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Abstract. We show that confluence of shallow and right-linear term
rewriting systems is decidable. This class of rewriting system is expres-
sive enough to include nontrivial nonground rules such as commutativ-
ity, identity, and idempotence. Our proof uses the fact that this class of
rewrite systems is known to be regularity-preserving, which implies that
its reachability and joinability problems are decidable. The new decid-
ability result is obtained by building upon our prior work for the class
of ground term rewriting systems and shallow linear term rewriting sys-
tems. The proof relies on the concept of extracting more general rewrite
derivations from a given rewrite derivation.

1 Introduction

Term rewriting systems provide a Turing-complete formalism for modeling com-
putation. Terms over a signature encode the state of a system and the rewriting
rules specify the dynamics. Rewriting systems have been used this way to model
and verify discrete state transition systems, see for instance [11, 2, 6]. Under a
slightly different interpretation, rewriting rules can be viewed as defining an
equational theory over terms. The direction of the rule, in this case, generally
indicates which equivalent form is simpler. This viewpoint has been successfully
used for equational reasoning in theorem proving, see for instance [1].

Confluence is a central property of rewrite systems. It guarantees that the
order of application of rewrite rules is not significant. When viewed as a model
of computation, confluence provides a more general definition of determinism.
For purposes of verification, confluence generalizes the condition required for
partial-order reduction. In the context of equational reasoning, confluence and
termination of a computable rewrite relation imply decidability of the word
problem for the induced equational theory.

The expressive power of a rewrite system can be limited by imposing addi-
tional constraints on the form of terms. For instance, if variables are not allowed,
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we get ground term rewrite system, which have been extensively studied, mainly
via mapping them to tree automata [3]. Richer classes of rewrite systems are
obtained by allowing restricted variable occurrences in the term rewrite system
(or the tree automata transitions). In going from special to more general classes
of rewrite systems, the complexity of deciding various fundamental problems,
like termination and confluence, increases until all these problems become unde-
cidable. It is, therefore, fruitful to study these properties for some intermediate
classes, especially if they are expressive enough to capture interesting rules.

In this context, we consider shallow right-linear term rewrite systems, where
every rule l → r is such that every variable occurs at most once in r, and all
variables in l, r occur at depth 0 or 1. Some examples of shallow right-linear
rules are 0 ∧ x→ 0, x ∧ x→ x, 1 ∧ x→ x, x ∨ x→ x and x ∨ y → y ∨ x.

The class of shallow right-linear rewrite systems is very close to the frontier
of classes for which confluence is undecidable. A (generally) simpler problem
like reachability is known to be undecidable for linear TRS’s, and also for shal-
low TRS’s [10]. On the positive side, Takai, Kaji, and Seki [13] showed that
right-linear finite-path-overlapping systems effectively preserve recognizability.
Since shallow right-linear systems are right-linear and finite-path-overlapping,
it follows that the reachability and joinability problems for these systems are
decidable. The exact location of the barrier for decidability of termination and
confluence inside the class of right-linear finite-path-overlapping systems is still
open.

We prove the decidability of confluence for shallow right-linear TRS’s. This
result uses the decidability of reachability and joinability for this class as a black
box. We extend and simplify the ideas presented in [8] where decidability of
confluence of shallow linear TRS’s was proved. Here, we eliminate the neces-
sity of constructing a rewrite closure for the original TRS (which is difficult for
shallow right-linear TRS’s, if possible), and the notion of rewriting with marked
(sub-)terms. Non-linearity forces us to use extended counterexample witnesses
to confluence: pairs {s, t} were used in [8], but now larger sets {s1, . . . , sn} are
needed. Moreover, as in [8], the computation of top-stabilizable constants (con-
stants equivalent to some term that cannot be reduced to a constant) is crucial,
but much more difficult here. In fact, we can compute all such constants only
when the system is confluent, and the final proof shows that when not all of
them are computed, a non-confluence witness is detected.

The procedure to decide confluence of R has two steps. First we add new rules
to R and obtain R ⊇ R in Section 3.1. Then, in Section 3.3, we present a simple
decidable characterization of confluence of R in terms of R- and R-joinability of
certain flat terms.

2 Preliminaries

We use standard notation from the term rewriting literature. A signature Σ
is a (finite) set of function symbols, which is partitioned as ∪iΣi such that
f ∈ Σn if arity of f is n. Symbols in Σ0, called constants, are denoted by



a, b, c, d, with possible subscripts. The elements of a set V of variable symbols
are denoted by x, y, z with possible subscripts. The set T (Σ,V) of terms over
Σ and V, position p in a term, subterm t|p of term t at position p, and the
term t[s]p obtained by replacing t|p by s are defined in the standard way. For
example, if t is f(a, g(b, h(c)), d), then t|2.2.1 = c, and t[d]2.2 = f(a, g(b, d), d).
The empty sequence, denoted by λ, corresponds to the root position. We denote
t[s1]p1 [s2]p2 . . . [sn]pn

by either t[s1, s2, . . . , sn]p1,p2,...,pn
, or t[s1, . . . , sn]P , where

P = {p1, . . . , pn}. By t|P we denote the set {t|pi : pi ∈ P}. By Pos(t) we denote
the set of all positions p such that t|p is defined. We write p1 � p2 (equivalently,
p2 ≺ p1) and say p1 is below p2 (equivalently, p2 is above p1) if p2 is a proper
prefix of p1, that is, p1 = p2.p

′
2 for some nonempty p′2. Positions p and q are

disjoint if p 6� q and q 6� p.
We will often denote a term f(t1, . . . , tn) by the simplified form ft1 . . . tn,

and t[s]p by t[s] when p is clear by the context or not important. By Vars(t) we
denote the set of all variables occurring in t. The height of a term s is 0 if s is a
variable or a constant, and 1+max iheight(si) if s = f(s1, . . . , sm). The depth of
a position p is the length of p. The size of a term fs1 . . . sm is 1 + Σm

i=1size(si).
A substitution σ is sometimes presented explicitly as {x1 7→ t1, . . . , xn 7→ tn}.

We assume standard definition for a rewrite rule l→ r, a rewrite system R, the
one step rewrite relation at position p induced by R →R,p, and the one step
rewrite relation induced by R (at any position) →R. The notations ↔, →+, and
→∗, are standard [5].

A rewrite system R is confluent if the relation ←∗
R ◦ →∗

R is contained in
→∗ ◦ ←∗, which is equivalent to the relation ↔∗

R being contained in →∗ ◦ ←∗

(called the Church-Rosser property). A term t is reachable from s by R (or,
R-reachable) if s →∗

R t. A set S of terms is said to be equivalent by R (or,
R-equivalent) if s ↔∗

R t for all s, t ∈ S. A set S of terms is R-joinable if there
is a term that is R-reachable from all of them. A (rewrite) derivation or proof
(from s) is a sequence of rewrite steps (starting from s), that is, a sequence
s→R s1 →R s2 →R . . ..

A term t is called ground if t contains no variables. It is called shallow if all
variable positions in t are at depth 0 or 1. It is called linear if every variable
occurs at most once in t. It is flat if its height is at most 1. A rule l → r ∈ R
is called shallow right-linear if the term r is linear, and both l, r are shallow; it
is flat if both l, r are flat terms. A flat rule l → r is called a permutation rule
if height(l) = height(r) = 1; it is called a decreasing rule if height(l) = 1 and
height(r) = 0, and an increasing rule if height(l) = 0 and height(r) = 1.

3 Confluence

Let R be such that every rule l → r ∈ R is shallow and right-linear. Using
standard transformation rules, the rewrite system R can be transformed into a
rewrite system R′ such that every rule l → r ∈ R′ is flat and right-linear. This
transformation is achieved by introducing new constants and adding new rewrite
rules [7, 9]. Additionally, we can also assume that Σ = Σ0 ∪ {f}, where f is of



arity m. All these transformations preserve confluence. We assume henceforth
that R is a flat and right-linear TRS defined over a signature Σ = Σ0∪{f}. We
want to decide if R is confluent.

We use the fact that R-equivalence is decidable [4, 12] repeatedly below. Since
shallow and right-linear systems are finite-path overlapping and right-linear, the
R-reachability and R-joinability relations are also decidable [13]. We assume that
the theory of the rewrite system R is not trivial, that is, it is not the case that
x↔∗

R y. Confluence of such systems can be decided by simply checking if x and
y are R-joinable. We also assume that R contains no rule of the form x → t
where x 6∈ Vars(t). Any R that contains such a rule is trivially confluent.

3.1 Top-Stabilizable Constants

A term t ∈ T (Σ,V) is called top-stable if it cannot be rewritten to a constant
in Σ0 by R, that is, there is no constant c ∈ Σ0 s.t t→∗

R c. A constant c is top-
stabilizable if it is R-equivalent to a top-stable term. Our intention is, for every
set {c1, . . . , ck} of equivalent constants that are top-stabilizable, to choose a new
marked representative constant, say c1, and add the k rules c1 → c1, c2 →
c1, . . . , ck → c1 to R. The intuitive idea for adding these rules is that they
allow the rewrite system to replace a top-stabilizable constant by an equivalent
constant which can not be used by the rewrite system (note that these new
constants do not appear in R).

Let Σ0 be a new set of constants obtained by picking a representative con-
stant from each set of R-equivalent constants and marking it.

Σ0 = {c : c ∈ Σ0, c is a chosen representative for its R-equivalence class}

We next define R (over the new signature Σ ∪ Σ0) by adding certain rewrite
rules of the form c→ d, where c and d are R-equivalent. The construction of R
is achieved through a fixpoint computation.

R0 = R

Ri+1 = Ri ∪ {c→ d : c, d ∈ Σ0,∃ flat term t ∈ T (Σ ∪Σ0,V) : t↔∗
Ri

c↔∗
R d,

d ∈ Σ0, t does not rewrite to a constant in Σ0 by Ri}

When we add c → d, we also add all rewrite rules c′ → d, where c′ ↔∗
R c, in

the same iteration, and hence, the fixpoint iterations terminate in at most |Σ0|
steps. Let R be the final result.

Example 1. If R0 = {fa→ b, a→ a′, fb→ c}, then R1 = R0 ∪ {b→ b} (due to
the witness fa′) and subsequently R2 = R1 ∪ {c→ c} (due to the witness fb).

The next lemma states that the addition of the new constants does not change
the congruence relation (over the original signature).

Lemma 1. If s, t ∈ T (Σ,V), then for all i, s↔∗
Ri

t iff s↔∗
R t.



We would want a rule c → d to be added if and only if the constant c is
top-stabilizable. This is not always the case, but the left-to-right implication is
stated in Lemma 5. Its proof uses the following definitions and lemmas. These
lemmas are not conceptually difficult but they are of technical nature, and they
are used again later, in the last part of Lemma 12.

Definition 1. Let s→l→r,q t be a one-step rewrite derivation with a flat right-
linear rule and let p ∈ Pos(s). We say that p goes to a certain position p′ in this
derivation, denoted by Post(s→ t)(p) = p′, whenever:

– p′ = p, and either (i) q is disjoint from p, or (ii) p ≺ q, or (iii) p = q and l
is not a variable, or

– p = q.q1.p
′′ and p′ = q.q2.p

′′, for some q1, q2 such that l|q1 and r|q2 are the
same variable.

If there is no such p′, then we say that p does not go anywhere, denoted by
Post(s→ t)(p) = ⊥.

We extend this definition to derivations of arbitrary length. If s = s1 → s2 →
· · · → sn, we say that p1 goes to pn, or Post(s →∗ t)(p1) = pn, if there exists
p2, . . . , pn−1 such that for all i, Post(si → si+1)(pi) = pi+1. If no such sequence
of positions exists, we say that p does not go anywhere.

For example, in the derivation f(faab)bc →fxxy→fxbc,1 f(fabc)bc, position
1 goes to position 1, 1.1 and 1.2 go to 1.1, and 1.3 does not go anywhere.

Lemma 2. Let R′ be any flat right-linear rewrite system and Post(s →∗
R′

t)(λ) = p. Then s→∗
R′ t|p′ for any p′ � p.

The above lemma depends on the right-shallowness of insertion rules in R.

Lemma 3. Let Ri be one of the rewrite systems appearing in the construction
of R. Let s→∗

Ri
t be any derivation. Let p1, . . . , pk be disjoint positions, that are

also disjoint with Post(s→∗ t)(λ) whenever it is not ⊥, and such that every t|pj

is Ri-equivalent to some bar constant cj.
Then s→∗

Ri
t[c1]p1 . . . [ck]pk

, where λ goes to the same position as before.
Alternatively, if none of the terms t|pj is Ri-equivalent to any constant, then

there is a derivation s →∗
Ri

t[z1]p1 . . . [zk]pk
, where λ goes to the same position

as before and z1, . . . , zk are new variables.

Proof. We use induction on the length of the derivation s →∗
Ri

t. For length 0
the result is trivial since there are no positions disjoint with λ. Hence, let the
derivation be of the form s→∗

Ri
t′ →l→r,q t.

If q � pj for some j, then it is the case that t′[c1]p1 . . . [ck]pk
≡ t[c1]p1 . . . [ck]pk

.
Moreover, the pj ’s are disjoint with Post(s→∗

Ri
t′)(λ). By induction hypothesis,

s→∗
Ri

t′[c1]p1 . . . [ck]pk
with λ going to the same position as before.

Now suppose that q 6� pj for any j. For every pj , define a set of maximal
disjoint positions Pj = Pre(t′ → t)(pj) ⊆ Pos(t′) as follows:

Pre(t′ → t)(pj) = Maximal({p ∈ Pos(t′) : Post(t′ → t)(p) = pj}),



where Maximal(P ) denotes the set of maximal positions in P (wrt �). Now, note
that every Pj is a set of disjoint positions, but moreover, all of them are disjoint
with Post(s →∗

Ri
t′)(λ), and ∪j∈{1...k}Pj is a set of disjoint positions. Hence,

by induction hypothesis, s →∗
Ri

t′[c1, . . . , c1]P1 . . . [ck, . . . , ck]Pk
with λ going to

the same place, and t′[c1, . . . , c1]P1 . . . [ck, . . . , ck]Pk
→ t′′, where t′′ may differ

from t[c1]p1 . . . [ck]pk
in the positions pj of the form q.l for some l ∈ {1, . . . ,m}

such that r|l is a constant. For such a position pj , t′′|pj
≡ t|pj

≡ r|l, and hence,
this constant is Ri-equivalent to the corresponding cj . Therefore, by applying
rules of the form c → cj on t′′, the term t[c1]p1 . . . [ck]pk

is reached, and hence,
this term is also Ri-reachable from the initial s, and with λ going to the same
position. The proof for the alternate claim follows the same pattern.

Example 2. Let S = {x→ gxc, c→ fc}, R = R0 ∪S and R = R2 ∪S, where R0

and R2 are as in Example 1. In the R-derivation b→ gbc→ g(gbc)c→ g(gbc)fc,
the position λ goes to position 1.1. We can replace c and fc in the disjoint
positions 1.2 and 2 by c and get a new derivation b→ gbc→ g(gbc)c→ g(gbc)c.

We can replace top-stable subterms by equivalent bar-constants in certain Ri-
derivations (Lemma 4). Recall that a rewrite step using l→ r is called decreasing
if height(l) = 1 and height(r) = 0.

Lemma 4. Let Ri be one of the rewrite systems appearing in the construction
of R and let fs1 . . . sm be a flat term over Σ ∪ Σ0. Let fs′1 . . . s′m be a term
obtained from fs1 . . . sm by replacing every bar constant by an Ri-equivalent and
R-top-stable term in T (Σ,V). Let fs′1 . . . s′m →∗

R t[ft′1 . . . t′m]p be a derivation
in which λ goes to p, and that does not have any decreasing steps applied at the
positions where λ goes to.

Then, there exists a derivation fs1 . . . sm →∗
Ri

t[ft1 . . . tm]p, where λ goes to
p, and ft1 . . . tm is obtained from ft′1 . . . t′m by replacing every R-top-stable t′j
Ri-equivalent to a bar constant tj by this corresponding tj, and leaving the other
t′j unchanged, that is, tj = t′j.

Proof. We induct on the length of the derivation fs′1 . . . s′m →∗
R t[ft′1 . . . t′m]p.

For length 0 the result is trivial since in this case t is the empty context and
every t′j coincides with the corresponding s′j . Hence, let this derivation be of the
form fs′1 . . . s′m →∗

R t′ →l→r∈R,q t[ft′1 . . . t′m]p. Now, we distinguish several cases
depending on the relationship between q and p.

q and p are disjoint. In this case Post(fs′1 . . . s′m →∗
Ri

t′)(λ) = p and t′ is ac-
tually t′[ft′1 . . . t′m]p. By induction hypothesis, fs1 . . . sm →∗

Ri
t′[ft1 . . . tm]p

in which λ goes to p. Moreover, t′[ft1 . . . tm]p →l→r,q t[ft1 . . . tm]p, and hence
t[ft1 . . . tm]p is Ri-reachable from fs1 . . . sm, with λ going to p.

q ≺ p, or q = p and Post(fs′1 . . . s′m →∗
Ri

t′)(λ) 6= q. (In the latter case, the
step t′ →l→r∈Ri,q t[ft′1 . . . t′m]p is necessarily a decreasing step.) Let
P = Pre(t′ → t[. . .]p)(p). Note that there is a position p′ ∈ P
such that Post(fs′1 . . . s′m →∗ t′)(λ) = p′. By induction hypothesis,
fs1 . . . sm →∗

Ri
t′[ft1 . . . tm]p′ . Using Lemma 3 on this derivation at po-

sitions below the other positions in P , we get fs1 . . . sm →∗
Ri

t′′, where



t′′ is t′[ft1 . . . tm, . . . , ft1 . . . tm]P . We have set up t′′ so that t′′ →l→r,q

t[ft1 . . . tm]p, and hence t[ft1 . . . tm]p is Ri-reachable from fs1 . . . sm, with λ
going to p.

q = p and Post(fs′1 . . . s′m →∗
Ri

t′)(λ) = q. In this case, l → r has to be a per-
mutation rule: by assumption, no decreasing rules occur at the positions
where λ goes to, and an increasing step would imply Post(fs′1 . . . s′m →∗

Ri

t[ft′1 . . . t′m]p)(λ) 6= p. Therefore, t′ is of the form t[fr′1 . . . r′m]p and fr′1 . . . r′m
rewrites to ft′1 . . . t′m by l → r. By induction hypothesis, fs1 . . . sm →∗

Ri

t[fr1 . . . rm]p, where λ goes to p. Note that the same permutation rule l→ r
is applicable at λ in fr1 . . . rm, since r′j ≡ r′k implies rj ≡ rk for all j, k.
Hence, fs1 . . . sm →∗

Ri
t[ft1 . . . tm]p, where λ goes to p in this derivation.

p ≺ q. In this case, t′ is of the form t[ft′1 . . . t′j−1r
′
jt
′
j+1 . . . t′m]p, where r′j →l→r t′j .

Note that either tj ≡ t′j or tj is a bar-constant Ri-equivalent to t′j . In either
case, tj is Ri-equivalent to r′j .
If tj ≡ t′j , then r′j is not an R-top-stable term that is Ri-equivalent to a
bar constant occurring in Ri. By induction hypothesis there is a derivation
fs1 . . . sm →∗

Ri
t[ft1 . . . tj−1r

′
jtj+1 . . . tm]p, where λ goes to p. Since r′j → t′j ,

it follows that fs1 . . . sm →∗
Ri

t[ft1 . . . tm]p with λ going to p.
If tj is a bar-constant Ri-equivalent to t′j , then t′j is R-top-stable. If r′j is
also R-top-stable, then induction hypothesis gives exactly what we wanted to
prove. Otherwise, if r′j is not R-top-stable, then, induction hypothesis gives
a derivation fs1 . . . sm →∗

Ri
t[ft1 . . . tj−1r

′
jtj+1 . . . tm]p, where λ goes to p.

Moreover, since r′j is not R-top-stable, we have r′j →∗
R c for some constant

c ∈ Σ, which is Ri-equivalent to the bar-constant tj , and hence, the rule
c→ tj occurs in Ri. Therefore, t[ft1 . . . tm]p is Ri-reachable from fs1 . . . sm,
with λ going to p.

Example 3. Using R from Example 2, in the derivation g(fa′)c → g(fa′)fc →
g(gfa′c)fc, λ goes to λ, and by Lemma 4 we would have a derivation gbc→∗ gbc.

Lemma 5. If there is a rule c→ d in R, then d is R-top-stabilizable.

Proof. We prove by induction on i that if c → d is introduced in Ri, then d is
R-top-stabilizable. Suppose this is not true for certain i and c → d; i.e., d is
not top-stabilizable but this rule has been introduced in the i’th step. By the
construction of Ri, there exists a flat term s = fs1 . . . sm in T (Σ ∪Σ0,V) Ri−1-
equivalent to d and such that s does not rewrite to any constant in Σ0 by Ri−1.
We can assume that any sj that is a bar constant already occurs in Ri−1: a bar
constant sj not occurring in Ri−1 can be replaced by a new variable, preserving
all properties and the proof. We construct a term s′ = fs′1 . . . s′m as follows: if
sj is some bar constant e then s′j is chosen as an R-top-stable term in T (Σ,V)
R-equivalent to e that exists by induction hypothesis, and if sj is not a bar
constant then we make s′j equal to sj . By Lemma 1, s′ and d are R-equivalent.
Since d is not R-top-stabilizable, s′ →∗

R c′ for some c′ equivalent to d. Wlog,
assume that all terms that occur in the derivation s′ →∗

R c′ are in T (Σ,V).
First, suppose that there is a decreasing step at some position where λ

goes to in the derivation s′ →∗
R c′. Hence, this derivation can be written as



fs′1 . . . s′m →∗
R t[ft′1 . . . t′m]p →R,p t′ →∗

R c′, where the step t[ft′1 . . . t′m]p →R,p t′

is the first decreasing step at the positions where λ goes to. By Lemma 4,
there exists a derivation fs1 . . . sm →∗

Ri−1
t[ft1 . . . tm]p where λ goes to p, and

ft1 . . . tm is obtained from ft′1 . . . t′m by replacing every R-top-stable t′j that is
Ri−1-equivalent to a bar constant tj by this tj . By Lemma 2, there exists a
derivation fs1 . . . sm →∗

Ri−1
ft1 . . . tm. Since R is flat, the decreasing step ap-

plied on the subterm ft′1 . . . t′m can be also applied on ft1 . . . tm and the result
is either a constant or one of the tj ’s. The first case is not possible since then
fs1 . . . sm would Ri−1-reach a constant, which is a contradiction. In the second
case, we have fs1 . . . sm →∗

Ri−1
tj . Note that tj can not be one of the intro-

duced bar constants, since they are not equivalent to d. Hence, tj ∈ T (Σ,V)
and tj is R-equivalent to d. Since d is not R-top-stabilizable, there is a deriva-
tion tj →∗

R c′′ for some constant equivalent to d. But this derivation is also an
Ri−1-derivation since R ⊆ Ri−1, and hence, fs1 . . . sm Ri−1-reaches a constant,
which is a contradiction.

We can now assume that there are no decreasing steps at the positions where
λ goes to in s′ →∗

R c′. This implies, in particular, that λ does not go any-
where in this derivation. Hence, the derivation is of the form fs′1 . . . s′m →∗

R

t[ft′1 . . . t′m]p →l→r∈R,p′ t′ →∗
R c′, where λ goes to p, and there exists p′′ ∈

Pos(l) such that l|p′′ is a variable not occurring in r, and p′.p′′ � p. As
before, by Lemma 4, there exists a derivation fs1 . . . sm →∗

Ri−1
t[ft1 . . . tm]p

where λ goes to p. From t = t[ft1 . . . tm]p we construct a new term t′′ =
t[t|p′.p′′ ]p′.p1 . . . [t|p′.p′′ ]p′.pk

, where p1 . . . pk are all the positions in l where the
variable l|p′′ occurs. By Lemma 3, fs1 . . . sm →∗

Ri−1
t′′. By construction of t′′,

t′′ →l→r∈R,p′ t′ →∗
R c′, and since R ⊆ Ri−1, it follows that fs1 . . . sm Ri−1-

reaches a constant, which contradicts the assumption on fs1 . . . sm.

3.2 Detection of Top-Stabilizable Constants

Not all the top-stabilizable constants are necessarily detected by the fix-point
computation. But under certain confluence assumptions, we can guarantee that
some of them will be detected.

Lemma 6. Let R be confluent upto height h, i.e., any set of equivalent terms
with height smaller than or equal to h is joinable.

Then, if t is a top-stable term with height smaller than or equal to h + 1 and
equivalent to some constant c, then c→ d ∈ R for some d ∈ Σ0.

For proving the previous lemma, we first need some properties about the
congruence relation induced by R. Since R is a shallow TRS, R-equivalence
can be decided using a paramodulation-based completion procedure [4, 12]. The
resulting saturated TRS can be used as the set Congr(R), or alternatively, we
can just use the following:

Congr(R) = {l→ r : l, r are flat, l↔∗
R r, height(l) ≥ height(r)}.

This set could have nonlinear terms on the right-hand sides. In this section, we
study some properties of rewriting with a flat TRS R.



Definition 2. Let t be a term. A set of disjoint positions P 6= {λ} of t is called
maximally equivalent if all t|p∈P are equivalent, and for any t|q equivalent to
them and different from t there exists some p ∈ P with p � q. If a term s (or a
set of terms S) is equivalent to t|P , we say that P is the maximally equivalent
set in t equivalent to s (S).

The following lemma shows that, in some cases, the relation→∗
R is preserved

after replacing some subterms by variables.

Lemma 7. Let R be a flat TRS. Let s →∗
Congr(R) t, and let P be maximally

equivalent in s such that the terms s|p∈P are not equivalent to a constant.
Then, either s[z, . . . , z]P →∗

Congr(R) z and s is equivalent s|P , or
s[z, . . . , z]P →∗

Congr(R) t[z, . . . , z]P ′ , where P ′ is the maximally equivalent set
in t equivalent to the terms s|p∈P .

Proof. We prove it for one step derivations, since the proof inductively extends
to any length. Hence, assume that s→Congr(R),q t and P is as above.

If p � q for some p ∈ P , then s|p′ and t|p′ are equivalent for any p′ � p and
for any p′ disjoint with p, and the result trivially follows. Hence, assume that
p 6� q for any p ∈ P . Note that s|p′ and t|p′ are equivalent for any p′ � q and for
any p′ disjoint with q.

If the applied rule is of the form f(. . . , x, . . .)→ x with the x of the left-hand
side occurring in a position i such that q.i ∈ P , then t|q is equivalent to terms
s|P . In such a case, s|q is also equivalent to s|P , and since q was not in P , it can
only be that q = λ and s[z, . . . , z]P →Congr(R) z trivially.

In any other case, the maximally equivalent set in t equivalent to s|P is the
set {p′|p′ ∈ P disjoint with q} ∪ {q.p′|p′ is in the maximally equivalent set of t|q
equivalent to s|P }. Let l → r and σ be the applied rule and substitution. Let
σ′ be as σ except for the variables x ∈ Vars(r) − Vars(l), for which we define
xσ′ = xσ[z, . . . , z]Px

, where Px = {λ} if xσ is equivalent to s|P , and Px is the
maximally equivalent set in xσ equivalent to s|P , otherwise. Then, s[z, . . . , z]P
rewrites into t[z, . . . , z]P ′ applying l→ r with σ′ at position q (note that positions
with constants in r are not equivalent to s|P since, by the assumptions of the
lemma, s|P is not equivalent to a constant).

Corollary 1. Let s1, . . . , sn be terms that reach a term t by →∗
Congr(R). Let

P1, . . . , Pn be maximally equivalent positions in s1, . . . , sn, respectively, such that
all terms in s1|P1 , . . . , sn|Pn

are equivalent, but not equivalent to a constant.
Then, either some si[z, . . . , z]Pi

reaches z by →∗
Congr(R) and the sj’s are

all equivalent to si|Pi , or all si[z, . . . , z]Pi ’s reach the same term t[z . . . z]P ′ by
Congr(R), where P ′ is the maximal set in t equivalent to si|Pi

; and hence, they
are all equivalent.

Let R and R be as in the previous subsection. The following lemma shows
that, in some cases, an R-derivation can be transformed into an R-one.



Lemma 8. For every bar constant c, let tc be a term R-reachable from all con-
stants equivalent to c. Let s and t be two terms satisfying s→∗

R
t.

Then, s{. . . c 7→ tc . . .} →∗
R t{. . . c 7→ tc . . .}.

Proof. It is enough to prove it for one step derivations, since then it inductively
extends to any length. Hence, assume s→R t. If this step uses a rule in R, then
the result is trivial. Otherwise, it uses a rule of the form d → c, and the result
trivially follows from the fact that tc is reachable from d.

Now, we are ready to prove Lemma 6

Proof. (of Lemma 6) The proof is by contradiction. We consider a term t as a
counterexample witness to the goal, if its height is smaller than or equal to h+1,
t is top-stable, and it is equivalent to a constant that has not been detected as
top-stabilizable. We compare witnesses by the size ordering.

Assume that the minimal counterexample witness is a certain term t equiv-
alent to some constant c.

First, we show that all terms occurring in t at depth 1 and with non-zero
height are equivalent to constants. Suppose not. Let s be a height non-zero sub-
term of t at depth 1 that is not equivalent to a constant. Let P be the max-
imally equivalent set of positions of t equivalent to s. Since t →∗

Congr(R) c,
by Lemma 7, either t[z, . . . , z]P →∗

Congr(R) z and t is equivalent to s, or
t[z, . . . , z]P →∗

Congr(R) c[z, . . . , z]P ′ , where P ′ is the maximally equivalent set
in c equivalent to s. The first case is not possible, since s is not equivalent
to a constant and t is equivalent to c. In the second case, c[z, . . . , z]P ′ = c,
and hence t[z, . . . , z]P is a term equivalent to c and smaller than t. Therefore,
by the minimality assumptions on t, the term t[z, . . . , z]P is not stable, i.e.
t[z, . . . , z]P →∗

R d for some constant d equivalent to c. On the other hand, the
set t|P is equivalent and all its terms have height smaller than h+1, and hence it
is joinable to some term r. Consequently t reaches t[r, . . . , r]P , and the derivation
(t[z, . . . , z]P →∗

R d){z 7→ r} shows that t[r, . . . , r]P reaches d, which contradicts
the fact that t is top-stable.

Furthermore, by minimality of t it follows that every such height non-zero
subterm s at depth 1 in t is top-stable, and moreover, its corresponding equiv-
alent constant has been detected as top-stabilizable, since otherwise, we would
have a smaller counterexample witness {s}.

Now, let t′ be like t but where every height non-zero depth 1 subterm is
replaced by its corresponding R-equivalent bar-constant. Clearly, t′ is flat and
t′ ↔∗

R
c. Since c was not detected as top-stabilizable, t′ R-rewrites to some

constant d equivalent to c. For every bar-constant e, let Se be the set of all
constants R-equivalent to e, plus all the terms equivalent to e occurring at depth
1 in t. Each such Se is joinable, since the height of its terms is smaller than h+1,
and hence, we can choose a term te reachable from Se. By Lemma 8, t′{. . . e 7→
te . . .} →∗

R d{. . . e 7→ te . . .}. But d{. . . e 7→ te . . .} is d and t′{. . . e 7→ te . . .} is
reachable from t, and this contradicts the fact that t is top-stable.



3.3 Deciding Confluence for Shallow Right-Linear Systems

Before proving the decidability of confluence, we need some additional lemmas
that show that rewrite derivations using shallow and right-linear rules can be
generalized to yield “more-general” rewrite derivations.

Lemma 9. Let s be a flat term such that every constant in s also occurs in R.
Let s →∗

R
t[r]p be a derivation where λ goes to p, and without decreasing steps

applied at the positions where λ goes to. Let r′ be r[z]i where i ∈ {1, . . . ,m} and
either r|i is equivalent to the variable z, or r|i is not equivalent to any height 0
term and z is a new variable.

Then, there exists a derivation s→∗
R

t[r′]p, where λ goes to p.

The proof of the previous lemma, generalized to several positions i1, . . . , ik,
is completely analogous to the one of Lemma 4.

Lemma 10. Suppose s →∗
R

t and Post(s →∗ t)(λ) = p 6= ⊥. Let α be a bar-
constant R-equivalent to s if such a bar-constant exists, and let α be a variable
if s is not R-equivalent to any constant.

Then, for all p′ � p, there is a derivation α→∗
R

t[α]p′ in which λ goes to the
position p′.

Proof. We prove by induction on the length of the derivation s→∗
R

t. The base
case is trivial. Assume the above derivation is of the form s→∗

R
t[lσ]q → t[rσ]q,

and take p′ � p. We analyze the following cases:
(a) If p and q are disjoint, then λ goes to p in s →∗ t[lσ]q. Applying induction
hypothesis on this derivation we have s →∗ t[lσ]q[α]p′ with λ going to p′, and
the same rule l→ r applied at position q finishes the proof.
(b) If p′ � q then λ goes to a position below or at p′ in s→∗

R
t[lσ], and induction

hypothesis on this derivation establishes the claim.
(c) Suppose p = q.i.q′ and p′ = q.i.q′′. We again distinguish two cases. If l is
a variable, then λ goes to q.q′ in s →∗ t[lσ]. By induction hypothesis, we get
α →∗ t[α]q.q′′ . Now, apply the rule l → r at position q to rewrite t[α]q.q′′ into
t[α]q.i.q′′ . This concludes the first case. In the second case, we assume that l is
not a variable. Apply induction hypothesis on the subderivation s →∗ t[lσ]q at
the appropriate position in P = Pre(t[lσ]→ t[rσ])(p′). We replace the terms at
other positions in P by α using Lemma 3 to finally get the derivation α →∗

R
(t[lσ]q)[α, . . . , α]P . Note that this is required because l may be nonlinear. Now,
we can use the rule l→ r to rewrite (t[lσ]q)[α, . . . , α]P into (t[rσ]q)[α]p′ .

Example 4. Applying Lemma 10 to the derivation b→∗ g(gbc)fc of Example 2,
we infer that there will be derivations b→∗ g(gbc)fc, b→∗ gbfc, and b→∗ b.

The following lemma is an addendum to Lemma 4.

Lemma 11. Let s be a flat term with constants occurring in R, and let s′ be
obtained by replacing in s every bar-constant by an R-equivalent R-top-stable
term in T (Σ,V). Let s′ →∗

R t be a derivation where λ does not go anywhere, and
without decreasing steps applied at the positions where λ goes to.



Then, there exists a derivation s→∗
R

t, where λ does not go anywhere. More-
over, if s is not R-equivalent to a constant, then there exists a derivation z →∗

R
t

for any variable z, and where λ does not go anywhere.

We are ready to give a characterization for confluence of R.

Lemma 12. R is confluent iff the following two conditions hold:

(i) Every R-equivalent set of constants of Σ is R-joinable.
(ii) Let {α1, . . . , αk, t1, . . . , tn} be an R-equivalent set of terms, where n ≥ 1,

k+n ≥ 2, αi’s are constants in Σ0 or variables (in this case there is at most
one variable, i.e. k ∈ {0, 1}), and ti’s are flat terms over Σ ∪Σ0 such that
no ti can reach a constant in Σ or a variable by →∗

R
.

Then, there exist t′1, . . . , t
′
n such that every t′i is either ti or c or x, some t′i

coincides with ti, and the set {α1, . . . , αk, t′1, . . . , t
′
n} is R-joinable. Here c

is the (possible) bar-constant in the equivalence class of the set and x is the
(possible) variable in the equivalence class of the set.

Proof. ⇐ : For the right-to-left direction, we will prove a more general statement:
R is confluent, and all top-stabilizable constants have been detected (during the
fixpoint computation that constructs R), i.e., d occurs in R if d ∈ Σ0 and d
is top-stabilizable. The proof is by contradiction, and we consider two kinds of
counterexamples to the goal: a multiset {t1, . . . , tn} with n ≥ 2 is a counterex-
ample witness to confluence if it is equivalent but not joinable. A single set {t}
is a witness to the top-stabilizability detection if t is top-stable but it is equiv-
alent to a constant that has not been detected as top-stabilizable. We compare
witnesses {t1, . . . , tn} using the multiset extension of the size ordering.
Witness to top-stabilizability detection: Assume that the minimal coun-
terexample witness is {t}, where t is top-stable and equivalent to some constant
c that has not been detected as top-stabilizable.

By minimality of {t}, all equivalent sets of terms with height smaller than
the height of t are joinable. Therefore, by Lemma 6, we conclude that c has been
detected as top-stabilizable, which is a contradiction.
Witness to confluence: Assume that the minimal counterexample witness
is a witness to confluence. The witness can not contain only constants, due to
condition (i). Let {α1, . . . , αk, t1, . . . , tn} be the minimal counterexample witness
to confluence, where the ti’s are not constants, n ≥ 1 and n + k ≥ 2.

We first prove that all terms occurring in the ti’s at depth 1 and with height
non-zero are equivalent to constants. Suppose not. Let s be a height nonzero
subterm at depth 1 of some term ti such that s is not equivalent to a constant.
We pick a term t reachable from all {t1, . . . , tn} by →Congr(R). If there are
constants in the witness (k ≥ 1), we choose t to be a constant. Let P1, . . . , Pn be
the maximal positions equivalent to s in t1, . . . , tn, respectively. By Corollary 1,
either for some ti, say t1, it happens that t1[z . . . z]P1 →Congr(R) z and t1 is
equivalent to t1|P1 and to s (in this case no constant appears in the witness, i.e.,
k = 0), or all the ti[z, . . . , z]Pi

’s reach the same term t[z . . . z]P ′ by Congr(R),
where P ′ is maximal in t, and hence they are all equivalent (in this case, if there



are constants in the witness, P ′ is empty and t[z . . . z]P ′ is exactly the constant
t).

In the first case, {t1[z, . . . , z]P1 , z} and t1|P1 ∪ {t2, . . . , tn} are both equiva-
lent sets smaller than the original witness. Therefore, each of these two sets is
separately joinable, say to terms u and v respectively. Instantiating z by v in
z →∗ u, we get v →∗ u{z 7→ v}. As a result we infer that u{z 7→ v} is reachable
from every term in {t1, . . . , tn}, contradicting that this set is a counterexample
to confluence.

In the second case, {α1, . . . , αk, t1[z . . . z]P1 , . . . , tn[z . . . z]Pn
} and t1|P1∪. . .∪

tn|Pn are both R-equivalent sets that are smaller than the original witness. There-
fore, both these sets are separately R-joinable, say to terms u and v respectively.
It is again easy to see that any term in {α1, . . . , αk, t1, . . . , tn} reaches u{z 7→ v},
contradicting the fact this set is a counterexample for confluence.

We now know that in the minimal counterexample {α1, . . . , αk, t1, . . . , tn},
any height non-zero term s occurring at depth 1 is equivalent to a constant c. By
the minimality of the counterexample, s is top-stable, and hence the constant c
is top-stabilizable. Moreover, this has been detected, since {s} is smaller than
the above witness, and therefore, a bar-constant for the class of c exists. Let
t′1, . . . , t

′
n be as t1, . . . , tn, but where every nonzero term occurring at depth 1

has been replaced by its R-equivalent bar-constant.
First, we show that no t′i can reach a constant of Σ. Suppose that some t′i,

say t′1, reaches a constant c ∈ Σ. For every bar-constant d, let Sd be the set
of all constants R-equivalent to d, plus all the terms equivalent to d occurring
at depth 1 in t1. Each such Sd is joinable, since it is a smaller set compared
to the original witness. Hence, we can choose a term td reachable from Sd. By
Lemma 8, t′1{. . . d 7→ td . . .} →∗

R c, and since t1 reaches t′1{. . . d 7→ td . . .} by→∗
R,

it follows that t1 reaches a constant, contradicting that t1 is top-stable (which
follows from minimality of the counterexample).

Now, by Condition (ii), there exist terms t′′1 , . . . , t′′n such that every t′′i is either
t′i or the corresponding bar-constant of its class (if it is equivalent to a constant),
some t′′i coincides with t′i, and the set {α1, . . . , αk, t′′1 , . . . , t′′n} is R-joinable to a
certain term r. For every bar-constant c, let Sc be now the set of all constants R-
equivalent to c, plus all the terms equivalent to c occurring at depth 1 in the ti’s
such that t′′i is not a bar-constant, plus all the terms ti equivalent to c such that t′′i
is a bar-constant. Each such Sc is joinable, since it is a smaller set than the initial
witness, and hence, we can choose a term tc reachable from Sc. By Lemma 8,
every term in {α1, . . . , αk, t′′1 , . . . , t′′n}{. . . c 7→ tc . . .} reaches r{. . . c 7→ tc . . .}.
Since every ti reaches t′′i {. . . c 7→ tc . . .}, this proves that {α1, . . . , αk, t1, . . . , tn}
is joinable, which contradicts that it is a witness to confluence.

⇒ : Assume that R is confluent. This immediately implies Condition (i).
Moreover, by Lemma 6, all the top-stabilizable constants have been detected.
To show that Condition (ii) is also true, let {α1, . . . , αk, t1, . . . , tn} be a set as
in Condition (ii).

We choose terms t′1, . . . , t
′
n such that every t′i can be obtained by replacing

in ti every bar-constant at depth 1 by an R-equivalent R-top-stable term of the



original signature. The set {α1, . . . , αk, t′1, . . . , t
′
n} is R-equivalent and contains

terms of the original signature, and by Lemma 1 it is also R-equivalent. By
confluence, it is R-joinable to a certain term t, i.e. there exist derivations of
the form αi →∗

R t and t′i →∗
R t. We choose such a t to be a minimal one in

size satisfying such condition. Note that, due to this minimality, every height
nonzero subterm of t is top-stable.

Let ti, say t1, be such that a decreasing step occurs in the derivation t′1 →∗
R t

at some position where λ goes to. Let t′1 →∗
R s[r′1]p → s[r′2]p be the initial

subderivation where a decreasing step appears for the first time. Note that λ
goes to p in this derivation, no decreasing step occurs at the positions where λ
goes to in t′1 →∗

R s[r′1]p, and r′1 rewrites to r′2 with a decreasing step at root
position. By Lemmas 4 and 9, t1 →∗

R
s[r1]p where λ goes to p, and r1 is as

r′1 but where, fixing a new variable z, every height nonzero subterm at depth
1 has been replaced by, either z if it is not equivalent to any height 0 term,
or by an equivalent bar-constant if it is equivalent to some constant, or by an
equivalent variable if it is equivalent to a variable. The same decreasing rule used
in r′1 →R r′2 can be applied to r1 obtaining a certain term r2 that is either a
bar-constant, or a variable. Therefore, t1 →∗

R
s[r2]p where λ goes to p, and by

Lemma 2 t1 →∗
R

r2. Therefore, {α1, . . . , αk, t1, r2, . . . , r2} is R-joinable and we
are done.

At this point, we can assume that no derivation t′i →∗
R t contains a decreasing

step at some position where λ goes to, and we distinguish two cases.

The t′i’s are not equivalent to any height 0 term. In this case k = 0.
First we show that in every derivation t′i →∗

R t, λ goes to somewhere. Suppose
not, i.e. wlog. assume that λ does not go anywhere in t′1 →∗

R t. By Lemma 11
there exists a derivation z →∗

R
t for any variable z. We choose z to be a new

variable not occurring in t. This shows that the theory induced by R is trivial,
which contradicts the initial assumptions of this section.

Next we show that the positions where λ goes to in the derivations t′i →∗
R t

are not disjoint. Suppose not, i.e. wlog. assume that λ goes to disjoint p1 and p2

in t′1 →∗
R t and t′2 →∗

R t, respectively. Using Lemma 10 on these two derivations,
we get derivations x→∗

R
t[x]p1 and y →∗

R
t[y]p2 . Now, using Lemma 3 on these,

we get derivations x→∗
R

t[x]p1 [y]p2 and y →∗
R

t[y]p2 [x]p1 . This shows that x and
y are R-equivalent, and by Lemma 1 R-equivalent, which contradicts again the
initial assumption of the non-triviality of the theory induced by R.

Finally we show that the positions where λ goes to in the derivations t′i →∗
R t

coincide. Suppose not, i.e. wlog. assume that λ goes to p1 and p1.i.p2 in t′1 →∗
R t

and t′2 →∗
R t, respectively. By Lemma 4 applied to t′1 →∗

R t, we get t1 →∗
R

t[r]p1 .
Note that, by Lemma 2 applied to t′2 →∗

R t, t′2 is R-equivalent to t|p1.i, and hence
t|p1.i is not R-equivalent to a height 0 term, and t|p1.i and r|i coincide. Therefore,
using Lemma 9 we get t1 →∗

R
t[r[y]i]p1 . On the other hand, by Lemma 3, applied

to t′2 →∗
R t we get t2 →R t[r]p1 . Using Lemma 10 on this derivation, we get

y →∗
R

t[r[y]i]p1 . This shows that an arbitrary variable y is R-equivalent to t1,
contradicting the non-triviality of the theory induced by R.



Once we know that there exists a position p where λ goes to in all of the
derivations t′i →∗

R t, it is easy to conclude: by Lemma 4 any ti R-reaches t[r]p,
where r is obtained from t|p by replacing every height nonzero subterm at depth
1 R-equivalent to a constant by a bar-constant, and hence {t1, . . . , tn} is R-
joinable.

The set {α1, . . . , αk, t1, . . . , tn} is R-equivalent to a height 0 term. If
λ does not go anywhere in a certain derivation t′i →∗

R t, by Lemma 11,
ti →∗

R
t. Therefore, if λ does not go anywhere in any derivation t′i →∗

R t, then
{α1, . . . , αk, t1, . . . , tn} is R-joinable to t and we are done. Hence, from now on
we assume that λ goes to somewhere in some of the derivations t′i →∗

R t, say in
t′1 →∗

R t,. . . ,t′l →∗
R t, for some l ≥ 1 and l ≤ n, and let p1, . . . , pl the positions

where λ goes to in each of these derivations, respectively. From the list of po-
sitions p1, . . . , pl we are interested in the ones that are minimal. Wlog. assume
that, for some o, p1, . . . , po are the minimal ones, i.e., for every i in {o+1, . . . , l}
there exists a j in {1, . . . , o} such that pj ≺ pi. Now, we define the term t′

by fixing a new variable z, and replacing in t every height nonzero subterm at
position pi.j, for i in {1, . . . , o} and j in {1, . . . ,m}, by either an equivalent bar-
constant if it is R-equivalent to a constant, or by an equivalent variable if it is
R-equivalent to a variable, or by z if it is not R-equivalent to a height 0 term.

Let α be the height 0 term R-equivalent to {α1, . . . , αk, t1, . . . , tn}. The term
α can be a bar-constant or variable. We finish the proof by showing that t′ is
R-reachable from all terms in {α1, . . . , αk, t1, . . . to, α, . . . , α, tl+1, . . . , tn} (the
ti’s for i in {o + 1, . . . , l} are replaced by α).

– For a term ti with i in {1, . . . , o}, this follows from Lemmas 4, 9 and 3.
– For a term ti with i in {l + 1, . . . , n}, this follows from Lemmas 11 and 3.
– For a term ti with i in {o+1, . . . , l}, λ goes to a certain pj .j

′.p′i in the deriva-
tion ti →∗

R t for some j in {1, . . . , o} and j′ in {1, . . . ,m}. By Lemma 10,
there is a derivation α→∗

R
t[α]pj .j′ , where λ goes to pj .j

′, and now, the fact
that α→∗

R
t′ follows from Lemma 3.

– For a term αi such that λ does not go anywhere in αi →∗
R t or it goes to a

position p disjoint with p1, . . . , po, this follows from Lemma 3.
– For a term αi such that λ goes to a position pj .j

′.p for some i in {1, . . . , o}
and j′ in {1, . . . ,m}, from Lemma 10 it follows that α →∗

R
t[α]pj .j′ , where

λ goes to pj .j
′. If α is a variable then it coincides with αi, and if α is a

bar constant then αi → α is a rule in R. In either case there is a derivation
αi →∗

R
t[α]pj .j′ where λ goes to pj .j

′. Now, the fact that αi →∗
R

t′ follows
from Lemma 3.

Theorem 1. Confluence of shallow right-linear rewrite systems is decidable.

Proof. Since a shallow and right-linear system R is finite-path overlapping and
right-linear, R-reachability and R-joinability are decidable [13]. R-equivalence
is decidable for shallow rewrite systems [4, 12]. As a result, the set R can be
constructed and the conditions of Lemma 12 can be tested.



4 Conclusion

In this paper, we showed that confluence is decidable for shallow right-linear
rewrite systems, thus generalizing the result for shallow linear rewrite systems [8].
The new proof uses the decidability results for reachability and joinability [13]
and the word problem [4, 12]. We also prove many properties about rewriting
using shallow TRSs and also shallow right-linear TRSs, which are used to prove
the main results of this paper. The decidability of termination and confluence for
other classes of finite-path overlapping systems is left for future investigation.

References

1. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. J. of Logic and Computation, 4:217–247, 1994.

2. A. Bouajjani. Languages, rewriting systems, and verification of infinite-state sys-
tems. In ICALP, volume 2076 of LNCS, pages 24–39. Springer, 2001.

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

4. H. Comon, M. Haberstrau, and J.-P. Jouannaud. Syntacticness, cycle-
syntacticness, and shallow theories. Information and Computation, 111(1):154–191,
1994.

5. N. Dershowitz and J. P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science (Vol. B: Formal Models and Seman-
tics), pages 243–320, Amsterdam, 1990. North-Holland.

6. J. Giesl and H. Zantema. Liveness in rewriting. In RTA, volume 2706 of LNCS,
pages 321–336. Springer, 2003.

7. G. Godoy and A. Tiwari. Deciding fundamental properties of right-(ground or
variable) rewrite systems by rewrite closure. In Intl. Joint Conf. on Automated
Deduction, IJCAR, volume 3097 of LNAI, pages 91–106, 2004.

8. G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow term
rewrite systems. In 20th Intl. Symp. on Theor. Aspects of Comp. Sci. STACS
2003, volume 2607 of LNCS, pages 85–96. Springer, 2003.

9. G. Godoy, A. Tiwari, and R. Verma. Deciding confluence of certain term rewriting
systems in polynomial time. Annals of Pure and Applied Logic, 130(1-3):33–59,
Dec 2004.

10. F. Jacquemard. Reachability and confluence are undecidable for flat term rewriting
systems. Inf. Process. Lett., 87(5):265–270, 2003.

11. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci., 285(2):121–154, 2002.

12. R. Nieuwenhuis. Basic paramodulation and decidable theories. In Proc. 11th IEEE
Symp. on Logic In Comp. Sc. LICS, pages 473–483. IEEE Computer Society, 1996.

13. T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting
systems effectively preserve recognizability. In Rewriting Techniques and Applica-
tions, RTA, volume 1833 of LNCS, pages 246–260, 2000.


