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Abstract. HybridSal is a tool for enabling verification of hybrid sys-
tems using infinite bounded model checking and k-induction. The core
component of the tool is an abstraction engine that automatically creates
a discrete, but infinite, state transition system abstraction of the contin-
uous dynamics in the system. In this paper, we describe HybridSal’s new
capability to create time-aware relational abstractions, which gives users
control over the precision of the abstraction. We also describe a novel
approach for abstracting nonlinear expressions that allows us to create
time-aware relational abstractions that are more precise than those de-
scribed previously. We show that the new approach enables automatic
verification of systems that could not be verified previously.

1 Introduction

Hybrid automata is a modeling formalism in which discrete transitions and con-
tinuous evolution can be intermixed to describe fairly complex cyber-physical
systems. HybridSal [15] is a tool for performing verification of hybrid automata
models [8,11,9,3,2,6,14,16,5]. It is a tool built over the SAL tool [7] that can be
used to model and verify discrete (finite or infinite) state transition systems. The
core component of HybridSal is an abstraction engine that takes a hybrid model
and outputs a discrete (SAL) model that is a sound abstraction of the hybrid
model [13]. The abstract SAL model can be analyzed using the usual SAL model
checking tools (such as the infinite bounded model checker or the k-induction
prover).

In this paper, we revisit the relational abstraction technique [13] and its
improvement to time-aware relational abstraction [10], which are both available
in the current version of HybridSal [15]. We identify a class of problems for which
these techniques yield very coarse abstractions, and present an approach to fix
this shortcoming. The approach is based on creating sound approximations of
nonlinear functions using sound approximations of the natural logarithm (ln)
function. We present examples that can be verified using the new approach that
could not be verified previously by HybridSal.
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2 Relational Abstraction

The HybridSal abstraction engine constructs a so-called relational abstraction
of the system. A relational abstraction does not abstract the state space of the
system, but only over-approximates the transition relation [13]. Concretely, the
relational abstraction of a transition system (S,→) (with state space S and
transition relation →) is another transition system (S,→a) such that → ⊆→a.

The semantics of a hybrid system is given as a state transition system (S,→d

∪ →c), where →d are transitions that capture the “discrete” behavior of the
system, and →c are transitions that capture the “continuous” behavior. The
HybridSal tool constructs relational abstraction of hybrid systems by abstracting
only the relation →c; that is, the abstract system is (S,→d ∪ →a

c ). We next
briefly describe the relations →c and →a

c .
The continuous behavior of a hybrid system is typically specified using ordi-

nary differential equations. Consider a system of differential equations, dx/dt =
f(x), whose dynamics are constrained to remain within invariant Inv. The con-
crete semantics of this continuous behavior is defined by the relation →c:

x1 →c x2 if ∃F : ∃(t ≥ 0) : x1 = F (0),x2 = F (t), dF/dt = f(F (t)),

∀(0 ≤ t′ ≤ t) : F (t′) ∈ Inv (1)

Here, the function F is a solution of the differential equations [1].
It is extremely difficult to reason with the relation in Equation 1. Relational

abstraction overcomes this problem by constructing an over-approximation of
this relation that is much easier to analyze. Henceforth, let us assume that
continuous dynamics are specified using linear ordinary differential equations;
for simplicity, say dx/dt = Ax, where A is an n× n matrix.

2.1 Time-Oblivious Relational Abstraction

A relational abstraction that does not mention the time variable, t, explicitly is
called a time-oblivious relational abstraction. By default, HybridSal constructs
time-oblivious abstractions [15]. If cT is a left-eigenvector of A corresponding to
eigenvalue λ, then it is easily proved that if x→c x

′, then

cTx′ = cTxeλ(t
′−t) (2)

When λ > 0, we can over-approximate the relationship between x and x′ in the
form of the following time-oblivious abstraction:

(cTx′ = cTx = 0) ∨ (cTx′ ≥ cTx > 0) ∨ (cTx′ ≤ cTx < 0) (3)

Note there is no mention of the time elapsed (t′−t) in the above expression. Fur-
thermore, all expressions above are linear. Each left eigenvector of A correspond-
ing to a real eigenvalue will generate one constraint of the form in Equation 3.
If the eigenvalue λ has a nonzero imaginary part, we can still get a piecewise
linear time-oblivious relational abstraction on the real and imaginary parts of
the corresponding eigenvector [15].
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There are two shortcomings in the time-oblivious abstraction computed above.
First, it is too coarse. It loses all time-related information. For example, if we
have a 2-d system dx/dt = −x, dy/dt = −y, the time-oblivious abstraction for-
gets that the (exponential) decay rates of x and y are the same. Second, if matrix
A is defective, that is, it has fewer eigenvectors corresponding to eigenvalue λ
than the algebraic multiplicity of λ, then we do not even know how to construct
a reasonably good time-oblivious abstraction.

As an example, consider the 2-d system dx/dt = x+y, dy/dt = y. The corre-
sponding matrix A = [1, 1; 0, 1] is defective – it has eigenvalue 1 with multiplicity
2, but there is only one associated left eigenvector [0, 1]. The solution of the ODE
is given by the equations:

y(t) = y(0)et, x(t) = x(0)et + y(0)tet (4)

The default time-oblivious relational abstraction constructed by HybridSal would
just have inequalities (as in Equation 3) for y(t), but x(t) would be uncon-
strained. This is because HybridSal lacked a general technique for handling de-
fective A matrices.

2.2 Time-Aware Relational Abstraction

The first shortcoming of the time-oblivious abstraction computed by Hybrid-
Sal was recently recognized and it resulted in the introduction of time-aware
relational abstractions [10].

A time-aware relational abstraction relates the change in the value of an
expression to the time elapsed. It can be more precise than a time-oblivious
abstraction. Consider the exponentially increasing/decaying expression in Equa-
tion 2 constructed from the left eigenvector cT corresponding to a real eigenvalue
λ. Taking the natural logarithm on both sides of Equation 2, we get

ln(cTx′) = ln(cTx) + λ(t′ − t) (5)

The expressions cTx′, cTx, and λ(t′ − t) (for a fixed value of λ) are linear in
the state variables x and the time variable t (and their next values). So, we
just need a piecewise-affine (lower and upper) approximation of the natural
logarithm function ln to construct a time-aware relational abstraction. Such an
approximation exists and is shown in Figure 1: intuitively, the upper bound lnub

is defined by first-order Taylor approximations of ln at points ei+1 − ei [4].
Using the piecewise-linear approximation functions lnlb and lnub defined in

Figure 1, we abstract Equation 5 using the following linear arithmetic formula:

lnlb(c
Tx′) ≤ lnub(c

Tx) + λ(t′ − t) ∧ lnub(c
Tx′) ≥ lnlb(c

Tx) + λ(t′ − t) (6)

Since the number of intervals that define the piecewise linear approximation
of the ln function is unbounded (Figure 1), HybridSal creates an approxima-
tion that uses only finitely many intervals: (−∞, e−n], [em,+∞), and [ei, ei+1],
i = −n, . . . ,−1, 0, 1, . . . ,m − 1. When creating time-aware relational abstrac-
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ln(x)
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The ln(x) function in Figure 1 is approxi-
mated by dividing the x axis into the (in-
finitely many) intervals [ei, ei+1], i ∈ Z.
In the interval [ei, ei+1], a lower-bound,
lnlb(x), for ln(x) is given by the line join-
ing the two end-points; that is, lnlb(x) :=

(x−ei)

(ei+1−ei)
+ i; whereas an upper-bound is

given by lnub(x) := lnlb(x) + 0.12. The
tangents at the end-points also provide
an upper-bound; hence, a better upper-

bound, ln
(2)
ub (x), is min(lnub(x), (x−ei)

ei
+

i, (x−ei+1)

ei+1 + i+ 1).

Fig. 1. Piecewise-linear lower and upper approximation for natural logarithm function.

tions in HybridSal, the precision parameters n,m are chosen by the user (via a
commandline argument): picking a higher value increases precision.

Using lnlb and lnub, we know how to create time-aware abstractions for ex-
ponentially changing expressions (Equation 2), as well as, periodically changing

expressions (x(t) = x(0)
cos(θ0)

eλt cos(ωt+ θ0)); see [10].

2.3 Defective Matrices

If the dynamics are specified by an A matrix that is not defective, then, for an n-
dimensional system, we can always find n linearly independent vectors, such that
for each vector c, the value of the linear expression cTx is either exponentially
changing or periodically changing. Hence, for such systems, we can get relatively
good linear, time-aware relational abstractions.

If A is defective, then we can still find n linearly independent vectors, but
now their dynamics can additionally contain terms that are “products” of expo-
nential/trigonometric function and tk, where t is the time variable and k is some
natural number. See the dynamics of x(t) in Equation 4 for an example.

The main observation we make in this paper is that we can abstract a product
of two terms by using the approximations for ln function described above. In
particular, the equation z = xyeu can be abstracted by the expression:

(z = 0↔ (x = 0 ∨ y = 0)) ∧ (z > 0↔ ((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0))) ∧
lnlb(|x|) + lnlb(|y|) + u ≤ lnub(|z|) ∧ lnub(|x|) + lnub(|y|) + u ≥ lnlb(|z|) (7)

Let φ(u, x, y, z) denote the above formula. The formula φ contains only linear
expressions, and hence we can use a linear theory solver to reason about it.

We can now use the abstraction φ to construct abstractions of linear systems
whose dynamics are specified by defective matrices. Concretely, we construct
a relational abstraction of the dynamics for x(t) given in Equation 4, namely
x′ = xet

′−t + y(t′ − t)et′−t, as follows:

x′ = z1 + z2 ∧ φ(t′ − t, x, 1, z1) ∧ φ(t′ − t, y, t′ − t, z2) (8)
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where z1, z2 are new variables. For an arbitrary A matrix, defective or not,
we can now compute time-aware relational abstractions by first transforming
A into Jordan normal form J ; say A = U−1JU . The value of each expression
cTx, where cT is a row of U , is a linear combination of terms of the form
tkeλt (or tk cos(bt)eat or tk sin(bt)eat). Thus, using φ, we can get piecewise linear
abstractions for each expression by straight-forwardly extending the ideas used
to construct the abstraction in Equation 8 (and combine the ideas with [10] for
periodic dynamics).

3 Experiments

Dynamics where the A matrix is defective are quite common. Some of the sim-
plest examples turn out to have defective matrices. For example, a linear motion
with constant velocity is described by [ẋ; v̇] = A[x; v] + b, where A = [0, 1; 0, 0]
is defective. Similarly, linear motion with constant acceleration also gives rise to
defective A matrices. Even real-world examples appear to more often have de-
fective A matrices than not. So, it was important for us to improve the quality
of abstraction HybridSal generates on these dynamics.

One good verification challenge benchmark is the adaptive cruise controller
from [12]. The controller sets the acceleration of the following car, af , as ȧf =
−3af−3(vf−vl)+gap−(vf+10), where vl, al denote the velocity and acceleration
of the leading car, vf , af are those of the following car, and gap is the distance
between the cars. We assume that the controller is engaged whenever gap ≥
5, 0 ≤ vl, vf ≤ 30 and gap − 0.1(v2f − v2l ) − 10 − (vf − vi) ≥ 0. We assume

that al is an input and is constrained to be within −5m/s2 and 2m/s2, and
the velocities vl, vf are always non-negative. The goal is to prove that after it is
engaged, the controller guarantees that gap ≥ 0 always.

The currently released version of HybridSal, which includes an option to cre-
ate time-aware relational abstraction, fails to verify the above example since it
fails to use the equation v′l − vl = al(t

′ − t) (because the A matrix is defec-
tive). However, if we add a constraint that abstracts this equation (using the φ
formula), then HybridSal can prove safety. Even though al can vary arbitrarily,
this equation still holds (for some al due to mean value theorem). Note that the
quadratic term in the initial set had to be approximated by linear terms in the
HybridSal model.

To further evaluate the precision of the proposed abstraction function, we
also created several simple examples of linear systems whose A matrices were
defective, but whose explicit solutions could be worked out by hand. For the
safety property, we had an upper-bound on the value of the variable whose
solution expression had the highest degree in the time variable t. Using knowledge
of the explicit solution, we created initial sets and unsafe regions. We report
the results in Table 1. The current version of HybridSal, of course, fails on all
these examples. The new approach presented in this paper allowed us to prove
conservative bounds in each case. In Table 1, Column truebnd. contains the true
bound (computed by hand using the analytical solution), Column proved/CE is
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name #vars λ alg. #evecs true New Approach (default and refined)
mult. bnd. proved/CE time proved/CE time

real j2 2 -1 2 1 2.2 2.8/2.7 0.5/0.5 2.6/2.5 1.7/2.3
real j3 3 -1 3 1 1.6 2.0/1.9 0.8/1.2 1.9/1.8 5.3/9.1
real j4 4 -1 4 1 3.8 4.6/4.5 2.1/4.5 4.3/4.2 41/50
real j5 5 -1 5 1 1.4 2.1/2.0 3.1/7.0 1.8/1.7 4.4/7.3
comp j4 4 -1±i 4 2 1.8 2.8/2.7 1.8/2.8 2.7/2.6 2.3/7.6
comp j6 6 -1±i 6 2 2.1 3.6/3.5 27/37 3.0/2.9 52/92

Table 1. Experimental results: All six examples have 1 jordan block in the A ma-
trix. For each example, Column #vars denotes the number of state variables, λ is the
eigenvalue(s), alg.mult. is the (sum of) algebraic multiplicity of the eigenvalue(s),
#evecs is the number of eigenvectors, truebnd. is the true upper bound (analytically
calculated) for the “top” variable, proved/CE is the bound proved by the tool followed
by the bound that generated a (spurious) counter-example, and time is the time (in
seconds) taken by Yices to prove/generate a counter-example. The last two columns
report the same results, but using a refined upper bound for ln function.

the bound that our approach was able to prove, followed by a bound that yielded
a (spurious) counter-example. Column time reports the time it took the SMT
solver (Yices) to prove the bound in Column proved/CE, followed by the time it
took Yices to find a counter-example for the second bound in Column proved/CE.

To further validate the claim that the sound approximations for ln are the

key, we used a slightly better (refined) upper-bound, ln
(2)
ub defined in Figure 1,

for ln function and re-ran the experiments, and in each case, the tool proved a
tighter safety property than before (last two columns in Table 1). As expected,
using the refined approximation caused Yices to take more time. The tool and
examples are all available from the HybridSal webpage [15].

We note that on examples that contain only non-defective matrices, there is
no overhead added by our new extension: the piecewise-linear approximation of
product terms is not triggered and the new approach becomes identical to the
old [10]. We also note that for matrices that have large eigenvalues, we may need
to create a more precise abstraction by choosing large values for the precision
parameters. Consequently, the cost of analysis (model checking) increases for
such examples. In future work, we plan to address this issue.

4 Conclusion

We presented an approach for improving the time-aware relational abstraction
that is currently computed by the HybridSal tool. In particular, we improved the
precision of the abstraction for linear systems whose A matrices are defective.
We showed that the new approach enables HybridSal to prove correctness of
systems that could not be proved correct using an approach that performed
coarse abstraction for defective A matrices. This extension is significant since
defective matrices occur frequently in models of real systems.
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8. G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems.
In Proc. 23rd Intl. Conf. on Computer Aided Verification, CAV, volume 6806 of
LNCS, pages 379–395. Springer, 2011.

9. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hy-
brid systems. Software Tools for Technology Transfer, 1:110–122, 1997. http:

//www-cad.eecs.berkeley.edu/~tah/HyTech/.
10. S. Mover, A. Cimatti, A. Tiwari, and S. Tonetta. Time-aware relational abstraction

for hybrid systems. In EMSOFT, 2013.
11. A. Platzer and J.-D. Quesel. KeYmaera: A hybrid theorem prover for hybrid

systems. In Proc. Intl. Joint Conf. on Automated Reasoning, IJCAR, volume 5195
of LNCS, pages 171–178. Springer, 2008.

12. A. Puri and P. Varaiya. Driving safely in smart cars. In Proceedings of the 1995
American Control Conference, 1995.

13. S. Sankaranarayanan and A. Tiwari. Relational abstractions for continuous and
hybrid systems. In Proc. CAV, volume 6806 of LNCS, pages 686–702, 2011.

14. B. I. Silva and B. H. Krogh. Formal verification of hybrid system using CheckMate:
A case study. In American Control Conference, 2000.

15. A. Tiwari. Hybridsal relational abstracter. In Proc. CAV, volume 7358 of LNCS,
2012. http://www.csl.sri.com/~tiwari/relational-abstraction/.

16. T. Wongpiromsarn, S. Mitra, R. M. Murray, and A. Lamperski. Verification of pe-
riodically controlled hybrid systems: Application to an autonomous vehicle. ACM
Tans. Embedded Computing Systems (ACM TECS), 11, 2012.

http://www-cad.eecs.berkeley.edu/~tah/HyTech/
http://www-cad.eecs.berkeley.edu/~tah/HyTech/
http://www.csl.sri.com/~tiwari/relational-abstraction/

	Time-Aware Abstractions in HybridSal
	Introduction
	Relational Abstraction
	Time-Oblivious Relational Abstraction
	Time-Aware Relational Abstraction
	Defective Matrices

	Experiments
	Conclusion


