
Compositionally Analyzing a Proportional-Integral Controller Family

Ashish Tiwari

Abstract— We define always eventually region stability and
then formulate the absolute always eventually region stability
problem as the problem of finding a class of plants that a generic
proportional-integral (PI) controller can always eventually sta-
bilize. We use real quantifier elimination methods to solve the
absolute always eventually region stability problem. The class
of plants found in our solution includes nonlinear and switched
plant models. Our analysis reveals that any PI controller that
satisfies two assumptions of the form:
(a) the proportional gain Kp and the integral gain Ki satisfy
an inequality, and
(b) the integral of the error term in the controller is saturated,
then such a PI controller can be used to establish always
eventually region stability for any plant that suitably responds
to the control input. Such a result is useful for compositionally
verifying a system consisting of a plant and a controller.

I. INTRODUCTION

Any complex cyber-physical system will necessarily con-
tain one or more controllers. One of the most commonly used
controller is a proportional-integral (PI) or a proportional-
integral-derivative (PID) controller. In this paper, we use for-
mal verification techniques to analyze an open PI controller
shown in Figure 1.

Our investigation is motivated by two reasons. First, there
is recent push in exploring the idea of building complex
cyber-physical systems compositionally. The hope is that
there would be a library of components from which one
could pick components and connect them to build complex
systems. The ability to analyze systems compositionally is
crucial for making progress on this vision. Since controllers
will necessarily be part of any such library, we need veri-
fication techniques that can analyze individual components,
such as a controller. The second reason comes from the need
to build scalable techniques for formally verifying complex
systems. One way of achieving scalability is to perform
verification compositionally. Hence, we need approaches for
analyzing each component separately in such a way that the
analysis results can be used later to verify the composed
system.

The current practice in verification of complex cyber-
physical systems is based on performing extensive (numeri-
cal) simulation and testing. However, simulation-based meth-
ods are incomplete – how do we know that the system has
been tested enough? In the past few years, there has been an
extensive push for extending formal verification approaches
to also verify physical and cyber-physical systems. Broadly
speaking, these techniques can be classified as follows:

This work funded in part by DARPA META under contract FA8650-10-
C-7078 and by NSF under grants CSR-0917398 and SHF:CSR 1017483.

A. Tiwari is with the Computer Science Laboratory, SRI International,
Menlo Park, CA 94025 ashish.tiwari@sri.com

Plant

PI Controller

ux

Fig. 1. Block diagram of a PI Controller and a plant system.

1) reach-set methods that compute the set of all reachable
states of the system, either exactly [20], or approxi-
mately [7], [35], [19], [12], [17], [15]

2) abstraction-based methods that first abstract the system
and then analyze the abstraction [33], [1], [8]

3) certificate-based methods that directly search for cer-
tificates of correctness (such as inductive invariants and
Lyapunov functions) of systems [30], [25], [27], [23],
[16], [31], [4], [24]

While all these techniques have had some success, the
certificate-based methods are turning out to be particularly
effective in proving deep properties of complex systems.
Certificate-based methods work by fixing a template for
the “certificate of correctness”, and casting the verification
problem as a problem of finding an appropriate instantiation
of the template. This search is accomplished using numeric
or symbolic solvers that reason about arithmetic constraints
in the theory of reals. For example, for verifying stability,
the user can provide a template for the Lyapunov function
(say a quadratic Lyapunov function) and the solver can
find a concrete quadratic function that proves stability of
the given system. Most commonly used solvers include
ones for sums-of-squares (SOS) programming [26] and real
quantifier elimination. Numeric approaches, such as SOS
programming, have two limitations: first, they may give
incorrect answers, and second, they have their limitations
when solving Boolean combination of constraints. We use
symbolic solvers in the form of real quantifier elimination in
this paper.

Motivated by the need to analyze systems compositionally,
the question we answer in this paper is the following: what
is the class of plant models that can be stabilized by a
given PI controller. This problem is related to the so-called
absolute stability problem [37], [22], but there are important
differences that we will discuss later. We focus on systems
of the form shown in Figure 1. We assume the PI controller
is being used to drive the plant to a given setpoint. We wish
to prove that the error – difference between the setpoint

and the observed state – always eventually falls below a
given constant. We formalize this notion as always eventually
region stability. The problem of finding the class of plant
models can be formulated as the absolute always eventually
region stability problem. Our approach for finding the class
of plant models is based on using templates to describe
the dynamics of all the possible plants, and then deriving
conditions on the parameters in the plant model. Specifically,
we find that PI controllers can guarantee always eventually
region stability for nonlinear and switched plant models.

The outline of the paper is as follows. Section II describes
the main technical result. Section III illustrates the main
result using some concrete examples. The tools used for
performing the real quantifier elimination are described in
Section IV. Comparison to related work, especially to work
on absolute stability, is presented in Section V.

II. PI CONTROLLER: COMPOSITIONAL REASONING

A proportional-integral, or PI (respectively, proportional-
integral-derivative or PID), controller is a generic controller
that can be instantiated to give a feedback controller by fixing
two (respectively, three) parameters. It is widely used in the
design of industrial control systems.

Our goal is to formally verify a PI controller. A PI con-
troller cannot be verified in isolation, and we need a model
of the plant (process) that the PI controller is controlling to
formally state and prove its safety and/or stability. Here, we
assume that we do not have access to the plant model, and
hence the goal is to verify the PI controller under suitable
generic assumptions about the plant.

Consider a plant (process) that needs to be driven to some
desired state. Suppose the state of the plant is given by the
values of n real-valued variables. The state of the plant is,
hence, a point in Rn. Assume that we need to drive the plant
to a state such that a given variable, say X , takes a particular
value, say xsp ∈ R (sp refers to the desired setpoint). If
x ∈ R is the (estimate of the) current value of the variable
X in the plant, then the error, err, is given by

err = x− xsp (1)

Let interr denote the integral of this error, but saturated to
stay within some range, say [−1, 1]; that is,

dinterr

dt
=

err if interr2 = 1 ∧

err ∗ interr < 0
err if interr2 < 1
0 otherwise

(2)

The symbol ∧ denotes conjunction (and). Note that the
above dynamics for interr guarantees that it stays in the
range [−1, 1]. Saturation blocks that restrict a signal to a
specific range, such as the one modeled above, are commonly
used in engineering designs. A PI controller computes the
control input for the plant as a weighted sum of the err and
interr.

u = Kp ∗ err +Ki ∗ interr (3)

where the constants Kp and Ki are chosen by the control
designer. Let us say we are given Kp = 500 and Ki = 10.
We will later analyze the controller for symbolic Kp and Ki.

The description of the PI controller is contained in Equa-
tion 1, Equation 2, and Equation 3. However, to enable any
analysis, we need to relate the control input u to the plant and
the output x of the plant. In the spirit of assume-guarantee
reasoning, we assume a very generic plant whose dynamics,
when projected onto the variable X , can be abstracted to the
following nondeterministic differential equation

dx

dt
= β − α ∗ u

α ∈ [a, b] (4)
β ∈ [a1, b1]

where α and β can vary nondeterministically in the interval
[a, b] and [a1, b1] respectively. In other words, dαdt and dβ

dt are
both unrestricted and can be anything as long as α, β remain
in the specified range.

Note that the output x of the plant will, in general, depend
on the internal state of the plant as well as the control input
u. The dependence of x on the internal state of the plant is
captured by β and the dependence of x on the control input
is captured by α. That is why there are no restrictions on
the dynamics of α and β since we want to allow arbitrary
dynamics for α and β.

The closed loop control system is now described by
the union of Equation (1), Equation (2), Equation (3), and
Equation (4).

For such a closed loop system, we are interested here in a
version of stability we call always eventually region stability.

Definition 1 (always eventually region stability): A sys-
tem is always eventually region stable (a.e.r.s) with respect
to a region R ⊆ Rn if, for any trajectory ~s(~x0, t) starting
from any initial state ~x0 ∈ Rn of the system, it is the case
that

∀t ≥ 0 : ∀ε > 0 : ∃t′ ≥ t : ~s(~x0, t
′) ∈ Rε

where Rε is the set of points that are at most ε distance away
from R.
When the initial state ~x0 of the system can be arbitrary, then
the above condition is equivalent to

∀ ~x0 ∈ Rn : ∀ε > 0 : ∃t′ ≥ 0 : ~s(~x0, t
′) ∈ Rε

This is similar to global asymptotic stability, except that (a)
we consider a region R here and not a point, and (b) we do
not require that the trajectory remain inside Rε at all times
after t′. Such a weak notion of region stability is useful for
two reasons: first, it naturally allows us to say that the error
e always eventually falls below a given constant, say 1, and
second, it helps in getting simpler criteria for the absolute
always eventually region stability problem formalized below.

Definition 2 (Absolute a.e.r.s problem): Given an open
system, such as the one specified in Equation (1), Equa-
tion (2), and Equation (3), the problem is to derive conditions
involving only a, b, a1, b1 that will guarantee that the system
is always eventually region stable with respect to a given

region, say err ∈ [−1, 1], for every plant that satisfies
Equation (4).

Solving the always eventually region stability problem

We use the certificate-based verification approach to
solve the absolute a.e.r.s problem. The certificate here is a
Lyapunov-like function. Specifically, we establish the exis-
tence of a common Lyapunov function that works for all
possible plants that satisfy the (unknown) plant assumptions.
We fix a form of the Lyapunov function, say,

V = c ∗ err2 + d ∗ interr2 (5)

We have to simultaneously find the assumptions on the
plant – namely, values a, b, a1 and b1 – and the certificate
for the closed-loop system – namely, values c, d – such that
a.e.r.s stability holds. We find these values by solving the
exists-forall formula φ0 in Equation 6 below. Before we
present the formula, let us fix some definitions. Note that we
have two modes in the closed-loop system based on whether
interr is saturated or not.

1) In Mode1, interr is not saturated. In this case, the
dynamics are given by

dinterr/dt := err

derr/dt := β − α ∗ (Kp ∗ err +Ki ∗ interr)

with the mode invariant

Inv1 := (interr2 ≤ 1 ∧
(interr2 < 1 ∨ err ∗ interr < 0) ∧
a ≤ α ≤ b ∧ a1 ≤ β ≤ b1)

2) In Mode1, interr is saturated. In this case, the
dynamics are given by

dinterr/dt := 0

derr/dt := β − α ∗ (Kp ∗ err +Ki ∗ interr)

with the mode invariant

Inv2 := (interr2 ≥ 1 ∧ err ∗ interr ≥ 0 ∧
a ≤ α ≤ b ∧ a1 ≤ β ≤ b1)

Note that the mode invariants are determined by the
saturation conditions of interr (see Equation (2)).

Let dV
dt |Modei

denote the Lie derivative of V in Modei.
It is obtained by symbolically differentiating the expression
for V with respect to time in the two modes. Specifically,
dV/dt in Modei can be obtained by replacing derr/dt and
dinterr/dt in the following expression by their respective
definitions in Modei:

dV

dt
:= 2 ∗ c ∗ err ∗ derr

dt
+ 2 ∗ d ∗ interr ∗ dinterr

dt

Now, we are ready to write the formula that encodes
the absolute a.e.r.s problem. The formula below states that
there exist some values for a, b, a1, b1, c, d (parameters of the

nondeterministic plant) such that V is a Lyapunov function
that proves a.e.r.s stability of the system.

φ0 := ∃a, b, a1, b1, c, d : φ1

φ1 := ∀err, interr, α, β : φ2 (6)
φ2 := b > a ∧ b1 > a1 ∧ c ≥ 0 ∧ d ≥ 0 ∧ φ3

φ3 := (err2 ≥ 1 ∧ Inv1 ⇒
dV

dt
|Mode1

< 0) ∧

(err2 ≥ 1 ∧ Inv2 ⇒
dV

dt
|Mode2

< 0)

Here ⇒ denotes logical implication. Since we are interested
in finding the plant parameters, a, b, a1, b1, we will find the
constraints on a, b, a1, b1 such that if some concrete values
for a, b, a1, b1 satisfy those constraints, then those values will
make the Formula ∃c, d : φ1 true. This is precisely what
quantifier elimination achieves.

The correctness of our approach relies on the following
proposition.

Proposition 1: Let ψ1(a, b, a1, b1) be a formula contain-
ing only the variables a, b, a1, b1 that is obtained as a result
of eliminating quantifiers from Formula ∃c, d : φ1, where φ1
is defined in Equation 6; that is,

ψ1(a, b, a1, b1) ↔ ∃c, d : φ1

Then, ψ1 is a solution for the absolute a.e.r.s problem.
Proof: (Sketch) Suppose a, b, a1, b1 are concrete values

that satisfy ψ1. We do a proof by contradiction, and assume
a.e.r.s stability does not hold for this choice of a, b, a1, b1.
Then, starting from some initial state and for some plant
that satisfies Equation 4, the system trajectory never reaches
err2 ≤ 1. This means, err2 > 1 always. By φ3, dV/dt <
0 always, and hence err gets arbitrarily close to 0, which
contradicts that err2 > 1 always.

Analysis Results

We use symbolic tools that perform real quantifier elimi-
nation to eliminate quantifiers from Formula φ1 shown above
in Equation 6. Details of the specific tools and techniques
used can be found in Section IV. Here we present the results
obtained by analyzing Formula φ1 above.

We eliminate all the ∀ quantified variables from For-
mula φ1. The result is a formula containing only the remain-
ing variables a, b, a1, b1, c, d that is equivalent to Formula φ1.
There are automatic tools that perform quantifier elimination.
The following formula, slightly rewritten to fit margins, is
returned by the tool.

ψ1 := a1 ≤ b1 ∧ 0 < a ≤ b ∧
((10 ∗ c ∗ a ≥ d ∧ {c ∗ a1, c ∗ b1} ≤ |490 ∗ c ∗ a+ d|)∨
(10 ∗ c ∗ a < d ∧ {c ∗ a1, c ∗ b1} ≤ |510 ∗ c ∗ a− d|))

Here |x| denotes the absolute value of x and {a, b} ≤ x
denotes a ≤ x ∧ b ≤ x. Formula ψ1 gives conditions on the
parameters in the plant model, along with conditions on the
coefficients c, d of the Lyapunov function. If we existentially
quantify c, d in the above formula, and ask the quantifier

elimination tool to eliminate c, d from ∃c, d : c ≥ 0 ∧ d ≥
0 ∧ ψ1, then the tool returns the formula ψ0 shown below.

ψ0 := b1 − 500 ∗ a ≤ 0 ∧ a1 + 500 ∗ a ≥ 0

Formula ψ0 is now a solution of the absolute a.e.r.s problem.
Theorem 1: If there is a constant a > 0 such that the

dynamics of a plant can be shown to satisfy the following
assumptions,

dx

dt
= β − α ∗ u

α ∈ [a,+∞], a > 0 (7)
β ∈ [−500 ∗ a, 500 ∗ a]

then, when this plant is composed with a PI controller

u = 500 ∗ err + 10 ∗ interr
err = x− xsp

dinterr

dt
= err, interr saturates to [−1, 1]

the resulting system is always eventually region stable with
respect to the region err2 ≤ 1.

Note that the plant can be nonlinear, and can even have
switched dynamics, and still satisfy the conditions of The-
orem 1. This is because α, β can change dynamically –
they need not even be continuous – as long as they satisfy
the conditions in the theorem above. Thus, Theorem 1 is
applicable to a very large class of plants.

We note here that if we remove the saturation module
from the PI controller, then we are unable to prove a.e.r.s
stability for such a class of nondeterministic plant models.
(that is, where dα/dt and dβ/dt are unrestricted as long as
α, β remain inside the given bounds). Without the saturation
module, we can, of course, prove stability for many fixed
plant models (that is, where dα/dt = dβ/dt = 0), but
assuming dα/dt = dβ/dt = 0 significantly narrows the
class of plants and hence it is not very useful for performing
compositional reasoning on systems.

Generic PI Controller

We can now generalize from a particular value of Kp and
Ki and instead use symbolic values for these gains. We can
now ask the question for what values of Kp and Ki does
the same solution of the absolute a.e.r.s problem work?

We solve this problem by formulating it as a quantifier
elimination problem. In fact, we can find the desired condi-
tions on Kp and Ki by eliminating the quantified variables
from the following Formula φ4:

φ4 := ∃a, c, d : a > 0 ∧ c ≥ 0 ∧ d ≥ 0 ∧ φ5

φ5 := ∀err, interr, α, β : φ3 (8)

where φ3 is as defined in Equation 6 except for two differ-
ences: first, Inv1 and Inv2 are now given by

Inv1 := Inv0 ∧ interr2 ≤ 1 ∧
(interr2 = 1⇒ err ∗ interr < 0)

Inv2 := Inv0 ∧ interr2 = 1 ∧ err ∗ interr > 0

Inv0 := (a < α ∧ −500 ∗ a < β ∧ β < 500 ∗ a)

That is, we are considering only the class of plants for which
the concrete PI controller worked. As a consequence, the
variables a1, b1, b were present in Formula φ1 in Equation 6,
but they are no longer present in Formula φ4 in Equation 8.
The second difference between Formula φ1 in Equation 6 and
Formula φ4 in Equation 8 is that Kp and Ki were replaced
by their fixed values (500 and 10 respectively) in the former,
whereas variables Kp and Ki are still present in the latter.

We use real quantifier elimination to first eliminate the
universal quantifiers from Formula φ5 in Equation 8. We
get the following equivalent formula ψ5 on the remaining
variables.

ψ5 := Kp ≥ Ki ∧ c ∗ a ∗ (Kp − 500) ≥ |c ∗ a ∗Ki − d|

Now we eliminate the existential variables from For-
mula φ4. We replace φ5 in Formula φ4 by ψ5, and then
eliminate a, c, d using real quantifier elimination tools. We
get the following Formula ψ4 as the answer.

ψ4 := Kp ≥ 500 ∧ Kp ≥ Ki ∧ Kp +Ki ≥ 500

Thus, our solution for the absolute a.e.r.s problem works
for any PI controller that satisfies this condition. Note that
our concrete choice Kp = 500 and Ki = 10, that we had
used to obtain results of the previous section, satisfies this
condition.

Theorem 2: Suppose Kp,Ki satisfy Formula ψ4, and sup-
pose a > 0, b = +∞, a1 = −500 ∗ a and b1 = 500 ∗ a in
Equation 4. Then, the feedback control system defined by
Equation 1, Equation 2, Equation 3, and Equation 4 always
eventually reaches a state where err2 ≤ 1.

It is folklore in control theory that PI controllers can
stabilize “almost any plant”. The above result is one pos-
sible formulation of this fact, which we have derived using
advanced quantifier elimination techniques.

III. EXPERIMENTS

We present simulation plots in this section to illustrate the
results above.

First consider a PI controller that has fixed parameters,
namely, Kp = 500 and Ki = 10. We consider three different
plant models. The first plant model switches between two
different dynamics every 0.1 time units. We only give the
value of the parameters α and β of the plant in Equation 4
here. Between time t = 0 to t = 2.5 units, the plant switches
between the following modes.

Mode1 : α = 10−5, β = 5 ∗ 10−3

Mode2 : α = 5 ∗ 10−3, β = −2.5

We are assuming dα/dt = dβ/dt = 0 inside each mode.
Between time t = 2.5 to t = 5 units, the plant switches
between the following modes.

Mode3 : α = 10−5, β = −5 ∗ 10−3

Mode4 : α = 5 ∗ 10−3, β = 2.5

Note that the plant parameters satisfy the condition ψ0, and
hence Theorem 1 tells us that the error will always eventually

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

E
rr

o
r,

 I
n
tE

rr

err

interr

−1

+1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

2

Time

E
rr

o
r,

 I
n
tE

rr

err

interr

−1

+1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

E
rr

o
r,

 I
n
tE

rr

err

interr

−1

+1

(a) (b) (c)
Fig. 2. Simulation of a closed loop control system where the plant is a switched system whose dynamics change every 0.1 time units.

approach the range [−1, 1] for this case. Figure 2(a) presents
a simulation run for this system when we start with err = 2
and interr = −1.

The second plant behaves like the first plant for the first 2.5
time units, and thereafter it switches between the following
two modes after every 0.1 time units.

Mode5 : α = 10−5, β = −5 ∗ 10−3

Mode6 : α = 5 ∗ 10−3, β = 5 ∗ 10−3

A simulation of the same PI controller, when composed with
this plant, is shown in Figure 2(b). Initially, err = 2 and
interr = 0. Note again that the error err always eventually
reaches the range [−1, 1].

The third plant switches between the following two modes
every 0.1 time units.

Mode7 : α = 10−5, β = 5 ∗ 10−3

Mode8 : α = 5 ∗ 10−3 ∗ i, β = −2.5 ∗ i ∗ (−1)floor(i/2)

where i is a natural number that increments by one every
0.1 time units. A simulation of the behavior of the same PI
controller with this plant is shown in Figure 2(c).

The second set of simulation plots consider the case when
the PI controller parameters are not fixed, but they vary
with time. Specifically, Kp is still fixed to 500, but Ki is
set to 100 ∗ t, where t is the time. Since t ∈ [0, 5] in our
simulation, we always satisfy the condition that Ki ≤ Kp.
We use the same three plant models. Simulations with the
varying parameter PI controller are shown in Figure 3. Note
that the error err overshoots the [−1, 1] range. But this is
not an inconsistency for two reasons: first, overshoots are
allowed in the definition of always eventually region stability,
as long as the systems always returns to the desired region.
Hence, overshooting is not a violation of always eventually
region stability. Second, Theorem 2 says that any fixed PI
controller can guarantee that error eventually gets inside the
[−1, 1] range, but no claim is made when dynamically using
different PI controllers (from the set of controllers that satisfy
constraint ψ4). In particular, for a fixed controller, Theorem 2
says that there is a common Lyapunov function that works
for all plants in the specified set of plants, but that Lyapunov
function itself depends on Kp,Ki, and hence it changes as
these parameters change.

IV. QUANTIFIER ELIMINATION TOOLS

Quantifier elimination refers to the problem of finding
a quantifier-free formula that is equivalent to a quantified
formula. For example, ∃x : y = x2 is equivalent to the
quantifier-free formula y ≥ 0 (in the theory of reals). In the
theory of reals, for any given quantified formula, a quantifier-
free equivalent formula always exists. In fact, it can even be
computed algorithmically.

There are tools (some are freely available) that per-
form quantifier elimination in the theory of reals, such as
qepcad [9], [10], [3], [11], [6], and the computer algebra
systems redlog [14] and Mathematica. However, quantifier
elimination is a computationally hard problem: the time
complexity of real quantifier elimination is (both lower and
upper) bounded by a double exponential function in the
length of the input formula [38], [13]. As a result, when
faced with problems that contains large number of variables
(about 10) with large (about 3) degrees, quantifier elimination
tools can fail to produce a result.

In our experiments, we used a combination approach as
described in a recent paper [28]. Our approach can be briefly
described as follows: (1) First, we use the virtual substitution
method of redlog to eliminate quantified variables. Virtual
substitution method [38], [21], [39] can eliminate variables
whose degrees are bounded by 2, and hence it can fail to
eliminate some variables. However, virtual substitution is an
efficient method that scales to large formulas. (2) The output
of virtual substitution is a large formula that is given to a
simplifier called slfq [5] that simplifies the formula using a
divide-and-conquer strategy. (3) The quantified variables that
virtual substitution failed to eliminate are then eliminated
from the simplified formula using a complete quantifier
elimination procedure qepcad.

In all our quantifier elimination runs, the time taken by
virtual substitution was negligible. In the first quantifier
elimination exercise where Formula ψ1 was generated, the
simplifier slfq took 61.1 seconds of system time and made
8669 calls to qepcad. The step of eliminating c, d from
ψ1 was performed using a single call to qepcad, which
took 100 milliseconds of system time. In the next quan-
tifier elimination exercise where we generated ψ5, virtual
substitution took negligible (at most 1 minute of real time)
time, whereas slfq needed 205.87 seconds of system time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

2

Time

E
rr

o
r,

 I
n
tE

rr

err

interr

−1

+1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

2

Time

E
rr

o
r,

 I
n
tE

rr

err

interr

−1

+1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

E
rr

o
r,

 I
n
tE

rr

err

interr

−1

+1

(a) (b) (c)
Fig. 3. Simulation of a closed loop control system where the plant is a switched system whose dynamics change every 0.1 time units and the PI controller
also dynamically changes its parameters.

and made 7779 calls to qepcad. Finally, the quantifier
elimination problem for generating ψ4 was performed by
a single call to qepcad and it again took negligible time.
(All computations described here have been carried out on
Intel Xeon E5630 2.53GHz single-core processor (x86 64
arch) with 4G RAM running Ubuntu Linux 2.6.32-26.) The
scripts containing quantifier elimination problems generated
in the experiments are publicly available [32].

V. RELATED WORK

Our results are analogous to the results on absolute stabil-
ity and the Lur’e problem [37], [22]. In fact, in retrospect,
now that we know the result of Theorem 1 and Theorem 2,
we can see if we can prove global (exponential) stability of
the feedback system using the known results. The known
results are not applicable if β 6= 0. Hence, let us fix β = 0.

To compare, we first use our technique to analyze the case
when β = 0. We applied our method to find the condition
on a such that the feedback system with b = ∞ is always
eventually region stable with respect to the region err = 0.
Using a template for a general quadratic Lyapunov function,
and for the case when Kp = 500,Ki = 10, our tools
produced a ≥ 1/25000.

Now, let us use the passivity theorem. We can express our
feedback system in the form required for passivity theorem
as follows:

d~x

dt
= A~x+B~u

y = C~x+D~u

u = −Φ(y)

In our case, we have ~x is a 2-d vector of err and interr,
and

A =

[
−a ∗Kp −a ∗Ki

1 0

]
B =

[
1
0

]
C = [Kp Ki] D = 0

The function Φ is a nonlinear function belonging to the sector
[0,∞). Note that the lower bound a was moved into the A
matrix. (This is an equivalent way of capturing our condition
in Equation 4 where b =∞.)

Now, since a > 0, we have that A is Hurwitz, (A,B) is
controllable, and (C,A) is observable (if Ki 6= 0). We can

apply the passivity theorem (circle criterion) and conclude
that the feedback system is globally exponentially stable if
the transfer matrix H(s) = C(sI − A)−1B + D satisfies
the condition infω∈R Re(H(jω)) > 0. However, this latter
condition is false in general, but it holds when a∗K2

p ≥ Ki,
which evaluates to a ≥ 1/25000 for the case when Kp =
500,Ki = 10. Thus, we get the same result using passivity
theorem as we did using our quantifier elimination procedure.
However, our technique is an algorithmic procedure – it can
be applied to any system – and it can handle systems on
which passivity theorem may not be applicable (for example,
when β 6= 0 or A is not Hurwitz). Also note that our results
guarante a.e.r.s stability and not global exponential stability.
For instance, even when 0 < a < 1/25000, we can prove
a.e.r.s stability, whereas passivity theorem does not give any
useful information when a < 1/25000.

We now briefly mention other related work in the lit-
erature. Quantifier elimination has been applied to solve
nonlinear control system design [18] before. However, most
of this early work focused only on continuous dynamical
systems (and not switched systems), and moreover, only on
simple properties. Properties like safety and stability were
not considered – partly because they cannot be captured as
semi-algebraic sets in a sound and complete way. We give
up completeness and restrict our search for certificates to
only certain templates, which helps us reduce the analysis
problem to a first order formula over reals.

The classical way of proving stability by finding Lyapunov
functions is an instance of certificate-based verification. In
this classical approach, the search for Lyapunov function of
a particular form is reduced to solving of an ∃∀φ formula,
where φ is an atomic fact. Numerical techniques in the form
of semidefinite programming exist for solving such sum-of-
squares problems [23], [4]. These techniques can be extended
to also handle the case when φ contains Boolean connectives,
but not without losing significant efficiency. The work on
barrier certificates [25] moves this overall approach from
stability to safety. Apart from stability and safety, there is
also work on solving other (region-of-attraction) problems
using sum-of-squares programming [36]

There is plenty of work on certificate-based verification of
hybrid systems [30], [27], [34], [16], but none of it has used

real quantifier elimination and instead relied on approximate
methods to eliminate quantifiers. In a recent paper [29], we
used qepcad to solve ∃∀ formulas arising from certificate-
based synthesis.

Recently, Anai [2] used a combination of numerical meth-
ods (sum-of-squares) and symbolic quantifier elimination
methods to solve problems arising in control, and such an
integration is left for future work here.

VI. CONCLUSIONS

We defined the notion of always eventually region stability
and formulated the absolute always eventually region sta-
bility problem. We then used the certificate-based approach
and reduced the absolute a.e.r.s problem to a first-order
(quantified) formulas over the reals. We then used real quan-
tifier elimination methods to eliminate quantifiers from the
formula and get a solution for the absolute a.e.r.s problem.
An important observation we make here is that the study
of absolute stability and absolute always eventually region
stability is important for analyzing systems compositionally.

Several avenues exist for future work. While we have
framed and solved the absolute a.e.r.s problem for a one-
dimensional target region, we believe the results generalize
to higher dimensions and this is left for future work. Our
result also suggests that it can be used to create abstractions
of open systems and this needs to be explored further too.

REFERENCES

[1] R. Alur, T. Dang, and F. Ivancic. Reachability analysis of hybrid
systems via predicate abstraction. In HSCC, volume 2289 of LNCS.
Springer, 2002.

[2] H. Anai. A symbolic-numeric approach to nonlinear dynamical system
analysis, 2010. SIAM/MSRI workshop on hybrid method. for symb.-
numeric comp.

[3] D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic
decomposition I: The basic algorithm. SIAM Journal on Computing,
13(4):865–877, Nov. 1984.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix
inequalities in system and control theory. SIAM, 1994. Volume 15
of Studies in Applied Mathematics.

[5] C. Brown. slfq: Simplifying large formulas with Qepcad, 2009. www.
usna.edu/Users/cs/qepcad/SLFQ/Home.html.

[6] C. W. Brown. QEPCAD B: a program for computing with semi-
algebraic sets using CADs. ACM SIGSAM Bulletin, 37(4):97–108,
2003.

[7] A. Chutinan and B. H. Krogh. Computing polyhedral approximations
to flow pipes for dynamic systems. In 37th IEEE Conference on
Decision and Control, 1998.

[8] E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, O. Stursberg, and
M. Theobald. Verification of hybrid systems based on counterexample-
guided abstraction refinement. In 9th Intl. TACAS, volume 2619 of
LNCS, pages 192–207. Springer, 2003.

[9] G. E. Collins. The SAC-1 polynomial system. Technical Report 115,
Computer Science Department, University of Wisconsin, Madison,
Wisconsin, 1968.

[10] G. E. Collins. Quantifier elimination for real closed fields by cylin-
drical algebraic decomposition – preliminary report. ACM SIGSAM
Bullitin, 8(3):80–90, Aug. 1974.

[11] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition
for quantifier elimination. J. Symbolic Computation, 12(3):299–328,
Sept. 1991.

[12] T. Dang and O. Maler. Reachability analysis via face lifting. In HSCC,
volume 1386 of LNCS, pages 96–109. Springer, 1998.

[13] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly
exponential. J. of Symbolic Computation, 5(1–2):29–35, Feb.–Apr.
1988.

[14] A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer
logic. ACM SIGSAM Bulletin, 31(2):2–9, June 1997.

[15] G. Frehse. PHAVer: Algorithmic verification of hybrid systems past
hytech. In HSCC, volume 3414 of LNCS, pages 258–273. Springer,
2005.

[16] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of
hybrid systems. In Proc. 20th CAV, volume 5123 of LNCS, pages
190–203. Springer, 2008.

[17] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model
checker for hybrid systems. Software Tools for Technology Transfer,
1:110–122, 1997.

[18] M. Jirstrand. Nonlinear control system design by quantifier elimina-
tion. J. Symb. Comput., 24(2):137–152, 1997.

[19] A. B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for
reachability analysis. Dynamics of Continuous, Discrete and Impulsive
Systems Series B: Applications and Algorithms, 9:347–367, 2002.

[20] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability
computations for families of linear vector fields. J. Symbolic Compu-
tation, 32(3):231–253, 2001.

[21] R. Loos and V. Weispfenning. Applying linear quantifier elimination.
The Computer Journal, 36(5):450–462, 1993.

[22] K. S. Narendra and J. H. Taylor. Frequency domain criteria for
absolute stability. Academic Press, New York, 1973.

[23] P. A. Parrilo. SOS methods for semi-algebraic games and optimization.
In HSCC 2005, volume 3414 of LNCS, page 54. Springer, 2005.

[24] A. Platzer. Differential dynamic logic for hybrid systems. J. Autom.
Reasoning, 41(2):143–189, 2008.

[25] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using
barrier certificates. In Proc. 7th HSCC, volume 2993 of LNCS, pages
477–492. Springer, 2004.

[26] S. Prajna, A. Papachristodoulou, and P. A. Parrilo. SOSTOOLS:
Sum of Square Optimization Toolbox, 2002. http://www.cds.
caltech.edu/sostools.

[27] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing invariants
for hybrid systems. In Hybrid Systems: Computation and Control,
HSCC 2004, volume 2993 of LNCS, pages 539–554. Springer, 2004.

[28] T. Sturm and A. Tiwari. Verification and synthesis using real quantifier
elimination, 2011. Submitted.

[29] A. Taly and A. Tiwari. Switching logic synthesis for reachability. In
Intl. Conf. on Embedded Software, EMSOFT, 2010.

[30] A. Tiwari. Approximate reachability for linear systems. In Proc. 6th
HSCC, volume 2623 of LNCS, pages 514–525. Springer, 2003.

[31] A. Tiwari. Generating box invariants. In Proc. Hybrid Systems:
Computation and Control, LNCS 4981, pages 658–661. Springer,
2008.

[32] A. Tiwari. Certificate-based verification: Tools and benchmarks, 2011.
http://www.csl.sri.com/˜tiwari/existsforall/.

[33] A. Tiwari and G. Khanna. Series of abstractions for hybrid automata.
In HSCC, volume 2289 of LNCS, pages 465–478. Springer, 2002.

[34] A. Tiwari and G. Khanna. Nonlinear Systems: Approximating reach
sets. In HSCC 2004, volume 2993 of LNCS, pages 600–614. Springer,
2004.

[35] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi. Computational
techniques for the verification of hybrid systems. Proc. of the IEEE,
91(7), 2003.

[36] U. Topku, A. Packard, P. Seiler, and T. J. Wheeler. Stability region
analysis using simulation and sum-of-squares programming. In Proc.
American Control Conference, 2007.

[37] M. Vidyasagar. Nonlinear systems analysis. SIAM, 2 edition, 1993.
[38] V. Weispfenning. The complexity of linear problems in fields. J. of

Symbolic Computation, 5(1&2):3–27, 1988.
[39] V. Weispfenning. Quantifier elimination for real algebra—the

quadratic case and beyond. Applicable Algebra in Engineering
Communication and Computing, 8(2):85–101, Feb. 1997.

