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Abstract. This paper presents results on the problem of checking equal-
ity assertions in programs whose expressions have been abstracted using
combination of linear arithmetic and uninterpreted functions, and whose
conditionals are treated as non-deterministic.

We first show that the problem of assertion checking for this com-
bined abstraction is coNP-hard, even for loop-free programs. This result
is quite surprising since assertion checking for the individual abstrac-
tions of linear arithmetic and uninterpreted functions can be performed
efficiently in polynomial time.

Next, we give an assertion checking algorithm for this combined ab-
straction, thereby proving decidability of this problem despite the un-
derlying lattice having infinite height. Our algorithm is based on an
important connection between unification theory and program analysis.
Specifically, we show that weakest preconditions can be strengthened by
replacing equalities by their unifiers, without losing any precision, during
backward analysis of programs.

1 Introduction

We use the term equality assertion or simply assertion to refer to an equal-
ity between two program expressions. By assertion checking, we mean checking
whether a given assertion is an invariant at a given program point.

Reasoning about assertions in programs is an undecidable problem. Hence,
assertion checking is typically performed over some (sound) abstraction of the
program. This may give rise to false positives, i.e., some assertions that are
true in the original program may not be true in the abstract version. There is
an efficiency-precision trade-off in the choice of the abstraction. A more precise
abstraction leads to fewer false positives but is also harder to reason about.

Linear arithmetic and uninterpreted functions1 are two most commonly used
expression languages for creating program abstractions. There are several
1 An uninterpreted function F of arity n satisfies only one axiom: If ei = e′

i for
1 ≤ i ≤ n, then F (e1, . . , en) = F (e′

1, . . , e
′
n). Uninterpreted functions are commonly

used to abstract programming language operators that are otherwise hard to reason
about. They are also used to abstract procedure calls.
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a1 := 0; a2 := 0;
b1 := 1; b2 := F(1);
c1 := 3; c2 := F(4);

a1 := a1+1; a2 := a2+2;
b1 := F(b1); b2 := F(b2);
c1 := F(1+c1); c2 := F(c2+1);

a1< 100

False

True

Assert(a2=2a1);
Assert(b2 = F(b1));
Assert(c2=F(c1+1));

Fig. 1. This program illustrates the difference between precision of performing analy-
sis over the abstractions of linear arithmetic (which can verify only the first assertion),
uninterpreted functions (which can verify only the second assertion), and their combina-
tion (which can verify all assertions). F denotes some function without any side-effects
and can be modeled as an uninterpreted function for purpose of proving the assertions.

papers that describe how to do assertion checking for each of these abstrac-
tions. (Section 6 on related work describes some of this work.) The combined
expression language of linear arithmetic and uninterpreted functions yields a
more precise abstraction than the ones obtained from either of these two expres-
sion languages. For example, consider the program shown in Figure 1. Note that
all assertions at the end of the program are true. If this program is analyzed over
the abstraction of linear arithmetic (using, for example, the abstract interpreter
described in [14] or [6]), then only the first assertion can be validated. This
is because discovering the relationship between b1 and b2, and between c1 and
c2, involves reasoning about uninterpreted functions. Similarly, if this program is
analyzed over the abstraction of uninterpreted functions (using, for example, the
abstract interpreter described in [10]), then only the second assertion can be val-
idated. However, an analysis over the combined abstraction of linear arithmetic
and uninterpreted functions can verify all assertions.

Even though there has been a lot of work for reasoning about the abstrac-
tions of linear arithmetic and that of uninterpreted functions, the problem of
assertion checking over the combined abstraction of linear arithmetic and unin-
terpreted functions has not been considered before. In this paper, we consider
the problem of checking equality assertions in programs whose expressions have
been abstracted using linear arithmetic and uninterpreted functions. We also
abstract all program conditionals as non-deterministic because otherwise the
problem is easily shown to be undecidable even for the individual abstractions
of linear arithmetic [17] and uninterpreted functions [16]. (An analysis that per-
forms an imprecise reasoning over the combined abstraction of linear arithmetic
and uninterpreted functions but takes conditional guards into account would
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also be useful in practice, and can be used, for example, for array bounds check-
ing. The related work section mentions our recent work on combining abstract
interpreters, which can be used to construct such an analysis.) The abstracted
program model is formally described in Section 2.

In Section 3, we show that the problem of assertion checking in the com-
bined abstraction of linear arithmetic and uninterpreted functions is coNP-hard.
This is true even for loop-free programs, in which case it is coNP-complete. This
result is quite surprising because assertion checking in the individual abstrac-
tions of linear arithmetic and uninterpreted functions entails polynomial-time
algorithms (even for programs with loops). Karr’s algorithm [14, 17] can be used
to perform assertion checking when program expressions have been abstracted
using linear arithmetic operators. Gulwani and Necula’s algorithm [9, 10] per-
forms assertion checking in programs whose expressions have been abstracted
using uninterpreted functions. Both these algorithms run in polynomial time.
However, our coNP-hardness result shows that there is no way to combine these
algorithms to do assertion checking for the combined abstraction in polynomial
time (unless P=coNP). A similar combination problem has been studied ex-
tensively in the context of decision procedures. Nelson and Oppen have given a
famous combination result for combining decision procedures for disjoint, convex
and quantifier-free theories with only polynomial-time overhead [20]. The the-
ories of linear arithmetic and uninterpreted functions are disjoint, convex, and
quantifier-free and have polynomial time decision procedures. Hence, the Nelson-
Oppen combination methodology can be used to construct a polynomial-time
decision procedure for the combination of these theories. In this paper, we show
that, unfortunately, there is no polynomial-time combination scheme for asser-
tion checking in the combined abstraction of linear arithmetic and uninterpreted
functions (unless P=coNP).

In Section 4, we give an assertion checking algorithm for the combined ab-
straction (of linear arithmetic and uninterpreted functions) thereby showing that
this problem is decidable. This result is again surprising because the underly-
ing abstract lattice has infinite height, which implies that a standard abstract
interpretation [6] based algorithm cannot terminate in a finite number of steps.
However, our algorithm leverages the fact that our goal is not to discover all
equality invariants, but to check whether a given assertion is an invariant. A
central component of our algorithm is a general result that allows replacement
of equalities generated in weakest precondition computation by their unifiers
(Lemma 2). For theories that admit a singleton or finite complete set of unifiers,
respectively called unitary and finitary theories, this replacement can be effec-
tively done. The significance of this connection between assertion checking and
unification is discussed further in Section 5. We make the paper self-contained
by presenting (in Section 4.1) a novel unification algorithm for the combined
theory of linear arithmetic and uninterpreted functions, which is used in our
assertion checking algorithm.
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2 Program Model

We assume that each procedure in a program is abstracted using the flowchart
nodes shown in Figure 2. In the assignment node, x refers to a program variable
while e denotes some expression in the underlying abstraction. We refer to the
language of such expressions as expression language of the program. The expres-
sion languages for the abstractions of linear arithmetic, uninterpreted functions
and their combination are as follows:

– Linear arithmetic:

e ::= y | c | e1 ± e2 | c × e

Here y denotes some variable while c denotes some arithmetic constant.
– Uninterpreted functions:

e ::= y | Fn(e1, . . , en)

Here Fn denotes some uninterpreted function of arity n. We allow n to be
zero (for representing nullary uninterpreted functions).

– Combination of linear arithmetic and uninterpreted functions:

e ::= y | c | e1 ± e2 | c × e | Fn(e1, . . , en)

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that our abstraction
cannot handle precisely.

Non-deterministic conditionals, represented by ∗, denote that the control
can flow to either branch irrespective of the program state before the condi-
tional. They are used as a safe abstraction of guarded conditionals, which our
abstraction cannot handle precisely. We abstract away the guards in condition-
als because otherwise the problem of assertion checking (when the expression
language of the program involves combination of linear arithmetic and uninter-
preted functions) can be easily shown undecidable from either of the following
two results. Müller-Olm and Seidl have shown that the problem of assertion

21

(a) Assignment Node

x := e

0

x := ?

0

*True False

1 2

(d) Join Node(b) Non-deterministic 
Assignment Node

(c) Non-deterministic 
Conditional Node

Fig. 2. Flowchart nodes in our abstracted program model
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checking in programs that use guarded conditionals and linear arithmetic ex-
pressions is undecidable [17]. Müller-Olm, Rüthing, and Seidl have also proved a
similar undecidability result when the expression language involves uninterpreted
functions [16].

A join node has two incoming edges. Note that a join node with more than two
incoming edges canbe reduced tomultiple joinnodes eachwith two incoming edges.

3 coNP-Hardness of Assertion Checking

In this section, we show that the problem of assertion checking when the ex-
pression language of the program involves combination of linear arithmetic and
uninterpreted functions (and the flowchart representation of the program con-
sists of nodes shown in Figure 2) is coNP-hard.

The key observation in proving this result is that a disjunctive assertion
of the form g = a ∨ g = b can be encoded as the non-disjunctive assertion
F (a) + F (b) = F (g) + F (a + b − g). The procedure Check(g,m) generalizes this
encoding for the disjunctive assertion g = 0 ∨ . . ∨ g = m − 1 (which has m − 1
disjuncts), as stated in Lemma 1. Once such a disjunction can be encoded, we
can reduce the unsatisfiability problem to the problem of assertion checking as
follows.

Consider the program shown in Figure 3. We will show that the assert state-
ment in the program is true iff the input boolean formula ψ is unsatisfiable. Note
that, for a fixed ψ, the procedures IsUnSatisfiable and Check can be reduced
to one procedure whose flowchart representation consists of only the nodes shown
in Figure 2. (These procedures use procedure calls and loops with guarded con-
ditionals only for expository purposes.) This can be done by unrolling the loops
and inlining procedure Check inside procedure IsUnSatisfiable. The size of
the resulting procedure is polynomial in the size of the input boolean formula ψ.

The procedure IsUnSatisfiable contains k non-deterministic conditionals,
which together choose a truth value assignment for the k boolean variables in
the input boolean formula ψ, and accordingly set its clauses to true (1) or false
(0). The boolean formula ψ is unsatisfiable iff at least one of its clauses remains
unsatisfied in every truth value assignment to its variables, or equivalently, g ∈
{0, . . , m−1} in all executions of the procedure IsUnSatisfiable. The procedure
Check(g, m) performs the desired check as stated in the following lemma.

Lemma 1. The assert statement in Check(g, m) is true iff g ∈ {0, . . , m − 1}.

Proof. The following properties hold for all 0 ≤ i ≤ m − 1.

E1. If 0 ≤ j ≤ i, then hi,j = hi,0.
E2. If g ∈ {0, . . , m − 1}, then hi = hi,g.
E3. If g �∈ {0, . . , m− 1}, then hi cannot be expressed as a linear combination of

hi,0, . . , hi,m−1.
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IsUnSatisfiable(ψ)
% Suppose formula ψ has k variables x1, . . , xk

% and m clauses numbered 1 to m.
% Let variable xi occur in positive form in clauses # Ai[0], . . , Ai[ci]
% and in negative form in clauses # Bi[0], . . , Bi[di].
for i = 1 to m do

ei := 0; % ei represents whether clause i is satisfiable or not.
for i = 1 to k do

if (*) then % set xi to true
for j = 0 to ci do

eAi[j] := 1;
else % set xi to false

for j = 0 to di do
eBi[j] := 1;

g := e1 + e2 + . . + em; % Count how many clauses have been satisfied.
Check(g, m);

Check(g,m)
% This procedure checks whether g ∈ {0, . . , m − 1}.
h0 := F (g);
for j = 0 to m − 1 do

h0,j := F (j);
for i = 1 to m − 1 do

si−1 := hi−1,0 + hi−1,i;
hi := F (hi−1) + F (si−1 − hi−1);
for j = 0 to m − 1 do

hi,j := F (hi−1,j) + F (si−1 − hi−1,j);
Assert(hm−1 = hm−1,0);

Fig. 3. A program that illustrates the coNP-hardness of assertion checking when the
expression language uses combination of linear arithmetic and uninterpreted functions.

The above properties can be proved easily by induction on i. If g ∈ {0, . . , m−1},
then the assert statement is true because:

hm−1 = hm−1,g (follows from property E2)
= hm−1,0 (follows from property E1)

If g �∈ {0, . . , m − 1}, then it follows from property E3 that the assert statement
is falsified. �

Lemma 1 implies that the assert statement in procedure IsUnSatisfiable(ψ)
is true iff the input boolean formula ψ is unsatisfiable. Hence, the following
theorem holds.

Theorem 1. Assertion checking for programs with non-deterministic condition-
als and whose expression language is a combination of linear arithmetic and
uninterpreted functions is coNP-hard.
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Since IsUnSatisfiable can be represented as a loop-free program, Theorem 1
holds even for loop-free programs.

4 Algorithm for Assertion Checking

In this section, we give an assertion checking algorithm for our abstracted pro-
gram model when the expression language of the program involves combination
of linear arithmetic and uninterpreted functions. We prove that this algorithm
terminates, which establishes the decidability of assertion checking for the com-
bined abstraction. It remains an open problem to establish an upper complexity
bound for this algorithm.

For purpose of describing and proving correctness of our algorithm, we first
establish some results on unification in the combined theory of linear arithmetic
and uninterpreted functions in the next sub-section.

4.1 Unification in the Combined Theory

A substitution σ is a mapping that maps variables to expressions such that
for every variable x, the expression σ(x) contains variables only from the set
{y | σ(y) = y}. A substitution mapping σ can be (homomorphically) lifted to
expressions such that for every expression e, we define σ(e) to be the expres-
sion obtained from e by replacing every variable x by its mapping σ(x). Often,
we denote the application of a substitution σ to an expression e using postfix
notation as eσ. We sometimes treat a substitution mapping σ as the following
formula, which is a conjunction of non-trivial equalities between variables and
their mappings: ∧

x:x �=xσ

x = xσ

A substitution σ is a unifier for an equality e1 = e2 (in theory T ) if e1σ = e2σ
(in theory T ). A substitution σ is a unifier for a set of equalities E if σ is a unifier
for each equality in E. A substitution σ1 is more-general than a substitution σ2
if there exists a substitution σ such that xσ2 = (xσ1)σ for all variables x. 2 A set
C of unifiers for E is complete when for any unifier σ for E, there exists a unifier
σ′ ∈ C that is more-general than σ. Theories can be classified based on whether
all equalities in that theory have a complete set of unifiers whose cardinality is
at most 1 (unitary theory), or finite (finitary theory), or whether some equality
does not have any finite complete set of unifiers (infinitary theory).

In the remaining part of this section, we show that the combined theory of
linear arithmetic and uninterpreted functions is finitary. For this purpose, we
describe an algorithm that computes a complete set of unifiers for an equality
in the combined theory. We describe this algorithm using a set of inference rules
(listed in table 1) in the style of [4].

2 The more-general relation is reflexive, i.e., a substitution is more-general than itself.
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Table 1. Inference rules for unification in the combination theory

Unif0:
(E ∪ {e = e}, σ)

(E, σ)

Unif1:
(E ∪ {x = e}, σ)

(Eσ′, σσ′)
if x does not occur in e. Here σ′ = {x �→ e} and Eσ′ denotes {e1σ

′ = e2σ
′ | (e1 =

e2) ∈ E}.

Unif2:
(E ∪ {F (e1, . . , en) = F (e′

1, . . , e
′
n) + e}, σ)

(E ∪ {e1 = e′
1, . . , en = e′

n, e = 0}, σ)

Table 1 describes some inference rules that operate on states. A state (E, σ) is
a pair consisting of a set E of equalities (between expressions involving combina-
tion of linear arithmetic and uninterpreted functions) and a substitution σ. The
Unif0 rule removes trivial equalities from E. The Unif1 rule can be applied after
selecting some equality from E that can be rewritten in the form x = e such that
variable x does not occur in expression e. The Unif2 rule is applied after selecting
some equality that can be rewritten in the form F (e1, . . , en) = F (e′1, . . , e′n) + e
for some uninterpreted function F and expressions ei, e′i and e.

The notation {x1 �→ e1, . . , xk �→ ek} denotes the substitution mapping that
maps variable xi to ei (for 1 ≤ i ≤ k) and all other variables to themselves. We
use the notation (E, σ) � (E′, σ′) to denote that the state (E′, σ′) is obtained
from (E, σ) by applying some inference rule. Similarly, (E, σ) �∗ (E′, σ′) denotes
that the state (E′, σ′) can be obtained from the state (E, σ) by applying some
sequence of inference rules.

To generate a complete set of unifiers C for an equality e1 = e2, we start with
the state ({e1 = e2}, I), where I is the identity mapping, and apply the inference
rules repeatedly until no more inference rules can be applied. For all derivations
that end with some state of the form (∅, σ), we put σ in C. Theorem 2 stated
below implies that the set C thus obtained is indeed a set of unifiers for the
equality e1 = e2. Theorem 3 implies that this set C of unifiers is complete. The
proofs of these theorems are by induction on the length of the derivation and
are given in the full version of this paper [13].

Theorem 2 (Soundness). If (E, I) �∗ (∅, σ), then σ is a unifier for E.

Theorem 3 (Completeness). Suppose σ is a unifier for E. Then there is a
derivation (E, I) �∗ (∅, σ0) such that σ0 is a more-general unifier for E than σ.

The following theorem implies that the set C is finite.

Theorem 4 (Finite Complete Set of Unifiers). Every derivation (E, I) �∗

(E′, σ′) takes a finite number of steps. Consequently, E has a finite complete set
of unifiers.

The proof of Theorem 4 is given in the full version of this paper [13]. The key
proof idea is to show that every derivation (E, I) �∗ (E′, σ′) takes a finite
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number of steps and then use Konig’s lemma to bound the total number of
derivations.

We next illustrate the application of the inference system.

Example 1. Consider the following derivation of a unifier for the equality Fx +
Fy = Fa + Fb.

({Fx + Fy = Fa + Fb}, I)
({Fx = Fb, y = a}, I) Unif2
({x = b, y = a}, I) Unif2
(x = b, {y �→ a}) Unif1
(∅, {x �→ b, y �→ a}) Unif1

Thus {x �→ b, y �→ a} is a unifier for Fx+Fy = Fa+Fb. Note that the alternate
choice for the first Unif2 application yields another unifier {x �→ a, y �→ b} for
the given equality. No other unifier can be generated by applying the inference
rules. Hence, these two unifiers constitute a complete set of unifiers for the given
equality.

Example 2. As another example, consider generating a complete set of unifiers
for the equality x + Fx + Fy = a + Fa + F (a + 1). Since each variable occurs
below an uninterpreted symbol, only the Unif2 rule is applicable. There are four
choices, either x = a, or x = a + 1, or y = a, or y = a + 1. We show a derivation
for the second choice below.

({x + Fx + Fy = a + Fa + F (a + 1)}, I)
({x + Fy = a + Fa, x = a + 1}, I) Unif2
({a + Fa − Fy = a + 1}, {x �→ a + Fa − Fy}) Unif1
({a = a + 1, a = y}, {x �→ a + Fa − Fy}) Unif2
({0 = 1}, {x �→ a + Fa − Fy, y �→ a}) Unif1

The above derivation is now stuck with no inference rule being applicable. Note
that only the first choice x = a and the fourth choice y = a + 1 successfully
generate a unifier, which in both cases is {x �→ a, y �→ a + 1}. This unifier yields
a singleton complete set of unifiers for the given equality.

4.2 Algorithm

Our algorithm for assertion checking over the combined abstraction is based
on weakest precondition computation. It represents invariants at each program
point by a formula that is a disjunction of substitution mappings. We show that
any program invariant in our abstracted program model can be represented using
such formulas (Lemma 2).

Suppose the goal is to check whether an assertion e1 = e2 is an invariant at
program point π. The algorithm performs a backward analysis of the program
computing a formula ψ (which is a disjunction of substitution mappings) at each
program point such that ψ must hold for the assertion e1 = e2 to be true at
program point π. This formula is computed at each program point from the
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formulas at the successor program points in an iterative manner. The algorithm
uses the transfer functions described below to compute these formulas across
the flowchart nodes shown in Figure 2. The algorithm declares e1 = e2 to be
an invariant at π if the formula computed at the beginning of the program
after fixed-point computation is a tautology in the combined theory of linear
arithmetic and uninterpreted functions.

In the following transfer functions, we use the notation Unif(E), where E is
some conjunction of equalities E, to denote the formula that is a disjunction of
all unifiers in some complete set of unifiers for E. (If E is unsatisfiable, then E
does not have any unifier and Unif(E) is simply false.) The formula Unif(E)
can be computed by using the algorithm described in Section 4.1.

Initialization: The formula at all program points except π is initialized to be
the trivial formula true. The formula at program point π is initialized to be
Unif(e1 = e2).

Assignment Node: See Figure 2 (a). The formula ψ′ before an assignment node
x := e is obtained from the formula ψ after the assignment node by substituting
x by e in ψ, and invoking Unif on each resulting disjunct.

ψ′ =
∨

i

Unif(ψi[e/x]), where ψ =
∨

i

ψi

Non-deterministic Assignment Node: See Figure 2 (b). The formula ψ′ before a
non-deterministic assignment node x :=? is obtained from the formula ψ after
the non-deterministic assignment node by substituting program variable x by
some fresh constant (i.e., a fresh nullary uninterpreted function symbol) α, and
invoking Unif on each resulting disjunct.

ψ′ =
∨

i

Unif(ψi[α/x]), where ψ =
∨

i

ψi

Non-deterministic Conditional Node: See Figure 2 (c). The formula ψ before a
non-deterministic conditional node is obtained by taking the conjunction of the
formulas ψ1 and ψ2 on the two branches of the conditional, and invoking Unif
on each resulting disjunct.

ψ =
∨

i,j

Unif(ψi
1 ∧ ψj

2), where ψ1 =
∨

i

ψi
1 and ψ2 =

∨

j

ψj
2

Join Node: See Figure 2 (d). The formulas ψ1 and ψ2 on the two predecessors
of a join node are same as the formula ψ after the join node.

ψ1 = ψ and ψ2 = ψ

Fixed-Point Computation: In presence of loops in procedures, the algorithm
goes around each loop until the formulas computed at each program point in
two successive iterations of a loop are equivalent, or if any formula becomes
false.
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Correctness. We now prove that the above algorithm is correct, i.e., an as-
sertion e1 = e2 holds at program point π iff the algorithm claims so. For this
purpose, we first state a useful lemma (Lemma 2) that states an interesting con-
nection between program analysis and unification theory. This lemma is true is
general: it is independent of the logical theory and also holds for programs with
guarded conditionals. The proof of this lemma is given in the full version of this
paper [13].

Lemma 2. An equality e1 = e2 holds at a program point π iff Unif(e1 = e2)
holds at π. In fact, a formula φ containing e1 = e2 holds at a program point π
iff φ[Unif(e1 = e2)/(e1 = e2)] holds at π.

Lemma 2 implies that the formula computed by our algorithm before the
flowchart is the (real) weakest precondition of the formula after those nodes.
Also, note that the algorithm starts with a formula which is an invariant at π iff
the given assertion is an invariant at π (follows from Lemma 2). The correctness
of the algorithm now follows from the fact that the algorithm starts with the
correct assertion at π and iteratively computes the correct weakest precondition
at each program point in a backward analysis.

Termination. We now prove that the above algorithm terminates in a finite
number of steps. It suffices to show that the weakest precondition computation
across a loop terminates in a finite number of iterations. This follows from the
following lemma.

Lemma 3. Let C be a chain ψ1, ψ2, . . of formulas that are disjunctions of sub-

stitutions. Let ψi =
mi∨
�=1

ψ�
i for some integer mi and substitutions ψ�

i . Suppose

(a) ψi+1 =
mi∨
�=1

ni∨
j=1

Unif(ψ�
i ∧ αj

i ), for some substitutions αj
i .

(b) ψi �⇒ ψi+1.

Then, C is finite.

The proof of Lemma 3 is by establishing a well founded ordering on ψ′
is, and

is given in the full version of this paper [13]. Lemma 3 implies termination of
our assertion checking algorithm. (Note that the weakest preconditions ψ1, ψ2, . .
generated by our algorithm at any given program point inside a loop in successive
iterations satisfy condition (a), and hence ψi+1 ⇒ ψi for all i. Lemma 3 implies
that there exists j such that ψj ⇒ ψj+1 and hence ψj ≡ ψj+1, at which point
the fixed-point computation across that loop terminates.) Hence, the following
theorem holds.

Theorem 5. Assertion checking for programs with non-deterministic condition-
als and whose expression language is a combination of linear arithmetic and
uninterpreted functions is decidable.

The decidability of assertion checking for the combined abstraction is rather sur-
prising given that the abstract lattice over sets of equalities between expressions
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in the combined theory has an infinite height. This suggests that an abstract
interpretation based forward analysis algorithm that operates over this lattice
may not terminate across loops (unless widening techniques are employed, which
may lead to imprecise analysis). For example, consider the following program.

InfiniteHeightExample()
x := 0;
while (*) do { x := x + 1 };
Assert(x = 0 ∨ · · · ∨ x = m);

The disjunctive assertion at the end of the program can be encoded using
an equality assertion. The procedure Check(x,m) (on page 284) does exactly
this. Clearly, the assertion at the end of the program is not true. To invalidate
this assertion, the abstract interpreter will have to go around the loop m times.
Hence, it will not terminate across loops (because if it did terminate in say t
steps, then it will not be able to invalidate the assertion x = 0∨· · ·∨x = t). Our
algorithm terminates because it performs a backward analysis (which is good
enough for assertion checking) instead of performing a forward analysis (which
is required for discovering all valid equalities).

5 Assertion Checking and Unification

The results in this paper point out an interesting connection between assertion
checking in programs over a given abstraction and the unification problem for
the theory defining that abstraction. Lemma 2 implies that we can replace an
assertion by a formula representing a complete set of unifiers for that assertion.
This result is quite general and holds for programs with even guarded condi-
tionals and any expression language. This allows for strengthening of weakest
preconditions computed using standard transfer functions, by applying Unif()
to the result without losing any precision. This observation is the basis for the
close connection between assertion checking and unification.

The theories of linear arithmetic and uninterpreted functions are unitary.
However, equalities in the combined theory of linear arithmetic and uninter-
preted functions may not have a complete set of unifiers with a cardinality of
at most 1. This disparity appears to be responsible for the coNP-hardness of
assertion checking for the combined abstraction of linear arithmetic and un-
interpreted functions (as opposed to the fact that the abstractions of linear
arithmetic and uninterpreted functions have polynomial-time assertion checking
algorithms [14, 10]). The presence of multiple unifiers in a minimal complete set
allows for encoding of disjunctions in the combined abstraction. For example,
the assertion F (x)+F (3−x) = F (1)+F (2) has two unifiers x = 1 and x = 2 in
its minimal complete set of unifiers. This assertion will be true at any program
point iff x = 1 or x = 2 on all paths leading to this assertion.

The decidability of assertion checking for the combined abstraction (of linear
arithmetic and uninterpreted functions) can be attributed to fact that the com-
bined theory is finitary. Observe that the weakest precondition computation of
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an assertion, as described in Section 4.2, terminates across a loop because there
are only finitely many ways that the assertion can be true.

6 Related Work

We are not aware of any work related to assertion checking for the combined
abstraction of linear arithmetic and uninterpreted functions. However, there has
been a lot of work on assertion checking and invariant generation over individual
abstractions of linear arithmetic and uninterpreted functions.

Program Analysis over Abstraction of Linear Arithmetic. Karr described an al-
gorithm to reason about programs using the abstraction of linear equalities. This
algorithm performs a forward analysis of the program and computes a set of lin-
ear equalities at each program point [14, 17] in an iterative manner. Gulwani and
Necula gave a randomized algorithm that performs an equally precise reasoning
but more efficiently [8]. Cousot gave a more precise algorithm that reasons about
programs using the abstraction of linear inequalities wherein the facts computed
at each program point are linear inequality relationships between program vari-
ables [7]. Müller-Olm and Seidl have described a modular linear arithmetic analy-
sis to reason about finite-bit machine arithmetic [19]. There has also been some
work on extending some of these analyses to an interprocedural setting [18, 11].

Program Analysis over Abstraction of Uninterpreted Functions. Kildall’s algo-
rithm [15] performs abstract interpretation over the lattice of sets of Herbrand
equivalences (i.e., equivalences between expressions involving uninterpreted func-
tions) but it runs in exponential time. Alpern, Wegman, and Zadeck (AWZ) gave
a polynomial-time algorithm that reasons about programs treating all operators
as uninterpreted functions [1]. The AWZ algorithm is less precise than Kildall’s
algorithm, but is quite popularly used for global value numbering in compilers.
Rüthing, Knoop and Steffen’s (RKS) polynomial-time algorithm also reasons
about programs using the abstraction of uninterpreted functions. The RKS al-
gorithm is more precise than the AWZ algorithm but remains less precise than
Kildall’s algorithm. Recently, Gulwani and Necula gave a polynomial-time algo-
rithm that is as precise as Kildall’s algorithm with respect to assertion checking
in programs using the abstraction of uninterpreted functions [9, 10].

Combination of Abstract Interpreters. We have recently described a general
methodology to combine abstract interpreters for two abstractions to construct
an abstract interpreter for the combination of those abstractions [12]. This
methodology can be used to construct an efficient polynomial-time algorithm
that performs analysis over the combined abstraction of linear arithmetic and
uninterpreted functions and also takes conditional guards into account. However,
this algorithm does not perform the most precise reasoning over the combined
abstraction of linear arithmetic and uninterpreted functions. Note that the algo-
rithm that we have described in this paper performs the most precise reasoning
over the combined abstraction of linear arithmetic and uninterpreted functions,
but it does not take conditional guards into account.
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Unification for Combination of Theories. The unification problem for the com-
bined theory of linear arithmetic and uninterpreted functions is a simple variant
of the unification problem for abelian groups with additional uninterpreted func-
tions. This latter problem is usually referred to as the general unification problem
for abelian groups [3]. The first algorithm for generating unifiers for the general
unification problem for abelian groups was obtained as a corollary of the general
result for combining unification algorithms [21] and was later refined [2]. The
generic combination unification algorithm involves solving the so-called “unifi-
cation with constants” and “constant elimination” problems [21], or “unification
with linear constant restriction” [2] problem for the individual theories. In this
paper, we have presented a different unification algorithm for the combined the-
ory of linear arithmetic and uninterpreted functions. Our presentation of this
unification algorithm is using inference rules, which are simple to understand
and implement.

Decision Procedures for Combination of Theories. Nelson and Oppen gave a
general methodology for combining decision procedures for disjoint, convex and
quantifier-free theories with only polynomial-time overhead [20]. Shostak gave
an efficient variant of this algorithm for the specific case of solvable theories.
Clark, Dill and Levitt have described a decision procedure, based on Shostak’s
method, for combination of linear arithmetic and uninterpreted functions in
presence of boolean connectives [5]. It must be mentioned that the problem of
assertion checking in programs over a certain abstraction (and in particular for
combination of two abstractions) is harder than developing a decision procedure
for that abstraction. This is because even though a decision procedure can be
used to verify an assertion along a particular program path, a program can
potentially have an infinite number of paths. However, if a program is annotated
with appropriate invariants at all join points, then a decision procedure can be
easily used to verify those invariants as well as assertions across straight-line
program fragments.

7 Conclusion

In this paper, we show that assertion checking in programs whose expressions
have been abstracted using linear arithmetic and uninterpreted functions is
coNP-hard (even for loop-free programs). We also give an algorithm for assertion
checking for this abstraction, thereby proving decidability of this problem. These
results are obtained by closely analyzing the expressiveness of a theory and its
effect on the assertion checking problem. First, the ability to encode disjunc-
tions is identified to be an important factor in making assertion checking hard.
Second, the classification of a theory as unitary, finitary, or infinitary—based
on whether it admits a singleton, finite, or infinite complete set of unifiers has
bearing on the hardness and tractability of the assertion checking problem. We
show that assertions can be replaced by their unifiers for purpose of checking if
they are invariant. We believe that these observations will be significant when
other similar or more general abstractions are considered for program analysis.
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