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Abstract: This paper investigates the concept of box invariance for classes of hybrid
and switched systems. After motivating and defining the notion, we present a
concise summary of results on its characterization for single-domain dynamical
systems. The notion is then extended to the case of hybrid and switched systems.
We provide sufficient conditions for a hybrid or switched system to be box
invariant. Models of many real systems, especially those drawn from biology,
have been found to be box invariant. This paper illustrates the concept using

a pharmacodynamic model of blood glucose metabolism.  Copyright © 2006 IFAC
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1. INTRODUCTION

The concept of box invariance has been re-
cently introduced for classes of dynamical sys-
tems (Abate and Tiwari, 2006). The main moti-
vation for this notion comes from biological case
studies and models that were investigated with
the following question: is the strict concept of
Lyapunov stability always descriptive and com-
putationally feasible in the biological realm, which
is often characterized by complex dynamics with
imprecisely known parameters? As a viable al-
ternative, would it not make sense to look for
bounded behavior in the closeness of an equilib-
rium? Intuitively, it is appealing to consider a no-
tion of stability defined “within certain limits”, or
“bounds”, rather than on ǫ-neighborhoods of equi-
libria. In other words, we may be interested in the
existence of regions around the equilibrium within
which a trajectory would indefinitely dwell once
it reaches them. We focus here on the simplest
possible shape for these regions–that of a box. We
have found that models of many natural systems
have box shaped regions as invariant sets. Box
invariance is also appealing from the automated
verification standpoint, since it is computationally
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tractable for a large class of systems and helps
in proving strong safety properties of systems.
The notion is related to other concepts in the
literature, see Abate and Tiwari (2006) for details.

In this paper, we first formally define the notion
of box invariance for continuous dynamical sys-
tems (Sec. 2). We then provide characterizations
for linear and affine dynamical systems and show
how to practically compute an actual box (Sec.
3). A detailed study of affine systems and full
proofs of claims are presented elsewhere (Abate
and Tiwari, 2006). The main focus of this ar-
ticle is on extending the notion to hybrid and
switched systems (Sec. 4). These systems provide
a powerful modeling tool, particularly for domains
such as biology. As an illustrative example, we
shall discuss a switched model for blood glucose
concentration in human brain (Sec. 5) and analyze
it using the concept of box invariance.

2. THE CONCEPT OF BOX

INVARIANCE

We consider general, autonomous and uncon-
trolled dynamical systems of the form ẋ =
f(x),x ∈ R

n. We assume basic continuity and
Lipschitz properties for the existence of a unique
solution of the vector field, given any possible ini-
tial condition. A rectangular box around a point
x0 can be specified using two diagonally oppo-
site points xlb and xub, where xlb < x0 < xub

(interpreted component-wise). Such a box has 2n
surfaces Sj,k(1 ≤ j ≤ n, k ∈ {l, u}), where
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Sj,k = {y : (xlb)i ≤ yi ≤ (xub)i for i 6= j,yj =
(xlb)j if k = l,yj = (xub)j if k = u}.
Definition 1. A dynamical system ẋ = f(x) is
said to be box invariant around an equilibrium
point x0 if there exists a finite rectangular box
around x0, specified by xlb and xub, such that for
any point y on any surface Sj,k(1 ≤ j ≤ n, k ∈
{l, u}) of this rectangular box, it is the case that
f(y)j ≤ 0 if k = u and f(y)j ≥ 0 if k = l. The
system will be said to be strictly box invariant if
the last inequalities hold strictly.

Remark 1. The concept of box invariance for a
dynamical system requires the existence of an
invariant set with a special (polyhedral) shape. In
the case of linear systems, we shall see that this
invariant set is also an ω-limit set (or a domain of

attraction).

Definition 2. A system ẋ = f(x) is said to be
symmetrical box invariant around the equilibrium
x0 if there exists a point u > x0 (interpreted
component-wise) such that the system is box
invariant with respect to the box defined by u

and (2x0 − u).

3. CHARACTERIZATION OF BOX

INVARIANCE.

3.1 Linear Systems.

Given a linear system and a box around its equi-
librium point, the problem of checking if the sys-
tem is box invariant with respect to the given box
can be solved by verifying the condition only at
the 2n vertices of the box (instead of all points on
all the faces of the box).

Proposition 1. A linear system ẋ = Ax,x ∈ R
n

is box invariant if there exist two points u ∈
(R+)n and l ∈ (R−)n such that for each point
c, with ci ∈ {ui, li},∀i, we have Ac ∼ 0, where
∼i is ≤ if ci = ui and ∼i is ≥ if ci = li.

Proposition 1 shows that box invariance of linear
systems can be checked by testing satisfiability of
2n linear inequality constraints (over 2n unknowns
given by l and u). In two steps, we will show that
these 2n constraints are subsumed by just n linear
inequality constraints (over n unknowns). First we
prove this fact for symmetric box invariance.

Theorem 1. An n-dimensional linear system ẋ =
Ax is symmetrical box invariant iff there exists
a positive vector c ∈ R

+n
such that Am

c ≤ 0,
where am

ii = aii < 0 and am
ij = |aij | for i 6= j.

This is equivalent to checking if the linear system
defined by modified matrix Am is symmetrical box
invariant.

In the second step, we show the surprising result
that the property of box invariance and that
of symmetrical box invariance are equivalent for
linear systems.

Theorem 2. A linear system ẋ = Ax, where
A ∈ R

n×n, is box invariant iff it is symmetrical
box invariant.

Putting together Theorem 1 and Theorem 2, we
conclude that to check if a linear system ẋ = Ax

is box invariant, we only need to test if the set of n
linear inequality constraints, succinctly written as
Am

c ≤ 0 (over the n unknowns c) has a nonzero
solution. This can be done in polynomial time. We
can also find a box by generating solutions for the
above linear constraint satisfaction problem. In
general, it is possible to associate with a dynam-
ical system, defined by system matrix A ∈ R

n×n,

a cone in the positive 2nth

-ant described by the set

C = {x ∈ R
+n

: Am
x ≤ 0}.

Any choice of a single point or a pair of distinct
points in C determine, respectively, a symmetric
and a non-symmetric box for the system described
by A. Box Invariance is a stronger notion than
stability for linear systems.

Theorem 3. If a linear dynamical system is box
invariant around its equilibrium, then it is stable.

Surprisingly, the well-known concept of P -matrices
in linear algebra provides a structural characteri-
zation for box invariant linear systems. A matrix
A is said to be a P-matrix if all of its principal
minors are positive.

Theorem 4. Let A be a n × n matrix such that
aii ≤ 0 and aij ≥ 0 for all i 6= j. Then, the
following statements are equivalent:

(1) The linear system ẋ = Ax is strictly sym-
metrical box invariant.

(2) −A is a P-matrix.
(3) For every i = 1, 2, . . . , n, the determinant of

the top left i× i submatrix of −A is positive.

Remark 2. Theorem 4 shows that box invariance
of general linear systems can also be tested by
checking if the modified matrix −Am is a P -
matrix. It is known that the problem of decid-
ing if a given matrix is a P -matrix is co-NP-
hard (Coxson, 1994; Coxson, 1999). Our case is
special though, since we know that only the di-
agonal entries in −Am are positive. As a result,
we can determine if −Am is a P -matrix using
a simple polynomial time algorithm; for example,
the Fourier-Motzkin elimination method can de-
termine satisfiability and generate the cone C.

Matrices with the shape of those in Theorem 4 (or,
equivalently, of Am in Theorem 1) have actually
been studied under the appellative of Metzler ma-
trices. There is a wealth of literature on Metzler
matrices that can be used to derive results equiv-
alent to those presented above for box invariance;
see Abate and Tiwari (2006) for details.

Remark 3. The concept of box invariance, which
is closely related to that of classical stability in
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the linear case, can also be studied via Lyapunov
arguments. In our particular instance, to prove
box invariance we find a Lyapunov functional
which is defined (at least) inside a certain boxed
region of the state space. To go from smooth
Lyapunov functions to one that is defined on a
box, we can intersect proper ellipsoidal functions
that have been adequately stretched to the limit
(Abate and Tiwari, 2006) or use vector norms
(Kiendl et al., 1992). A linear system ẋ = Ax

is box stable iff there exists a diagonal matrix
W ∈ (R+)n×n s.t. V (x) = ||Wx||∞ is a Lyapunov
function (cf. Kiendl et al. (1992)). The Lyapunov
arguments will help in the case of hybrid and
switched systems, as we shall see later.

3.2 Affine Systems.

Consider the affine system, ẋ = Ax+b. We relate
the box invariance of this system to the positivity
of its equilibrium point, x0 > 0. The assumption
of x0 being in the positive quadrant is justified
both from a technical standpoint and from our
applications.

Theorem 5. If the affine system ẋ = Ax + b is
s.t. A is Metzler and b > 0, then its equilibrium
point x0 > 0 iff the system is box invariant.

Remark 4. The assumptions of the previous the-
orem can be relaxed to having a non-negative
b ≥ 0, b 6= 0.

In modeling biochemical pathways, the state vari-
ables x represent concentration of species such as
proteins. When modeling the dynamics of such
species, the Metzler form arises naturally since
species decay proportionally to their concentra-
tion and are created proportionally to their pre-
cursor’s concentrations. The vector b > 0 rep-
resents the process of species creation (by tran-
scription and translation, for example). For sta-
ble systems, such models typically have positive
equilibrium point. By Theorem 5, all such models
will be box invariant. Thus, Theorem 5 explains,
in part, why many models proposed by biologists
tend to be box invariant. For more results on box
invariance of affine systems, the reader is referred
to Abate and Tiwari (2006).

4. BOX INVARIANCE FOR HYBRID

AND SWITCHED SYSTEMS.

In this Section we extend the notion of box in-
variance to the case of composition of different
dynamical systems. We first define hybrid and
switched systems and refer the reader to spe-
cialized literature for more details (Lygeros et

al., 2003; Ames et al., 2005).

Definition 3. A hybrid system is a tuple H =
(Q,E,D,G,R, F ), where

• Q = {1, ...,m} is a finite set of discrete states.

• E ⊂ Q × Q is a set of edges that defines a
source-target relation between the domains.

• D = {Di}i∈Q is a set of domains where Di is
a compact subset of R

n.
• G = {Ge}e∈E is a set of guards, where Ge ⊆

De(1).
• R = {Re}e∈E is a set of reset maps; here we

assume identity resets.
• F = {fi}i∈Q is a set of vector fields such that

fi is Lipschitz on R
n.

A hybrid trajectory (in the state space) is de-
scribed by adequately specifying a sequence of
its initial conditions, switching times and edges,
properly related via the guards and reset maps.
The behavior of H allows for possible Zeno tra-
jectories. As the reader may notice, the switch-
ing conditions (the “events”) are due to spacial
restrictions on the various domains. In contrast,
switched systems specify jumping conditions in
time, rather than in the state space.

Definition 4. A switched system is a tuple S =
(Q,E,D,G,R, F ), where

• Q,E,R, F are characterized as in Def. 3.
• D = {Di}i∈Q is a set of domains where

Di = R
n.

• G = {0, τ1, τ2, . . .} is a set of guards in time,
where τi ∈ R

+ are increasing in i. Each τi is
mapped to a state by a function g : G → Q
such that (g(τi−1), g(τi)) ∈ E for all i.

Consider the hybrid domain Q×R
n. An invariant

set of a hybrid or switched system is a subset of
Q × R

n such that every trajectory originating in
this set continues to dwell inside it. The notion
of box invariance for hybrid and switched cases
is defined so as to emcompass the possibility of
multiple equilibria and switchings between the
different domains.

Definition 5. A hybrid system H (a switched
system S) is said to be box invariant if there exists
a boxed region B ⊂ R

n and a subset Q′ ⊂ Q of
states such that Q′ × B is an invariant set for H
(or S).

In this paper, we will restrict ourselves to linear
vector fields, that is, all fi’s are linear functions
of x. Hence, in individual domains, boxes will
be around the local equilibrium point. For the
sake of analysis, we differentiate the following
two cases: domains with different equilibria and
domains with overlaying equilibria. Furthermore,
in the hybrid case, the equilibria may or may not
belong to one or more guard sets.

For a hybrid system H, if some discrete state i
has an equilibrium x0 that does not belong to
any guard, that is x0 6∈ ⋃

e∈E Ge, then a sufficient
condition for box invariance of H is obtained from
box invariance of the dynamical system of state i.
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In such a case, H is box invariant if there is a
small enough box B for the dynamical system of
state i that is completely contained in the domain,
B ⊂ Di, and that does not intersect the guard,
B∩

⋃

e∈E Ge = ∅. This occurs, for example, in the
hybrid model of the Delta-Notch lateral inhibition
mechanism of Ghosh and Tomlin (2001). The
reader should notice that, as in the single-domain
nonlinear case, the existence of a box does not
imply the existence of boxes of different sizes:
expanding a box may cause it to intersect a guard.
Next consider the case where x0 is a shared
equilibrium that belongs to at least one spacial
guard. In this instance, a sufficient condition is
the existence of a single box for multiple domains.

For switching systems, both in the case of shared
equilibrium and different equilibria, jumps at pos-
sibly any time instant forces us to find a common

box, which would be invariant in all the domains.

The results in this section resemble those obtained
for stability of hybrid and switched systems. In
particular, it is known that there are examples
of unstable hybrid and switched systems that
are the composition of stable dynamical systems
(Branicky, 1994). We are similarly interested in
understanding how the notion of box invariance,
which is shown in the linear case to be intrinsically
related to that of stability, is translated in the
hybrid or switched setting. Furthermore, sufficient
conditions for the invariance of the interconnec-
tion, according to Def. 5, will be derived. To begin
with, let us stress a technique to obtain sufficient
conditions for a hybrid dynamical system.

Proposition 2. Let us associate to a hybrid sys-
tem H a corresponding switched system S, made
up of the same tuple, except for the following
two elements: the domains Di = R

n and a sym-
bolic non decreasing sequence G = {0, τ1, τ2, . . .}.
Given an initial condition, if a universal property
P holds in all trajectories of S (given by all the
possible different sequences with the form of G),
then P holds in H.

The following result deals with the case of
switched linear systems. Such systems share the
origin as a common equilibrium.

Theorem 6. A switched linear system S, charac-
terized by a set of vector fields of the form:

• F = {fi}i∈Q = Aix, i ∈ Q;

is box invariant around the origin if there exists
a single box around which each of the dynamical
systems is box invariant. Thus, a sufficient condi-
tion for box invariance is that

⋂

i∈Q Ci 6= ∅, where
the cones Ci’s are defined as in Section 3.1.

Checking whether two cones, both pivoted on the
origin, intersect is equivalent to checking for the
intersection of two convex sets. We need to find a
c such that Aic ≤ 0 for all i ∈ {1, . . . ,m}. This

is a linear program that can be solved in time
polynomial in nm.

Remark 5. There is a lot of work (for instance,
see Branicky (1994)) in describing conditions for
the Lyapunov stability of switched systems. These
conditions either assume the existence of a com-
mon Lyapunov function, or require the presence
of multiple Lyapunov functions (one for each do-
main) with certain switching restrictions. Our re-
sult can be interpreted as follows: a common box
can be thought of as being the equivalent of a
“common Lyapunov function” (the observations
developed in Remark 3 should make this point
clear). The explicit computation of a global Lya-
punov function reduces to solving a set of linear
matrix inequalities. Many efforts have been made
to ease this task (Johansson and Rantzer, 1998).
Otherwise, we may intuitively want to come up
with conditions on the possible switchings by al-
lowing the trajectory to jump between domains
only when it belongs to the intersection of the
boxes of these domains: this condition unfortu-
nately seems harder to impose.

Handling box invariance for hybrid systems with
general spacial guards is not easy, as we shall later
discuss (see for instance Ex. 1). Nevertheless, ex-
ploiting the fact that box invariance is a stronger
property than stability, we report the following
compositional result for proving stability of hybrid
systems (illustrated in Fig. 1).

Theorem 7. If a linear hybrid system is com-
posed of box invariant linear systems with a single
spacial guard described by a hyperplane crossing
the shared equilibrium, then the hybrid system is
stable.

Fig. 1. A planar hybrid system with one single
guard (line), as in Th. 7.

The previous theorem holds under rather restric-
tive conditions. Its generalization to the case of
hybrid systems with multiple guards per domain
does not hold.

Example 1. Consider the following two-dimensional
HS characterized by two modes with domains co-
inciding with the whole space, D1 = D2 = (R+)2,
and endowed with the following vector fields:
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[
ẋ1

ẋ2

]

= A1

[
x1

x2

]

=

(
−1 5
−0.1 −1

)[
x1

x2

]

;

[
ẋ1

ẋ2

]

= A2

[
x1

x2

]

=

(
−1 −0.2
4 −1

)[
x1

x2

]

.

Assume that there are two edges with the follow-
ing guards in R

2:

G1→2(x1, x2) = {x ∈ R
2 : x1 − 5x2 = 0};

G2←1(x1, x2) = {x ∈ R
2 : 4x1 − x2 = 0}.

Assume again trivial reset maps, and initial con-
dition (x1(0), x2(0)) = (0.1, 0.1) ∈ D1.
In isolation, both linear systems are box invariant
and indeed have spiraling convergent trajectories
towards the origin. The HS though is evidently
unstable (see Fig. 2). Notice that

C1 = {(x1, x2) : x1 − 5x2 ≥ 0 ∧ x2 ≥ 0};
C2 = {(x1, x2) : 4x1 − x2 ≤ 0 ∧ x1 ≥ 0};

and that C1 ∩ C2 = ∅. 2

Fig. 2. Simulation for Example 1.

We finally consider the case of affine hybrid (and
switched) systems. For a system of the form
ẋ = Ax + b and equilibrium x

eq = −A−1
b, we

transform the variables into the new set y = x −
x

eq and consider the new system ẏ = Ay. Using
the modified matrix Am, we define C = {y ∈
R

+n

: Am
y ≤ 0}. Let us introduce the “negative

cone” C− = {y ∈ R
−n

: (−Am)y ≤ 0}. Note
that the actual cones, C + x

eq and C− + x
eq,

are obtained by translating these cones to the
equilibrium point.

Unlike the linear case, each subsystem could have
a different equilibrium point in an affine hybrid
system. However, we can still derive sufficient
conditions for the existence of a “common box” as
in the case of linear hybrid and switched systems
(see Fig. 3).

Theorem 8. Consider an affine hybrid system
H, where each domain has an equilibrium point
x

eq
i , i ∈ Q, and all variables are bound to be

positive. H is box invariant if
⋂

i∈Q(Ci +x
eq
i ) 6= ∅.

More generally, if we allow the state space to
include negative values, we need to make the con-
dition stronger. Now, the existence of a global box

Fig. 3. Common box (shown in dark) for a two
mode positive affine switched system.

will depend on having a nonempty intersection of
both the positive and negative cones.

Theorem 9. Consider an affine hybrid system
H, where each domain has an equilibrium point
x

eq
i , i ∈ Q. H will be box invariant if the following

holds:
⋂

i∈Q

(Ci + x
eq
i ) 6= ∅

∧ ⋂

i∈Q

(C−i + x
eq
i ) 6= ∅.

In conclusion, the concept of box invariance, even
though stronger than that of asymptotic stability,
is still not fully compositional in the hybrid case.
Nevertheless, the sufficient conditions we have
proposed for composability are easy to check and
quite general. The comparison with the literature
on stability of hybrid and switched systems con-
firms this fact. Furthermore, our sufficient con-
ditions are enough to establish box invariance in
many applications, one of which is described next.

5. A MODEL FOR BLOOD GLUCOSE

CONCENTRATION

The following model is taken from (Sorensen,
1985). It is a model of a physiologic compartment,
specifically the human brain, and describes the
dynamics of the blood glucose concentration. In
general, this compartment is part of a network of
different parts, which model the concentration in
other organs of the body, and which follow some
conservation laws that account for the exchange
of matter between different compartments. The
mass balance equations are the following:

VBĊBo = QB(CBi − CBo) + PA(CI − CBo) − rRBC

VIĊI = PA(CBo − CI) − rT ,

where VB describes the capillary volume, VI the
interstitial fluid volume, QB the volumetric blood
flow rate, PA the permeability-area product, CBi

the arterial blood solute concentration, CBo the
capillary blood solute concentration, CI the in-
terstitial fluid solute concentration, rRBC the rate
of red blood cell uptake of solute, and rT models
the tissue cellular removal of solute through cell
membrane. The quantity PA can be expressed
as the ratio VI/T , where T is the transcapillary
diffusion time.
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T 10 or 3 [min]

VB 0.04 [l] VI 0.45 [l]

QB 0.7 [l/min] CBi 0.15 [kg/l]

rT 2× 10−6 [kg/min] rRBC 10−5 [kg/min]

We allow T to assume two different values, which
correspond to different physiological situations;
furthermore, we assume that the switch between
these two conditions can happen at any time. This
calls for the introduction of a bimodal switched
model, composed by the following two dynamics:

ẋ = A1x + b, if T = 10[min.];

ẋ = A2x + b, if T = 3[min.].

It can be easily checked that both models, consid-
ered in isolation, are box invariant. They therefore
are stable around two different equilibria. In Fig.
4 we plot trajectories for these two systems, and
draw some boxes (that were obtained from the
computation of the eigenvalue with the rightmost
real part and its corresponding eigenvector). Ad-
ditionally, pivoted on the equilibria, the cones are
shown. In Fig. 5 the two realizations are shown
superimposed: the intersection of the two cones is
non empty (the cones differ by only one of their
boundaries, as expected because of the relative
modification of only one row of the state matrix).
The smaller one was thus chosen to define the
“global” box. Two different simulations, with ran-
dom switching, starting from opposite initial con-
ditions, are shown in Fig. 6. As can be observed,
the box is indeed an invariant for the switched
system. This box yields a bound on the values of
x, which is the brain blood glucose concentration.
These bounds are useful to verify safety of insulin
treatments for models of Type I diabetes patients.
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Fig. 4. Simulation of a trajectory for the first(top
part) and second(bottom part) system, and
computation of some symmetrical boxes.
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