecessors
of π). However, it follows from Property 1 that we can strengthen this notion to
conclude that the formula at π has not changed even if ψ
 ψ′. This observation
is important because it allows to detect fixed-point faster. In case of unary
uninterpreted functions, this makes significant difference (E.g., for the loop in
procedure Q in Figure 3, fixed-point is not even reached with the former intuitive
notion of change, while it is reached in 2 steps with the latter stronger notion
of change, as explained on Page 3). The number of times the formula ψ at each
point inside a procedure gets updated is bounded by the maximum unifier chain
length of the underlying theory as defined below.

Definition 2 (Maximum Unifier Chain Length MT(k)). We define the
maximum unifier chain length of any theory T for k variables, denoted by MT(k),
to be the maximum length of any chain ψ1, ψ2, . . . (where each ψi is a conjunction
of generic assertions over k variables) such that ψi ⇀ ψi+1 but ψi+1 6⇀ ψi.

7

Computational Complexity

The number of updates performed during phase 1 is bounded above by n ×
MT(k), where n is the total number of program points and k is the maximum
number of program variables that are live at any program point (This follows
from Definition 2). The cost of each update is bounded above by TT(k). Hence,
the cost of Phase 1 is O(n×MT(k)× TT(k)).

3.3 Phase 2: Using Procedure Summaries

We now show how to use the procedure summaries computed in phase 1 to verify
and discover assertions at different program points. The correctness of this phase
is easy to observe, while its computational complexity is bounded above by that
of phase 1.
Verifying a given assertion at a given program point. For this purpose,
we can perform the weakest precondition computation of the given assertion as
in Phase 1. However, there are two main differences. The formula computed at
each program point is a regular assertion instead of a generic assertion. Secondly,
the preconditions computed at the beginning of the procedures are copied before
the call sites of those procedures. When the process reaches a fixed-point, we
declare the assertion to be true iff the precondition computed at the beginning
of Main procedure is true.
Computing all invariants at a given program point. Instead of com-
puting the weakest precondition of a given assertion at a program point π (as
described above), we can also compute the weakest preconditions of a complete
set of generic assertions. The preconditions obtained at the beginning of Main
procedure for each of these generic assertions will be in the form of constraints
on the context variables. These constraints exactly characterize the invariants
that hold at π.
Computing all invariants at all program points. We can repeat the above
process for all program points to compute all invariants at all program points.
However, when the expression language of the program comes from a unitary
theory (e.g., linear arithmetic and uninterpreted functions), we can perform a
more efficient analysis based on a forward intraprocedural analysis for that ab-
stract domain. For this purpose, we simply run a forward intraprocedural anal-
ysis on each procedure. The invariant at the entry point of Main procedure is
initialized to true, while for all other procedures, it is obtained as the join of
the invariants before all call sites of that procedure. We only need to describe
the transfer function for the procedure call node. Let F be the invariants com-
puted before the procedure call node. Let σ = Unif(F) be the substitution
representing the most-general unifier of F . (Note that unitary theories have a
single most-general unifier). Let V be the set of variables that do not have a
definition in σ, but are the inputs to procedure P . Let the summary of proce-
dure P be: “the assertion ψi holds at the end of procedure iff the constraints ψ′i
hold at the beginning of procedure” (for all generic assertions ψi from some
complete set G). The transfer function for the procedure call node then is:

8

F ′
i =

∧
i

Normalize(∀V ψ′i[σ], ψi). The key idea here is to instantiate each of the

constraints ψ′i with σ and universally quantify out the remaining input variables
V (by using the same technique described in weakest precondition computation
across non-deterministic assignment nodes). The resulting constraints on context
variables describe all relationships of the form ψi that hold among the output
variables of procedure P after the procedure call node. The function Normalize
translates these constraints into the desired invariants. Normalize(C,ψi) takes
as input some constraints C on the context variables corresponding to some
generic assertion ψi and returns the assertions represented by such constraints.
(Eg., Normalize(a+b = 0∧c−d = 0, ax+by+cz = d) returns x = y∧z = 1). We
give an example of this forward approach over the program shown in Figure 1
in Appendix A.

4 Unary Uninterpreted Functions

In this section, we instantiate the above general framework for performing inter-
procedural analysis over the abstraction of unary uninterpreted functions. As a
result, we obtain a PTIME algorithm for computing all equality invariants when
the program is specified using the flowchart nodes described in Figure 2, and the
expression language of the program involves unary uninterpreted functions.

Unary uninterpreted functions can be used to model fields of structures and
objects in programs, as well as deterministic function calls with one argument–
this is useful when the function body is unavailable or is too complicated to
analyze. Yet another motivation for studying the unary uninterpreted abstrac-
tion comes from the long-standing open problem of interprocedural global value
numbering. This problem seeks to analyze programs whose expression language
contains uninterpreted functions of any arity. A brief history of this problem is
given in Section 6. The results in this section, thus, make progress toward solving
this open problem.

Apart from the general ideas mentioned in Section 3, our results in this
section also rely on another key idea of representing large strings succinctly via
singleton context-free grammars [13].

Notation. Terms constructed using unary function symbols can be represented
as strings. For example, the term f(g(x)) can be treated as the string fgx. The
expressions f() and f(g()), (respectively strings f and fg) are terms with a
hole . Variables that take terms with a hole as values, or equivalently context
variables, will be denoted by α, β, etc. The concrete terms with holes are denoted
by C,D,E, F with suitable annotations.

4.1 Simplification

We compute procedure summaries by backward propagation of all the generic
assertions in the set {αx1 = βx2 | x1, x2 ∈ V, x1 6≡ x2}, where V is the set

9

P (){
1 x := fgx;
2 y := gfy;
3 if (*) { Q(); }
4 else { P (); }
5 }

Q(){
1 while (*) {
2 x := fx;
3 y := fy;
4 }
5 }

main(){
1 y := a;
2 x := fa;
3 P ();
4 assert(x = fy);
5 }

Fig. 3. Program

of output variables of the corresponding procedure. The assertions generated in
the process are simplified to one of the following forms:

(1) αCxi = βC ′xj (2) αCα−1 = βC ′β−1 (3) α = βC

Thus, every ψ is simply a conjunction of assertions of these forms. The inverse
operator, −1, satisfies the intuitive axioms: (αβ)−1 = β−1α−1, αα−1 = ε, and
(α−1)−1 = α.3 Equations of Form 2 are an elegant way of encoding constraints
on the context-variables α and β that are generated by the backward analysis.

We show now that weakest precondition computation across the various pro-
gram nodes maintains assertions in one of these forms. We consider the case
of a Procedure Call node “Call P()” (the other cases are easy to verify). At
any stage of the fixpoint computation, the (partially computed) summary of a
procedure P will be given as: “α′xi = β′xj holds at the end of procedure P if
ψ′′ij holds at the beginning.” for each pair xi, xj ∈ V . Equations of Form 2 and
Form 3 are unchanged in the weakest precondition computation. The weakest
precondition of an equation αCx = βC ′y is obtained by instantiating ψ′′ by
{α′ 7→ αC, β′ 7→ βC ′}. Applying this replacement in equations of Form 1 or
Form 2 in ψ′′ij gives back equations of the same form. When applied on equa-
tions of Form 3, we get equations of the form αC = βC ′. We remove the largest
common suffix of C,C ′ and if the equation does not reduce to Form 3, then the
weakest precondition is false.

Bounding the size of ψ. We will show that any conjunction of equations of
Form 1, Form 2, and Form 3 over k variables can be simplified to contain at
most k(k − 1)/2 + 1 equations. Specifically,

– for each pair xi, xj of variables, there is at most one equation of Form 1; and
– either there is at most one equation of Form 2, or there is at most one

equation of Form 3.4

The Simplification procedure uses unification to simplify the equations and keeps
the result essentially equivalent to the original set. It performs two main steps.
For a fixed pair x, y of variables, let ψxy denote the set containing all equations

3 Note that the inverse operator implicitly builds in simplification using unification.
For instance, while fx = fy does not logically imply x = y, using the inverse axioms
we have fx = fy ⇒ f−1fx = f−1fy ⇒ x = y.

4 Note that an equation of Form 3 essentially gives a concrete solution, since we can
assume, by Property 1, that one of α, β is ε.

10

Ite Proc Current Summary for αx = βy Comment

0 P, Q true Init

1 Q Simp(αx = βy, αfx = βfy) = (αx = βy, αfα−1 = βfβ−1)

2 P αfgx = βgfy, αfα−1 = βfβ−1 Use Q’s summary

3 Q αx = βy, αfα−1 = βfβ−1 fixpoint for Q

4 P Simp(αfgfgx = βgfgfy, αfgx = βgfy, αfα−1 = βfβ−1) Use P ’s summary

5 P αf = β, αfgx = βgfy fixpoint for P

Fig. 4. This figure illustrates summary computation for interprocedural analysis
over the unary abstraction. In Column 3, the summary consists of the constraints
that must hold at the beginning of the procedure P/Q for αx = βy to be an
invariant at the end of the procedure.

of Form 1 in ψ. First, by repeated use of Lemma 1 ψxy is simplified to a set
containing at most one equation of Form 1 and either one equation of Form 3 or
finitely many equations of Form 2. For example, in iteration 2 of Figure 4, the set
of equations {αx = βy, αfx = βfy} is simplified to {αx = βy, αfα−1 = βfβ−1}.

Lemma 1. The equation set {αCix = βC ′
iy : i = 1, 2} either has no solutions,

or it has the same solutions as a set containing either one of these two equations
and at most one equation of Form 2 or Form 3.

Next, if there is an equation of Form 3 then it can be used to simplify
an equation of Form 2 to either false or true. Otherwise, a set {αCiα

−1 =
βC ′

iβ
−1, i = 2, . . . , k} containing multiple equations of Form 2 is simplified by

repeated use of Lemma 2.

Lemma 2. The equation set {αCiα
−1 = βC ′

iβ
−1, i = 1, 2} is either unsatisfi-

able, or has the same solutions as a set containing at most one equation of either
Form 2 or Form 3.

For example, in iteration 4-5 of Figure 4, {αfα−1 = βfβ−1, αfgα−1 = βgfβ−1}
is simplified to {αf = β}. Proofs of Lemma 1 and Lemma 2 can be found in
Appendix C. In this way, any formula conjunction ψ of equations of Form 1,
Form 2, and Form 3 is simplified to a conjunction with at most k(k − 1)/2 + 1
equations.5

The algorithms used in the proof of Lemma 1 and Lemma 2 use a constant
number of string operations. Assuming the basic string operations take time
Tbase, the time taken to simplify Suu(k)2 = O(k4) assertions is O(k4Tbase).

Maximum Unifier Chain Length. It is easy to see that the maximum unifier
chain length for k variables is bounded by k(k − 1)/2 + 2. This is because the

5 The observation that we need to keep only a small number of equations Cxi = αC′xj

intuitively means that we keep only a few runs. However, these runs in the simplified
formula may not correspond to any real runs, but some equivalent hypothetical runs.

11

number of equations in ψ can increase only k(k − 1)/2 + 1 times, and beyond
that the formula either becomes unsatisfiable, or it is forced to have a unique
solution for its variables. Note that it is not possible for the number of equations
to remain the same and the formula to get stronger. This is a consequence of
Lemma 1.

Hence, for the case of unary uninterpreted (uu) abstraction, we have:

Suu(k) = k(k−1)
2 + 1 Tuu(k) = O(k4Tbase) Muu(k) = k(k−1)

2 + 2

4.2 Computational Complexity: Efficient Representations

We note that the time complexity of interprocedural analysis for the unary
uninterpreted abstraction is polynomial assuming that the string operations can
be performed efficiently. However, the length of strings can be exponential in the
size of the program, as the following example shows.

Example 1. Consider the n procedures P0, . . . , Pn−1 defined as

Pi(xi) { t := Pi−1(xi); yi := Pi−1(t); return(yi); }
P0(x0) { y0 := fx0; return(y0); }

The summary of procedure Pi is: yi = αxi iff α = f2i

.

Hence, if we use a naive (explicit) representation, the size of ψ can grow
exponentially (when we apply substitutions during transfer function computa-
tion across procedure call nodes). Instead we appeal to shared representation of
strings using singleton context-free grammars (SCFG). An SCFG is a context-
free grammar where each nonterminal represents exactly one (terminal) string.
An SCFG can represent strings in an exponentially succinct way. The strings
Ci’s that arise in the equations can be represented succinctly using SCFGs in
size that is linear in the size of the program (because the program itself is an
implicit succinct representation of these strings using SCFGs).

Example 2. Following up on Example 1, we note that the string f2n

can be
represented by the SCFG with start symbol An and productions {Ai+1 → AiAi |
1 ≤ i ≤ n} ∪ {A0 → f}. In particular, the summaries of the procedures can be
represented as: yi = αxi iff α = Ai.

A classic result by Plandowski [13] shows that equality of two strings rep-
resented as SCFGs can be checked in polynomial time. Apart from this, the
simplification procedure implicit in the proofs of Lemma 1 and Lemma 2 require
largest common prefix/suffix computation and substring extraction. It is an easy
exercise to see that these string operations can also be performed on SCFG rep-
resentations in polynomial time. Hence, the computational procedure outlined
above can be implemented in polynomial time using the SCFG representation of
strings. In conclusion, this shows that summaries can be computed in PTIME on
the abstraction of unary symbols. We remark here that Plandowski’s result has
been generalized to trees [19] suggesting that it may be possible to generalize
our result to the interprocedural global value numbering problem (over binary
uninterpreted functions).

12

5 Linear Arithmetic

The technique described in Section 3.2 can also be used effectively to compute
procedure summaries for the abstraction of linear arithmetic. We compute the
weakest precondition of the generic assertion α1x1 + · · · + αkxk = α (which
constitutes a complete set by itself) where x1, . . . , xk are the output variables of
the corresponding procedure.

The conjunction ψ of equations thus obtained at any point in the procedure
during the weakest precondition computation can be seen as linear equations
over the k2 + k + 1 variables: k2 variables representing the products αixj and
the k + 1 variables αi and α. We can simplify the equations thus obtained by
maintaining only the linearly independent (non-redundant) equations. We know
that there can not be more than k2 + k + 1 linearly independent equations and
hence ψ can have at most k2 + k + 1 equations. This shows that for the linear
arithmetic (la) abstraction,

Sla(k) = k2 + k + 1 Tla(k) = O(Tbasek
8) Mla(k) = k2 + k + 1,

where Tbase denotes the time to perform an arithmetic operation. Since con-
stants can become large (programs can encode large numbers succinctly), we use
modulo arithmetic and randomization to get a true PTIME procedure.

Müller-Olm and Seidl also gave a precise interprocedural algorithm for lin-
ear arithmetic of similar complexity [11]. However, their algorithm is different
and is based on the the observation that runs of a procedure correspond to lin-
ear transformations and there can be only quadratic many linearly-independent
transformations. In a certain sense, this is the dual of our approach.

6 Related Work and Discussion

Forward vs. Backward Analysis The approach presented in this paper for
computing procedure summaries is based on backward propagation of generic
assertions. It is presently unclear how the dual approach, namely forward propa-
gation of a complete set of generic assertions, can be effectively used. A forward
propagation involves developing context-sensitive or distributive transfer func-
tions for assignment nodes (usually involves existential quantifier elimination)
and join nodes. Giving a general procedure for such operations appears to be
hard for regular assertions (intraprocedural case) and would be significantly more
difficult for generic assertions.

Nevertheless, these difficulties may be overcome for very specific abstractions,
such as linear arithmetic [11,8]. In this case, the authors essentially look at a pro-
cedure as a linear transformation and compute in the (k+1)2-dimensional vector
space of these linear transformations. This allows them to perform abstract inter-
pretation using either backward or forward analysis [11,8]. However, this general
approach of developing interprocedural analysis by describing program behav-
iors as transformations (in a finite dimensional vector space) is applicable only
on arithmetic abstractions. In contrast, our approach promises to be simpler,
and more generally applicable.

13

Weakest Precondition of Generic Assertions vs. Regular Assertions To
ensure termination of weakest precondition computation over generic assertions,
we used some connections between unification and assertion checking. Similar
connections have been used earlier for weakest precondition computation for reg-
ular assertions in the intraprocedural case [5,6]. However, in the intraprocedural
case, we just need to solve unification problems over regular assertions. These
problems are well-studied and efficient algorithms are known for several theo-
ries. In the interprocedural case, we now have to solve unification problems over
generic assertions. In the theorem proving community, these are studied under
the name of “second-order unification” and “context unification”. These prob-
lems are known to be more difficult than their first-order counterparts. Thus,
while our approach of backward analysis based on generic assertions provides a
uniform framework for developing interprocedural analyses, it also helps to as-
certain the difficulty of interprocedural analysis over intraprocedural analysis by
drawing connections with the complexity of second-order unification vs. stan-
dard unification in theorem proving. Templates, which are similar to generic
assertions, have been used to generate invariants, but only in the context of
intraprocedural analysis and without any completeness guarantees [18].

History of Global Value Numbering. Since checking equivalence of pro-
gram expressions is an undecidable problem, in general, program operators are
commonly abstracted as uninterpreted functions to detect expression equiva-
lences. This form of equivalence is also called Herbrand equivalence [16] and
the process of discovering it is often referred to as value numbering. Kildall [7]
gave the first intraprocedural algorithm for this problem based on performing
abstract interpretation [2] over the lattice of Herbrand equivalences in expo-
nential time. This was followed by several PTIME, but imprecise, intraproce-
dural algorithms [1,16,3]. The first PTIME intraprocedural algorithm was given
by Gulwani & Necula [4], and then by Müller-Olm, Rüthing, & Seidl [9]. How-
ever, PTIME interprocedural global value numbering algorithm has been elusive.
There are some new results, but only under severe restrictions that functions are
side-effect free and one side of the assertion is a constant [12]. Neither of these
assumptions is satisfied by the program in Figure 3. The technique described in
this paper yields a PTIME algorithm for the special case of unary uninterpreted
functions.

7 Conclusion

Proving non-trivial properties of programs requires analyzing programs over rich
abstractions. The scalability of such program analyses depends upon the pos-
sibility of constructing efficient and precise summaries of procedures over such
abstractions. In this paper, we have described a new technique for computing
procedure summaries for a class of program abstractions over infinite domains,
thereby adding to some limited piece of work known in this area.

In the description of our technique, we assume at some places that condition-
als are non-deterministic and expression language of the program comes from a

14

unitary theory. These assumptions are needed to prove that our technique com-
putes the most precise procedure summary in an efficient manner. We believe
that the general ideas in our technique can be extended to reason about predi-
cates in conditionals and handle expressions that are not from a unitary theory
(e.g., as suggested in [6]), albeit with some (unavoidable) precision loss because
the problem is undecidable in general.

References

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In 15th Annual ACM Symposium on POPL, pages 1–11, 1988.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th
Annual ACM Symposium on POPL, pages 234–252, 1977.

3. K. Gargi. A sparse algorithm for predicated global value numbering. In PLDI,
volume 37, 5, pages 45–56. ACM Press, June 17–19 2002.

4. S. Gulwani and G. C. Necula. A polynomial-time algorithm for global value num-
bering. In Static Analysis Symposium, volume 3148 of LNCS, pages 212–227, 2004.

5. S. Gulwani and A. Tiwari. Assertion checking over combined abstraction of linear
arithmetic & uninterpreted functions. In ESOP, volume 3924 of LNCS, Mar. 2006.

6. S. Gulwani and A. Tiwari. Assertion checking unified. (MSR-TR-2006-99), July
2006.

7. G. A. Kildall. A unified approach to global program optimization. In 1st ACM
Symposium on POPL, pages 194–206, Oct. 1973.

8. M. Müller-Olm, M. Petter, and H. Seidl. Interprocedurally analyzing polynomial
identities. In STACS, volume 3884 of LNCS, pages 50–67. Springer, 2006.

9. M. Müller-Olm, O. Rüthing, and H. Seidl. Checking Herbrand equalities and
beyond. In VMCAI, volume 3385 of LNCS, pages 79–96. Springer, Jan. 2005.

10. M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In 31st International
Colloquium on Automata, Languages and Programming, pages 1016–1028, 2004.

11. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In 31st ACM Symposium on POPL, pages 330–341, Jan. 2004.

12. M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural Herbrand equalities. In
ESOP, volume 3444 of LNCS, pages 31–45. Springer, 2005.

13. W. Plandowski. Testing equivalence of morphisms on context-free languages. In
Algorithms - ESA ’94, volume 855 of LNCS, pages 460–470. Springer, 1994.

14. T. Reps. On the sequential nature of interprocedural program-analysis problems.
Acta Informatica, 33(8):739–757, Nov. 1996.

15. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In 22nd ACM Symposium on POPL, pages 49–61, 1995.

16. O. Rüthing, J. Knoop, and B. Steffen. Detecting equalities of variables: Combining
efficiency with precision. In SAS, volume 1694 of LNCS, pages 232–247, 1999.

17. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. TCS, 167(1–2):131–170, 30 Oct. 1996.

18. S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant genera-
tion using grbner bases. In POPL, pages 318–329, 2004.

19. M. Schmidt-Schauß. Polynomial equality testing for terms with shared substruc-
tures. Technical Report 21, Institut für Informatik, November 2005.

20. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications, pages 189–233. 1981.

15

A Example of Using a Forward Analysis in Phase 2

In this section, we give an example of the technique (described in Section 3.3)
for computing all invariants at all program points by using a forward analysis in
phase 2.

Consider computing all invariants after the second call to procedure P in the
procedure Main in Figure 1 using such a forward analysis in phase 2 from the
summary of procedure P . The invariants F immediately before the second call
to P are x = 0 ∧ y = 0 ∧ b = 2a We compute σ = Unif(F) to be x 7→ 0 ∧ y 7→
0∧ b 7→ 2a. The generic assertion ψ is αa+ βb = γ, and the corresponding ψ′ in
the summary of procedure P (i.e., the weakest precondition of ψ) is αa+ βb =
0 ∧ αx+ βy = γ. Thus,

ψ′[σ] ≡ a(α+ 2β) = 0 ∧ γ = 0

Note that the set of variables V is {a}. Hence,

∀a : (a(α+ 2β) = 0 ∧ γ = 0) ≡ α+ 2β = 0 ∧ γ = 0

We now normalize the above result to obtain the following desired invariant
(which also verifies the second assertion in procedure Main).

Normalize(α+ 2β = 0 ∧ γ = 0, αx+ βy = γ) ≡ (2x− y = 0)

Note that we assumed above that only x and y are live at the end of procedure
P . If we also want to obtain linear relationships involving b and a (e.g., b = 2a
after the second call to procedure P , then we should compute the summary of
procedure P using the generic assertion αx + βy + α′a + β′b = γ (instead of
using the generic assertion αx + βy = γ). Note that we need not recompute
summaries for such extra variables a and b. We can just do that once using some
fresh variables and treat those fresh variables as the desired ones in the context.

B Correctness of Transfer Function for Nondeterministic
Assignments

When program expressions come from a unitary theory, we can simplify ∀x(ψ)
to ψ[x 7→ c1]∧ψ[x 7→ c2], where c1 and c2 are two distinct constants (or provably
unequal terms) in the underlying theory. Using the argument that justifies the
simplification step, we need to show that ∀xψ is essentially equivalent to ψ[x 7→
c1] ∧ ψ[x 7→ c2]. Let σ be any substitution that assigns all context variables in
ψ to terms with holes. The formulas ∀x.ψσ, ψσ[x 7→ c1], and ψσ[x 7→ c2] do not
contain any context variables and are regular assertions.

Let ψ′ denote the regular assertion ψσ. The formula ∀xψ′ logically implies
ψ′[x 7→ c1] ∧ ψ′[x 7→ c2]. Denote the latter formula by ψ′′. Hence, we only need
to show that every unifier of ψ′′ is also a unifier for ψ′[x 7→ c] for all c.

Since T is unitary, ψ′ has a most-general unifier σ′. Any unifier of ψ′′ will
also be a unifier of (σ′[x 7→ c1] ∧ σ′[x 7→ c2]). There are three cases.

16

(a) If x does not occur in σ′, then σ′ itself is the most-general unifier of ψ′′, and
it is also the most-general unifier of ψ′[x 7→ c] for all c.
(b) If σ′(x) 6= x, then (σ′[x 7→ c1]∧σ′[x 7→ c2]) is inconsistent because it implies
σ′(x) = c1 = c2, but c1, c2 were distinct constants. In this case, ψ′′ has no unifiers
and we are done.
(c) Suppose x occurs in σ′(y). Let e[x] denote the term σ′(y). Note that y =
e[x 7→ c1] and y = e[x 7→ c2] are conjuncts in (σ′[x 7→ c1]∧σ′[x 7→ c2]). Therefore,
any unifier of ψ′′ will necessarily unify e[x 7→ c1] and e[x 7→ c2]. Consider the
equation e[z] = e[z′]. If this is not unifiable, then ψ′′ has no unifiers and we are
done. If it is unifiable, then since T is unitary, it has at most one most-general
unifier, which has to be z 7→ z′. Hence, every unifier of ψ′′ will need to make
c1 = c2, which is impossible. Hence, ψ′′ has no unifiers and we are done again.

C Proofs of Lemma 1 and Lemma 2

We use |C| to denote the length of string C. We use lcs(C1, C2) to denote the
largest common suffix of strings C1 and C2. The proofs use the elegant algebra
of the inverse operator. Its application can be rigorously justified by the fact
that we are interested in essential equivalence.

We first prove Lemma 1, i.e., the equation set {αCix = βC ′
iy : i = 1, 2}

either has no solutions, or it has the same solutions as a set containing either
one of these two equations and at most one equation of Form 2 or Form 3.

Proof. (Lemma 1) Consider the two equation αC1x = βC ′
1y and αC2x = βC ′

2y.
Wlog assume |C1| ≤ |C2|. We split the proof into cases.
(1) lcp(C1, C2) 6= C1 and lcp(C ′

1, C
′
2) 6= C ′

1: Let C = lcp(C1, C2) and C ′ =
lcp(C ′

1, C
′
2). Let Ci = CDi and C ′

i = C ′D′
i for i = 1, 2. By matching the largest

common prefix of the left-hand sides with that of the right-hand sides, we get
αC = βC ′. By removing the common suffix, we can get a solution equation of
Form 3. We test if that solution makes the original two equations equivalent.
Hence, either the equation set will have no solutions, or it will be essentially
equivalent to a set containing either one of the equations and an equation of
Form 3.
(2) lcs(C1, C2) 6= C1 and lcs(C ′

1, C
′
2) 6= C ′

1: Let C = lcs(C1, C2) and C ′ =
lcs(C ′

1, C
′
2). Let Ci = DiC and C ′

i = D′
iC

′ for i = 1, 2. By matching the largest
common suffix of the left-hand sides with that of the right-hand sides, we get
Cx = C ′y. Simultaneously, we get αDi = βD′

i, for i = 1, 2. Now this case is
similar to the previous case and we obtain the same conclusion as the previous
case here.
(3) C1 is a suffix of C2: Let C2 = D2C1. We have

αC1x = βC ′
1y, αD2C1x = βC ′

2y Initial equations

 αC1x = βC ′

1y, αD2α
−1αC1x = βC ′

2y Using α−1α = ε

 αC1x = βC ′

1y, αD2α
−1βC ′

1y = βC ′
2y Using first eqn

 αC1x = βC ′
1y, αD2α

−1βC ′
1 = βC ′

2 Cancel y

 αC1x = βC ′

1y, αD2α
−1 = βC ′

2C
′
1
−1
β−1 Add suffix C ′

1
−1
β−1

17

Note that the second equation is of Form 2.
(4) C1 is not a suffix of C2: Since cases (1)-(3) do not apply, it follows that C ′

1

is a suffix of C ′
2. This case is symmetrical to Case (3).

Before proving Lemma 2, we first note the following easy property of string
equations of Form 2.

Lemma 3. The equation αCα−1 = βC ′β−1 has the same set of solutions as the
equation αClα−1 = βC ′lβ−1 for any integer l.

Proof. First consider the case when l ≥ 2. ⇒: If αCα−1 = βC ′β−1, then
(αCα−1)2 = (βC ′β−1)2. Using αα−1 = ε, we get αC2α−1 = βC ′2β−1. Ap-
plying this repeatedly we conclude that Clβ = βDl. αClα−1 = βC ′lβ−1.
⇐: We are given that αClα−1 = βC ′lβ−1 has the same set of solutions as
αCα−1 = βC ′β−1. Let σ (that chooses concrete strings for α and β) be a
solution of αClα−1 = βC ′lβ−1. Consider the equal strings (Cσ)l and (C ′σ)l.
Without loss of generality, assume that Cσ and C ′σ have been normalized by
the axioms for the inverse operator. (In the normal form representation, two
strings are equal iff they are syntactically equal.) Let D be Cσ and D′ be C ′σ.
Now consider the equation Dl = El. If Dl and El are in normal form, then
necessarily D = E. Therefore, either Dl or El is not in normal form (though D
and E are in normal form). Say D is not in normal form. Then, D = D−1

2 D1D2

for some nonempty D2 such that D−1
2 Dl

1D2 is the normal form of Dl. Similarly
E = E−1

2 E1E2. We get the identity D−1
2 Dl

1D2 = E−1
2 El

1E2. Since these two
strings are in normal form, they are syntactically equal and hence D2 = E2 and
D1 = E1. Therefore, D and E are syntactically equal, which means that σ is
also a solution for C = C ′.
For negative values of l, we note that αCα−1 = βC ′β−1 is equivalent to αC−1α−1 =
βC ′−1

β−1 by applying the inverse operation on both sides of the equation. Now,
the rest of the proof follows similar to the l > 0 case.

Lemma 4. Every solution of {αC1α
−1 = βC ′

1β
−1, αC2α

−1 = βC ′
2β

−1} is also
a solution of {αC1C2α

−1 = βC ′
1C2β

−1}. In fact, any two of the equations es-
sentially implies the third.

Proof. We note that

αC1α
−1 = βC ′

1β
−1, αC2α

−1 = βC ′
2β

−1

⇀ αC1α
−1αC2α

−1 = βC ′
2β

−1βC ′
1β

−1 Concatenating the strings
⇀ αC1C2α

−1 = βC ′
2C

′
1β

−1 Using αα−1 = ε

By Lemma 3, we know that αC1α
−1 = βC ′

1β
−1 is essentially equivalent to

αC−1
1 α−1 = βC ′

1
−1
β−1 and hence the second part of the lemma statement

follows as well.

We say that an equation set has a unique solution if it is essentially equivalent
to an equation of Form 3. We now prove Lemma 2. In fact, we prove a stronger
version of the Lemma: the equation set {αCiα

−1 = βC ′
iβ

−1, i = 1, 2} is either
unsatisfiable, or it has a unique solution, or it is essentially equivalent to either
one of these two equations.

18

Proof. (Lemma 2) We argue by induction on the size max{|C1|, |C2|}. Wlog
assume that |C1| ≤ |C2|. We first note the following:

We distinguish the following cases:
(1) C1 is a prefix of C2: In this case,

αC1α
−1 = βC ′

1β
−1, αC2α

−1 = βC ′
2β

−1 Initial equations

 αC1α

−1 = βC ′
1β

−1, αC1D2α
−1 = βC ′

2β
−1 Assuming C2 = C1D2

 αC1α
−1 = βC ′

1β
−1, αC−1

1 C1D2α
−1 = βC ′

1
−1
C ′

2β
−1 Using Lemma 4

 αC1α
−1 = βC ′

1β
−1, αD2α

−1 = βC ′
1
−1
C ′

2β
−1 Using C−1

1 C1 = ε

The last equation set has a solution iff C ′
1 can be written as C ′

11C
′
12 such that

C ′
2 = C ′

11D
′
2C

′
12. In this case, the last equation set is essentially equivalent to

{αC1α
−1 = βC ′

11C
′
12β

−1, αD2α
−1 = βC ′

12
−1
D′

2C
′
12β

−1}. Using the substitution
β 7→ β1C

′
12, this equation set reduces to {αC1α

−1 = β1C
′
12C

′
11β

−1
1 , αD2α

−1 =
β1D

′
2β

−1
1 }. The new equations are smaller since |D2| < |C2|. By induction hy-

pothesis the new equation set is either unsatisfiable, or it has a unique solution,
or it is essentially equivalent to either one of the two original equations. In
the first case, the original equation set is also unsatisfiable. In the second case,
the solutions for the original equation set are given by an equation of Form 3
between α and β1 and the equation β = β1C

′
12. Together, if satisfiable, these

can be simplified to one equation of Form 3. Finally, in the last case, using
β = β1C

′
12 and αC1α

−1 = β1C
′
12C

′
11β

−1
1 we obtain the first original equation

αC1α
−1 = βC ′

1β
−1. Similary, using β = β1C

′
12 and αD2α

−1 = β1D
′
2β

−1
1 we ob-

tain the second original equation αC2α
−1 = βC ′

2β
−1. This completes the proof

for this case.
(2) C1 is a suffix of C2: Let C2 = D2C1. Following an argument similar to the
previous case, we conclude that the original equation set is essentially equivalent
to {αC1α

−1 = βC ′
1β

−1, αD2α
−1 = βC ′

2C
′
1
−1
β−1}. This new equation set has a

solution iff C ′
1 can be written as C ′

11C
′
12 such that C ′

2 = C ′
11D

′
2C

′
12. Following

the argument as in the previous case, we find that the original equation set can
be reduced to {αC1α

−1 = β1C
′
12C

′
11β

−1
1 , αD2α

−1 = β1D
′
2β

−1
1 }, where β1 is a

new variable denoting βC ′
11. Again we can apply the induction hypothesis on

the new equation set and finish the proof as in the previous case.
(3) C ′

1 is a prefix of C ′
2 or C ′

1 is a suffix of C ′
2: Using the same reasoning as

above, we can conclude that in these cases, C1 has to be a prefix (respectively
suffix) of C2 for the equation set to have a solution. If this happens, then this
case reduces to one of the above two cases.
(4) None of the above conditions hold: In this case we should have αlcp(C1, C2) =
βlcp(C ′

1, C
′
2), where lcp returns the largest common prefix of its arguments. This

equation has a unique solution for αβ−1. We check if this solution is indeed a
solution of the two original equations. It it is, then the original equation set is
essentially equivalent to an equation of Form3. And if it is not, then the original
equation set is unsatisfiable.

19

	Introduction
	Preliminaries
	Program Model
	Unification and Assertion Checking

	General Technique for Interprocedural Analysis
	Generic Assertions
	Phase 1: Computing Procedure Summaries
	Phase 2: Using Procedure Summaries
	Verifying a given assertion at a given program point.
	Computing all invariants at a given program point.
	Computing all invariants at all program points.

	Unary Uninterpreted Functions
	Notation.
	Simplification
	Computational Complexity: Efficient Representations

	Linear Arithmetic
	Related Work and Discussion
	History of Global Value Numbering.

	Conclusion
	Example of Using a Forward Analysis in Phase 2
	Correctness of Transfer Function for Nondeterministic Assignments
	Proofs of Lemma 1 and Lemma 2

