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Abstract. We formally verify a direct model-reference adaptive control (MRAC) method
that is used to enable flight control in adverse conditions. We use the bounded verification
approach and verify the system by introducing templates for both the assumptions and
the guarantees, and using the tool QEPCAD to solve the resulting exists-forall formula. We
also present results from an analysis performed on indirect and hybrid adaptive flight
controllers.

Nomenclature

x = 3× 1 state vector consisting of roll, pitch and yaw rates
r = commanded value of x
~xm = desired value of x calculated using a reference model
~xe = error, or the difference between the desired and actual x
~intxe = integral of the error
L = weights of the Neural Network
β = fixed basis or kernel functions of the Neural Network
f = Difference between the dynamics of the undamaged and damaged aircraft
~uPI = proportional integral (PI) gain
~uad = adaptive gain generated using the Neural Network

I. Introduction

Adaptive control is receiving a significant amount of attention lately. In particular, the goal of the
“Integrated Resilient Aircraft Control” (IRAC) research project, which is part of the Aviation Safety Program
under the NASA Aeronautics Research Mission Directorate, is to advance the art in adaptive control to
enable flight control resiliency in adverse conditions. NASA has been conducting a flight test of a neural net
intelligent flight control system on board a modified F-15 test aircraft.

While adaptive control can provide increased robustness in the presence of faults/damage in the aircraft,
it can also potentially excite unmodeled dynamics and lead to instability and crash (X-15 crash in 1967).
Verification and validation of adaptive flight control systems is a major challenge. In this context, formal
verification can provide guarantees that are impossible to achieve using simulations and testing alone.

Formal verification techniques face several technical challenges when applied to adaptive flight control
systems. First, completely automated verification approaches are not scalable. Hence, automated tools
can only verify small designs, and even models with five variables are sometimes beyond the capabilities of
current tools. Second, existing automated verification techniques have very limited support for nonlinearity.
However, nonlinearity is a common feature of adaptive systems. Third, models of adaptive flight control
systems contain unknown parameters with unknown dynamics. Several existing verification systems are not
well-suited for handling unknown parameters. Finally, errors are also introduced when designed controllers
are implemented in software. Software verification is a challenging problem in itself.
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In this paper, we propose a new formal verification technique – namely, bounded verification. Bounded
verification is ideally suited for verification of continuous and hybrid dynamical systems, especially at the
design phase. Moreover, it potentially eliminates several of the drawbacks of the existing formal verification
approaches. Bounded verification has an added advantage. It explicitly produces “certificates” or “witnesses”
for any property that is verified. These “certificates” of proof can be used in two distinctly useful ways:
(1) Certificates can be used to independently check that the result of the formal verification tool
(2) Certificates can be used to help in the verification of the implementation of the verified controller.6

Alternatively, certificates can be used to synthesize monitors that can be used to perform runtime verification
of the control software. We describe a case study of applying bounded verification approach to formally
analyzing a direct model-reference adaptive flight control that is based on neural networks. This paper
presents details of the verification steps and the results obtained via the analysis. We also present results
from analyzing an indirect and a hybrid adaptive flight controller.

This paper makes the following contributions:

• Introduce bounded verification as a general formal verification approach; especially for continuous and
hybrid dynamical systems

• Present details of how bounded verification can be used to verify safety, reachability and bounded
stability

• Present a formal model of an adaptive flight control system and results of formally verifying it using
the bounded verification approach

• Propose the use of certificates generated by bounded verification to monitor software implementation
of adaptive controllers

• Present results from an analysis of the recursive least squares learning procedure used inside an indirect
and hybrid adaptive flight controller

This paper is organized as follows. In Section II, we introduce bounded verification. In Section III, we
present a neural network adaptive controller and present a formal model of it that is used for verification.
In Section IV, we present preliminary analysis results obtained using the bounded verification approach on
the formal model of the adaptive control system.

II. Bounded Verification

The verification problem is to determine if a given formal model of a system satisfies a given property.
Most of the prevailing verification approaches can be broadly classified into two classes:

• reachability-based methods

• abstraction-based methods

Reachability-based methods iteratively compute an over-approximation of the reachable set of states. A
crucial choice in these methods is the representation they use for sets of states – convex polytopes,3

hyper-rectangles,5 zonotopes,7,8 ellipsoids,13 and level sets.14 In contrast to reachability-based methods,
abstraction-based methods explicitly compute an abstraction of the hybrid system and then model check the
abstraction.1,4, 21 In this paper, we explore a third paradigm for verification of systems, especially continuous
and hybrid systems, called the constraint-based approach; see Figure 1.

In the constraint-based approach, the verification problem is reduced to a constraint solving problem
and then efficient constraint solving techniques – both symbolic and numerical – are used for solving the
constraints.10,16,18,20,22,23

A crucial observation that enables constraint-based approach is that verification is the same as searching
for a proof. What makes verification intractable is that, in general, the space of proofs is huge and it is
impractical to search over it. However, we can make the search tractable by bounding it. A bounded search
for proof of a property can be encoded as a constraint. Thus, constraint-based methods essentially perform
bounded verification.

Bounded verification is the dual of bounded model checking. Whereas bounded model checking searches
for a bounded counter example (for safety), bounded verification searches for a bounded proof (for safety).
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Figure 1. Overview of the technical approach: Formal verification techniques can be broadly classified into
two categories: reachability-based and abstraction-based. In this paper, we consider a new class of techniques
called constraint-based approaches. Bounded verification is an instance of this approach. Constraint-based
verification approaches reduce the verification problem into a constraint-solving problem. A side-effect is that
these approaches often produce a certificate for the verification performed. This certificate can be used to
verify a refined implementation or monitor the final implementation.

Property Verification Witness/Certificate

Stability Lyapunov function
Safety Inductive Invariant
Reachability Ranking function

Table 1. Certificates produced during verification of different properties.

In both cases, the bounded search is encoded in the form of a constraint and the constraint is solved using
modern constraint solvers, such as Satisfiability Modulo Theory (SMT) solvers.19

How to bound the search for proof of a property? The key observation used here is that proof of various
important properties, such as safety, reachability and stability, is based on finding the appropriate witness
or certificate; see Table 1. Safety can be proved by demonstrating the existence of an inductive invariant
(also known as a barrier certificate).16,20 Stability (and various variants of stability) can be proved by
demonstrating the existence of (different variants of) a Lyapunov function.

In the bounded verification approach, verification is performed by doing a bounded search for a proof of
the property – that is, a bounded search for the “right certificate”.. Since the universe of possible certificates
is often infinite, bounded verification achieves computability by limiting this search to certificates of a specific
form. More specifically, bounded verification only searches for certificates that are instances of some fixed
templates.

Continuous Dynamical Systems

Formal verification involves verifying a model of the system against a property. We use a continuous dynamical
system to model the system.

Definition 1 (Continuous Dynamical System) A continuous dynamical system CDS is a tuple (X, f)
where X is a finite set of variables interpreted over the reals R, X = RX is the set of all valuations of the
variables X, and f : X 7→ X is a vector field that specifies the continuous dynamics.

Note that RX is isomorphic to the n-dimensional real space Rn where n = |X| is the number of variables
in X. We assume that f is locally Lipschitz everywhere on the state space, which guarantees that the
solution of the initial value problem dX(t)

dt = f(X(t)), X(0) = ~x0, always exists and is unique and will be
denoted by F (~x0, t). Given a CDS CDS and a set Init ⊆ X of initial states, the meaning of a continuous
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(A1) : Init ⇒ V ≥ 0
(A2) : V > 0 ⇒ dV

dt < −ε
(A3) : V ≤ 0 ⇒ φ

Init ⇒ F(φ)

(B1) : ψ ∧ ¬φ ⇒ V > 0
(B2) : ψ ∧ ¬φ ⇒ dV

dt < −ε

G(ψ) ⇒ G(F(φ))

Figure 2. On the left, an inference rule for verifying that a continuous system CDS := (X, f) eventually reaches
φ starting from any state in Init. On the right, an inference rule for verifying that a continuous system
CDS := (X, f) always eventually reaches φ under the assumption that always ψ holds.

dynamical system is simply the collection of all possible trajectories starting from an initial state. Formally,
the semantics is the collection of all solutions F (~x0, t) of the initial value problem dX(t)

dt = f(X(t)), X(0) = ~x0,
where ~x0 ∈ Init.

Stability Properties for CDS

Having defined the modeling formalism, we now move to the formalism for describing the property. In this
paper, we are interested in proving stability-like properties of continuous dynamical systems; that is, starting
from some initial states, does the system eventually (or always eventually) reach some desired set of states.
We formally write such properties using temporal operators – eventually (F) and always (G).

Formally, a property is a set of states; in other words, we identify a property with the set of states in
which it holds. The operators eventually (F) and always (G) are applied to a property to give a new (and
a more complex temporal) property. Let φ denote some basic property; for example, φ could say that “the
value of the variable y is zero”. We use the notation F(φ) to denote the property that holds at all those
states starting from which the system can eventually reach a state in φ. We use the notation G(φ) to denote
the property that holds at all those states starting from which the system always within the set φ. Thus, if
CDS = (X, f) is a continuous dynamical systems and F denotes the trajectories of this CDS, and if φ ⊆ X is
a set of states, then F(φ) and G(φ) denote the following set of states:

F(φ) := {~x ∈ X | for some t ≥ 0 : F (~x, t) ∈ φ}
G(φ) := {~x ∈ X | for all t ≥ 0 : F (~x, t) ∈ φ}

For continuous systems, the following variants of the property that also considers “what happens in the
limit” are also useful.

Fcl(φ) := {~x ∈ X | Cl({F (~x, t) | t ≥ 0}) ∩ φ 6= ∅}
Gcl(φ) := {~x ∈ X | Cl({F (~x, t) | t ≥ 0}) ⊆ φ}

Here Cl denotes the (topological) closure operator. In words, Fcl(φ) denotes all states starting from which
CDS can eventually reach φ in either finite time or in the limit, and Gcl(φ) denotes all states starting from
which CDS always stays within φ both in any finite time and in the limit.

Apart from the temporal operators, F and G, we also use the usual Boolean connectives, such as impli-
cation ⇒ and conjunction ∧ to specify properties. Recall that we do not distinguish between a property
(specified using a formula) and a set of states: a formula denotes all those states where it evaluates to true.
Hence, logical implication ⇒ is the same as the subset relation ⊆ and logical conjunction ∧ is the same as
set intersection ∩. For example, if Init is a set of (initial) states, and φ is a set of desired target states, then
Init⇒ F(φ) means that all states in Init eventually reach a state in φ. The reader can find more examples
of properties that are stated using the temporal operators in Section IV.

Verification Approach

In the bounded verification approach, the verification task is reduced to a constraint solving task. This
reduction depends on using sufficient conditions (given in the form of inference rules) for the property of
interest.

Figure 2(left) presents an inference rule for verifying that all initial states eventually reach φ. The
inference rule should be read as follows: if we can find a (Lyapunov-like) function V : Rn 7→ R and a positive
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Figure 3. Simple and Adaptive Control System. Adaptive systems have an additional learning module that
can be used by the controller.

constant ε > 0 such that
(a) the value of V at any state in Init is non-negative, (Condition (A1)),
(b) the value of V decreases at a rate of atleast −ε whenever V > 0 (Condition (A2)), and
(c) at any state where V is non-positive, φ is true,
then we can conclude that every state in Init eventually reaches a state in φ. Note that the derivative of V
with respect to time, dV

dt , is called the Lie derivative, Lf (p), of p with respect to the vector field f . It can
be computed using the chain rule as

Lf (p) :=
∑
x∈X

∂p

∂x

dx

dt
:= ~∇p · f := (

∂p

∂x1
,
∂p

∂x2
, . . .) · (dx1

dt
,
dx2

dt
, . . .) (1)

Figure 2(right) presents an inference rule for verifying that a system always eventually reaches φ, that is,
G(F(φ)), under the assumption that the property ψ always holds. The proof for G(ψ) ⇒ G(F(φ)) is obtained
by finding a (Lyapunov-like) function V and a positive constant ε > 0 such that
(a) V is non-negative whenever φ is not true and ψ is true (Condition (B1)),
(b) V decreases (by rate atleast −ε) whenever φ is not true and ψ is true (Condition (B2)).
These two conditions guarantee that, if φ does not hold, V decreases until it becomes less-than 0, at which
point φ must necessarily hold.

The two inference rules given in Figure 2 for verifying Init ⇒ F(φ) and G(ψ) ⇒ G(F(φ)) properties
respectively, can be proved to be sound rules; that is, they provide sufficient checks for the inferred conclu-
sions. However, before we can use them, we have to find the witness function V and the constant ε. In the
bounded verification approach, we perform a bounded search for V . Specifically, we fix a template for V
and search only for those V ’s that match the template and that also validate the conditions in the inference
rule. Concrete application of this approach will be illustrated in Section IV.

Bounded verification has been used for safety verification by using templates for specifically searching
for inductive invariants in the work of several authors.12,16,18 More details on bounded verification, can be
found in the work of Gulwani et al.9 and Gulwani and Tiwari.10

III. Neural Net Direct Adaptive Control

A traditional control system consists of two components: a controller and a plant (see Figure 3). The
controller receives as input the desired target state. The goal of the controller is to move the plant to this
desired target state. It does so by sending a control signal to the plant. The controller can choose its control
signal by taking into account the feedback it receives from the plant.

In an adaptive control system, there is an additional learning module that performs online learning based
on the output of the plant and the control input generated by the controller. The controller can now also
use the information generated by the learning module to generate the next control signal (see Figure 3).

Adaptive control methods can be broadly classified as direct, indirect, or hybrid. Indirect methods
identify the unknown plant parameters and generate a control scheme using these parameter estimates. In
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contrast, direct methods directly adjust the control signal to account for plant uncertainties without explicitly
identifying the plant parameters. Neural networks, and recursive least squares respectively, have been used
to play the role of the learning module in direct, and indirect respectively, adaptive control methods. In
particular, Rysdyk and Calise17 described a neural net direct adaptive control method. This has subsequently
formed the basis for the intelligent flight control system in the NASA F-15 test aircraft.11

A. Direct Neural Net Adaptive Flight Control

In this section, we describe the model of a direct neural net adaptive flight control that was formally verified.
For further details on the model and its design principle, the reader is referred to the paper by Nguyen,
Krishnakumar and Boskovic15a.

The high-level architecture of a direct adaptive controller is shown in Figure 4. Let ~x be the state vector
consisting of the roll, pitch and yaw rates. As shown in Figure 4, the pilot (or a supervisory controller) gives
a command ~r, which is the desired target state. Using some known reference model, a trajectory to ~r is
calculated. Let us assume the reference model is a linear system specified with matrices Am and Bm. Thus,
we calculate the trajectory to the desired ~r as follows:

~̇xm = Am~xm +Bm~r (2)

where ~r is the target state (3×1 vector), and Am, Bm are known 3× 3 matrices. This yields two values: the
desired state for the current time (denoted by ~xm) and the desired derivates for the current time (denoted
by ~̇xm).

If ~x denotes the actual (current) state, then ~xe := ~xm − ~x is the error. Next, a standard proportional-
integral (PI) controller is used to ensure that position ~xm is reached, and hence a PI controller calculates
the desired rate of change, ~uPI :

~uPI = Kp~xe +Ki
~intxe (3)

where ~intxe is the integral of the error and Kp,Ki are constants.

~̇intxe = ~xm − ~x (4)

However, since we actually need to reach ~r, the final desired velocity ~̇xd is a sum of ~̇xm and the output
of the PI controller.

~̇xd = ~̇xm + ~uPI (5)

Using a known model of the (undamaged) aircraft, ~̇xd is inverted and the actual control input ~u is
computed. Let us assume that the known model of the undamaged aircraft is given by matrices A,B and
G. The dynamic inversion module uses these known dynamics (of the undamaged aircraft) to compute the
required ~u for the given ~̇xd,

~u = B−1(~̇xd −A~x−G~z) (6)

where the control vector ~u is a 3 × 1 vector consisting of the aileron, elevator, and rudder inputs. We are
assuming that the vector ~z – the trim state vector of the angle of attack, angle of sideslip, and engine throttle,
is fixed.

The dynamics of the actual aircraft can be described by

~̇x = A~x+B~u+G~z + f(~x, ~u, ~z) (7)

where f represents the unknown term modeling the damage and/or uncertainty. The value ~x is used to
calculate the error ~xe and it thus closes the loop in Figure 4.

The direct adaptive modification adds an additional loop, shown in red, to the above architecture (see
Figure 4). This additional loop goes through a neural net module. The neural net module takes as input
the current position, ~x, and the current control vector, ~u, and computes an adaptive gain term, ~uad. This

aThe Matlab scripts for the model were provided to us by Dr. Steven A. Jacklin (NASA Ames Research Center).
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Figure 4. Neural Net Direct Model-Reference Adaptive Control.

adaptive gain term is directly subtracted from ~̇xd, and thus, the old Equation 5 is replaced by the following
new equation:

~̇xd = ~̇xm + ~uPI − ~uad (8)

The rationale for introducing the new term ~uad is that this additional term will compensate for the
difference between the dynamics of the actual (possibly damaged) aircraft and the dynamics of the known
model of the (undamaged) aircraft. In this way, adaptive control can potentially help keep the system stable
even under adverse/damage conditions.

The idea behind analyzing an adaptive system is to represent the weight update equations of the neural
network using continuous differential equations. Since all the other components are modeled using differential
equations, the entire system can then be modeled as a continuous dynamical system. Specifically, the neural
network block takes the current state error ~xe and the current integral of the error ~intxe as input, updates
its weights and then outputs the adaptation term ~uad, which is computed as follows:

~uad = LTβ (9)

where L is a n× 3 matrix consisting of the weights in the neural network and β is a n× 1 vector of kernel
(or basis) functions. The notation LT denotes the transpose of the matrix L. Thus, ~uad is a weighted sum
of the kernel functions. The kernel functions can consist of linear functions – ~x, ~u; quadratic functions –
xixj for xi, xj ∈ ~x; and more complex nonlinear functions, such as trigonometric functions, applied to the
variables ~x, ~u.

The dynamics of the neural net weight update law is given by

L̇ = −Γβ( ~intx
T

e K
−1
i + (~xm − ~x)TK−1

p (I +K−1
i )) (10)

where Γ is a fixed constant.
Formally, we model the direct adaptive flight controller as a continuous dynamical system. The state

variables are

X := {~x, f, ~xm, ~intxe, ~xd, L, β, ~r}

and the dynamics of these state variables are given by Equations 2, 3, 4, 6, 7, 8, 9, and 10 above. We can
rewrite the dynamics, by eliminating definitions and using only the state variables X, as follows:

~̇x = A~x+BB−1(~̇xd −A~x−G~z) +G~z + f(~x, ~u, ~z)

~̇xm = Am~xm +Bm~r

~̇intxe = ~xm − ~x

~̇xd = Am~xm +Bm~r +Kp(~xm − ~x) +Ki
~intxe − LTβ

L̇ = −Γβ( ~intx
T

e K
−1
i + (~xm − ~x)TK−1

p (I +K−1
i ))

Note that we have not provided the dynamics of three state variables, namely f , β and ~r above. The
variables f and ~r are treated as inputs – that is, their dynamics are unknown – and the dynamics of the
variable β depends on the choice of the kernel function. Since we are not assuming any fixed set of kernel
functions, ~β and its dynamics are also unknown. The variable ~u has been eliminated by substitution. Note
also that all symbols other than the state variables that are used above represent known constants. We wish
to analyze the system for stability under suitable assumptions on ~β and ~f .
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Figure 5. Simulating a damaged aircraft that is controlled using a standard PI controller without adaptation.
A fixed wing damage scenario is assumed here.
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Figure 6. Simulating the model after including a direct NN model reference adaptive controller. A fixed wing
damage scenario is assumed here. The learning rate for the standard MRAC controller is Γ = 104.

IV. Analysis Results

Before we formally verify the controller design, we present a few simulation results. In Figure 5, we
present the simulation of the PI controller without any adaptation, but in the presence of fixed wing damage
scenarios. In Figure 6, we present the simulation of the same PI controller, but now enhanced with an
adaptation, and under the same wing damage scenario. The adaptation is using a direct model reference
neural network based adaptive controller, whose learning rate is Γ = 104. Qualitatively, it is clear from the
plots that adaptation helps in this particular damage scenario.

The goal of formal verification is to provide guarantees, not for a specific damage scenario, but across a
whole range of possible damage scenarios. This can be achieved using formal verification technology.

We are interested in proving that, for the model of the direct neural net adaptive flight controller, the
error ~xe := ~xm − ~x and the integral of this error, namely ~intxe, remain bounded. Since our property of
interest relates only to ~xe and ~intxe, we can eliminate some of the other variables by substitution and obtain
the following reduced model:

~̇xe = −Kp~xe −Ki
~intxe + LTβ − f

~̇intxe = ~xe

L̇ = −Γβ( ~intx
T

e K
−1
i + ~xT

e K
−1
p (I +K−1

i ))

β̇ = f1

ḟ = f2 (11)

where the new state variables are ~xe, ~intxe, L, β, f and f1, f2 are unknown parameters, whereas Γ,Kp,Ki

are known fixed parameters.
The matrices Kp and Ki are diagonal matrices. Specifically, Kp :=

√
2K and Ki := K2, where K :=

diag(3.5, 2.5, 2). Consequently, the three dimensions can be separately analyzed and the results can be
subsequently put together.
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We first verify that always eventually the error goes below some fixed bound. We prove this under the
assumption that the neural net approximates, upto some bound, the change in dynamics caused by aircraft
damage. Thus, our goal is to prove the following property:

G((LTβ − f)2 < a) ⇒ G(F(~x2
e < c)) (12)

for some constants a and c. We use the inference rule in Figure 2(right) for this purpose.
To apply the inference rule in Figure 2(right), we use templates for the assumption ψ and for the witness

V . These templates are shown below.

Assumption ψ (LTβ − f) is bounded Template: ||LTβ − f ||2 ≤ a

Guarantee φ ||xe|| is bounded Template: ||xe||2 ≤ c

Witness V A Lyapunov function Template: ||xe||2 + b||intxe||2

Note that the templates introduce three new unknown variables: a, b and c. With the above choices of ψ,
φ and V , the rule in Figure 2(right) reduces the verification of Property 12 to provability of the following
formula:

∃a, b, c, ε > 0 : ∀xe, intxe, L, β, f :
(||LTβ − f ||2 ≤ a ∧ ||xe||2 > c ⇒ ||xe||2 + b||intxe||2 ≥ 0) ∧

(||LTβ − f ||2 ≤ a ∧ ||xe||2 > c ⇒ d

dt
(||xe||2 + b||intxe||2) < −ε)

which says that there exist (∃) values for a, b, c, ε such that for any (∀) value of xe, intxe, L, β, f , the two
implications hold. The two implications above correspond to the two conditions, (B1) and (B2), in Fig-
ure 2(right). Clearly, the first implication holds whenever b ≥ 0. Hence, we can replace the first implication
by the simpler constraint b ≥ 0. Thus, we are left with only the second implication. Recall that we deal
with the 3 dimensions separately, and hence the variables xe, intxe, f in the formula above are real-valued
variables (and not vectors) and LTβ is also real valued. We introduce a new variable for the expression
LTβ − f . The resulting ∃∀ formula is solved using the tool QEPCAD to obtain the following values for the
parameters a, b, c, ε:

b = 10, a = 1, c = 1, ε = 1

This completes the proof of the following property:

G((LTβ − f)2 ≤ 1) ⇒ G(F(x2
e ≤ 1)). (13)

In other words, we have proved that, assuming LTβ− f is bounded, the error xe eventually falls below some
bound – irrespective of the initial weights of the neural net L, the kernel functions of the neural net β, or
the type of damage f .

We next try to prove that the error xe always eventually drops below a constant factor of the neural net
approximation error – again irrespective of β, f and L. This property is formally written as:

G(F(||xe||2 ≤ c||LTβ − f ||2))

We again use the inference rule in Figure 2(right). Specifically, we use the following templates:

Guarantee φ ||xe||
||LT β−f || is bounded ||xe||2 ≤ c||LTβ − f ||2

Witness V Exists a Lyapunov function ||xe||2 + b||intxe||2

Note that we make no assumptions, and hence the assumption ψ is just true. Inference rule in Figure 2(right),
when applied using the templates above, generates the following ∃∀ formula:

∃b, c, ε > 0 : ∀xe, intxe, L, β, f :
(||xe||2 > c||LTβ − f ||2 ⇒ ||xe||2 + b||intxe||2 ≥ 0) ∧

(||xe||2 > c||LTβ − f ||2 ⇒ d

dt
(||xe||2 + b||intxe||2) < −ε)
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The above formula is found to be equivalent to false by QEPCAD. In other words, there is no choice of values
for b, c, ε that “works”. The reason is that the derivative of V can be arbitrarily close to 0 and there is no
nonzero value for ε that works. Hence, we weaken the property and try to prove that xe eventually, in the
limit, drops below a constant factor of the neural net approximation error. This property is formally written
as:

G(Fcl(||xe||2 ≤ c||LTβ − f ||2))

To prove this weaker property, we use a variant of the rule in Figure 2(right). Essentially, rather than
requiring that the derivative of V be less than some nonzero −ε, we now test if the derivative of V is less
than −ε ∗ (||we||2 − c||LTβ − f ||2). The values for b, c returned by QEPCAD are: b = 10, 25c > 1. This shows
that the following property holds of the model:

G(Fcl(x2
e ≤ 0.05(LTβ − f)2)).

We have thus proved two versions of the property related to showing that the error ~xe is eventually
bounded. The first version shows that the error is always eventually bounded assuming the neural network
closely approximates the change in the dynamics caused by damage (f). The second one shows that the
ratio of the error ~xe to the approximation error (LTβ − f) is always eventually bounded without requiring
any further assumptions.

In the third analysis, we also consider the weight update law of the neural network and prove a stability
property of the combined system and neural network. Recall the model of the system given in Equation 11.
The variable β represent the basis functions used in the neural network and we do not wish to assume the form
of these functions. Hence, the dynamics of β, specified by f1 in Equation 11, are unknown. Also unknown is
f2, which specifies the dynamics of the damage. Let us analyze the system under the assumption that f1, f2
are both zero, that is, β is an unknown, but fixed constant, and the damage f is unknown but fixed. Under
these assumptions, the system in Equation 11 becomes a parametric linear system – parameterized by the
value of β and f . We can, however, prove that for all choices of the parameters, the resulting linear system is
asymptotically stable. We do this as follows: we write the characteristic polynomial of the parametric linear
system, which is a degree 3 polynomial whose coefficients are polynomials in the parameter β. We then
prove two formulas using QEPCAD: the first formula states that, for all β, all real solutions of the characteristic
polynomial are negative and the second formula states that, for all β, the real part of all complex solutions
of the characteristic polynomial are negative. Both formulas are ∀ formulas. The second formula is obtained
by introducing variables a, b representing a complex a+ ιb solution of the characteristic polynomial.

The third analysis shows that the weights of the neural network remain bounded and hence it partly
proves the correctness of the neural network weight update laws. However, note that we have made two
assumptions: the first is that the damage term f is not changing and second is that the neural network basis
functions are not changing. While the former is a reasonable assumption, the latter is a strong assumption.
However, it remains a challenge to perform analysis under any weaker assumption on the dynamics of β.

Analyzing Indirect and Hybrid Adaptive Controllers

We briefly describe some preliminary analysis results from our effort on analyzing indirect and hybrid adap-
tive controllers. Unlike direct adaptive controllers, indirect methods do not directly change the value of the
control input, but instead actively learn the model of the damaged plant (aircraft). The learned model is
then used in the dynamic inversion module (see Figure 4) to compute the actual control input that is sent
to the aircraft. Hybrid adaptive controllers combine direct and indirect methods to better adapt to the
changing plant model.

A recursive least squares (RLS) algorithm is often used to actively learn the plant model. A critical step
in formally analyzing indirect and hybrid adaptive controllers is, therefore, establishing the correctness of
the RLS procedure. However, this is a tricky task since even formulating the formal statement of correctness
is challenging. Further, identifying the invariants of the RLS procedure is also a challenge.

We briefly describe the RLS procedure, and then describe its analysis. The RLS procedure estimates
some unknown parameters given some measurements. Specifically, it assumes that some measurements

{(~θ1, ε1), (~θ2, ε2), (~θ3, ε3), . . .}
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[phi, R] = RLS(phi, theta, R, epsilon)
err = epsilon - phi’ * theta;
tmp = 1 + theta’ * R * theta;
phi = phi + (R * theta * err’) / tmp;
A = (R * theta * theta’) / tmp;
R = (I - A) * R ;

return([phi, R]);

n = 20; N = 5; Phi = rand(N,1);
phi = zeros(N,1); R = 1e4*eye(N);
for i = 1:n
theta = 10 * rand(N, 1);
epsilon = theta’ * Phi;
theta(1,1) = theta(1,1) - epsilon/Phi(1,1);
[phi,R] = RLS(phi,theta,R,0);

end

Figure 7. The Basic RLS Procedure (in Matlab syntax) in the left. On the right, a counter example for
convergence of RLS in Matlab syntax.

are given, where ~θi is a vector representing the sensor readings of the state of the system (at some timepoint
i) and εi is the output of the system (at timepoint i). We assume that the output is a linear combination of
the state variables, that is, for all i,

εi := ~θ1
T ~φ

where ~φ is an unknown vector of parameters. The problem is to estimate ~φ from the available data, assuming
that the data may be noisy. The recursive-least-squares (RLS) procedure is an algorithm for solving this
problem.

The RLS procedure, described in Figure 7(left), works by maintaining two values: current best estimate
~φ and a square matrix R. As a new data point (~θ, ε) arrives, the procedure updates these two values based
on the observed data (as shown above). Initially, R is chosen to be equal to a diagonal matrix with very
large positive values on the diagonal and φ is chosen to be the zero vector.

We now state a critical correctness claim that we would like to make about the RLS procedure. It is
crucial for proving stability of the indirect (and hybrid) adaptive controllers that use the RLS procedure for
learning plant parameters. The claim can be stated as:
“If the inputs to the RLS procedure are a sequence of values {(~θi, εi) | i = 0, 1, . . .} such that εi = ~θT

i
~Φ for

some unknown, but fixed, ~Φ, and if the values ~θi are sufficiently distributed, then the estimate ~φ computed
by RLS converges to ~Φ.”
The key aspect in the above claim is the requirement that the values ~θi be sufficiently distributed. If ~θi’s are
chosen in some highly constrained scenarios, then the rate of convergence could become very slow or there
may not no convergence at all. Example 1 below provides such a scenario.

Example 1 (Counter Example for Convergence of RLS) Suppose ~Φ is the desired set of parameters
and ~φ0 = ~0 is our initial estimate. Suppose that all the inputs to the RLS procedures, ~θi’s, are perpendicular
to ~φ0−~Φ. Then we can prove that the RLS procedure will not converge. The code in Figure 7(right) generates
such a scenario: it first picks a random ~Φ, and then it generates all inputs ~θi such that ~θT

i
~Φ is zero. Running

the code shows that the value of ~φ does not converge to ~Φ. In fact, ~φ remains very close to its initial value,
as one would expect.

One can argue that (a) it is unlikely that the vectors ~θi will be orthogonal to ~Φ and (b) there will be
disturbance in the system and errors in the sensor readings so that even if the ideal vector ~θi is orthogonal
to ~Φ, the vector obtained via sensor readings will not be exactly orthogonal. However, both these arguments
are fallible. First, very often the vectors ~θi are orthogonal to ~Φ – in fact, this was the case in our model of
hybrid adaptive flight controller. Second, while disturbances indeed help in convergence, but convergence
can still be very slow. For example, let us modify the counter example generation code in Figure 7(right)
to introduce 0.1% fluctation in the ~θ values. Figure 8(left) shows the plot of the error in estimation (as a
percentage) against the number of iterations. Note the slow rate of convergence. Even after 10000 iterations,
there is still a 10% error in the estimate. (Without the 0.1% fluctation, there is always a 100% error in the
estimate for any number of iterations.)

One way to speed up convergence when the data points are relatively close to the worst case, is to scale
the data by multiplying by a large factor. We multiply ~θ, ε by a constant factor, MM , before calling the
RLS procedure. Figure 8(right) shows the estimation error plotted against the iteration number for four
different choices of MM , namely, 1, 2, 5, 10.
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Figure 8. Left: Rate of convergence of RLS when there is 0.1% random fluctuation in the values of ~θ picked
by the code in Figure 7(right). Right: The same plot, but now also including the plots when a scaling factor
of 2, 5 and 10 are used. There is a clear improvement in the rate of convergence of RLS as we scale up data
using a higher scaling factor.

As mentioned above, in our model for indirect and hybrid adaptive control, we found that the RLS
procedure was being used exactly in the scenario where the input data, ~θ’s, was (almost) orthogonal to the
parameters to be learnt ~Φ, and hence it was a bad case for the RLS procedure. Simulations of the indirect
and hybrid adaptive controllers showed a poor convergence rate. We performed additional simulations using
a higher scaling factor. The plots of the roll and yaw rates versus time for indirect control are shown in
Figure 9 and the same plots, for hybrid control are shown in Figure 10. As expected, the use of a higher
scaling factor improved convergence and performance. Note that we simulated a scenario whereby a portion
of the left wing is damaged in the aircraft and the pilot commands the aircraft to attain a target pitch; the
target is changed every 5 time units to show the effect of learning (adaptation). The same scenario was also
used in the plots shown in Figure 5 and Figure 6. Note also that the model of the damaged aircraft used for
simulations is a linear model – and hence the indirect adaptive controller by itself is sufficient to learn the
model of the damaged aircraft. Hence, the indirect controller performs better than the hybrid controller in
this case (as is also evident from the plots).

V. Conclusion

We presented a novel approach for verification of continuous and hybrid systems called bounded verifica-
tion. We presented preliminary results obtained from formally analyzing a model of direct neural net adaptive
flight control. The model was analyzed for bounded stability using the bounded verification approach. We
also analyzed indirect and hybrid adaptive controllers by studying the convergence of the recursive least
squares algorithm. While formal verification provides increased assurance in the safety of the system, it can
also potentially help by identifying ways to improve the system design or performance.

If a verification task is successfully completed using the bounded verification approach, then we addition-
ally obtain a witness, or certificate, for the proof of the property. This certificate can be used to statically
verify a software implementation,6 or monitor it at runtime.

There are several different avenues for future work. While, in theory, QEPCAD can decide the validity of
arbitrary first-order formulas (in particular, of ∃∀ formulas) over the reals, in practice it is unreliable. One
direction for future work involves developing scalable and robust tools for checking validity of ∃∀ formulas
over the reals. A different direction for future work consists of building and verifying more refined models
of adaptive control systems. Specifically, it will be interesting to model uncertainties in the model of the
(damaged) aircraft and concrete details of the kernel functions used in the neural net. Finally, another
potentially useful future work consists of developing heuristics – specific for the domain of adaptive flight
control – for automatically generating templates and efficiently solving the ∃∀ constraints.
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Figure 9. Indirect adaptive control: Roll (top) and yaw (bottom) rates plotted against time. The RLS
procedure used MM = 1 in the left plots and used MM = 105 in the right plots. We have used different scaling
on the y-axis in the bottom left and bottom right plots.
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