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Abstract
This paper establishes an interesting connection between assertion
checking in programs and unification in the theory underlying the
program expressions. Using this connection, we describe how uni-
fication algorithms from theorem proving can be used to perform
backward analysis over programs for assertion checking. Interest-
ingly enough, this connection also helps prove hardness results for
assertion checking for classes of program abstractions. In particu-
lar, we show
(a) Assertion checking is PTIME for programs with nondeterminis-
tic conditionals that use expressions from a strict unitary theory.
(b) Assertion checking is coNP-hard for programs with nondeter-
ministic conditionals that use expressions from a bitary theory.
(c) Assertion checking is decidable for programs with disequality
guards that use expressions from a convex finitary theory.
(d) Summary computation for interprocedural analysis can be
performed using backward analysis, enabled with unification, on
generic assertions. This helps generalize result (a) to interproce-
dural analysis.
These results generalize several recently published results using
a uniform framework. They also provide several new results, and
partially solve the long standing open problem of interprocedural
global value numbering. In essence, they provide new techniques
for backward analysis of programs based on novel integration of
theorem proving technology in program analysis.

1. Introduction
We use the termequality assertion, or simplyassertion, to refer to
an equality between two program expressions. Theassertion check-
ing problem is to decide whether a given assertion always holds at
a given program point. In general, assertion checking is an unde-
cidable problem. Hence, assertion checking is typically performed
over some sound abstraction of the program. In this paper, we give
algorithms as well as hardness results for the assertion checking
over classes of useful program abstractions.

Consider, for example, the program shown inFigure 1. All
assertions shown in the program are valid. Observe that to prove
the validity of the assertionsa = b and y = 2x, we need to
reason about the multiplication operator. Since full reasoning about
the multiplication operator is in general undecidable, we can use
some sound abstraction of the multiplication operator. One option
is to model the multiplication operator as a binary uninterpreted
function1. Such a model is sufficient to prove the validity of the
assertiona = b. In Section4, we show how to use unification
algorithm for uninterpreted functions to obtain a polynomial time
algorithm for verifying the validity of such assertions.

∗ The authors thank Akash Lal and Zhendong Su for providing helpful
comments on an earlier version of this paper.
1 An uninterpreted functionf of arity n satisfies only one axiom: Ifei = e′i
for 1 ≤ i ≤ n, thenf(e1, . . . , en) = f(e′1, . . . , e′n).

True False*

x := 0;  y := 0; flag := w;

a := a × c; b := b × c; 
x := x  + (a × c);
y := y + (c × a) + (a × c);
flag := flag - 1; z := z - 2;
Assert (y = 2x);

flag                         ≠ w
False

a := 1;  b := 1; z := flag + flag ;

True

Assert (a = b);
Assert (z = 2w);

Figure 1. An example program with assertions.

Modeling multiplication operator as an uninterpreted function
is not sufficient to prove the validity of the assertiony = 2x, which
requires reasoning about the commutative nature of the multiplica-
tion operator. Hence, if we abstract the multiplication operator as
a commutative function, we can prove validity of the second as-
sertion (as well as the first assertion). However, this requires us to
work with program expressions that involve combination of linear
arithmetic and a commutative operator. In Section5, we show that
in general, assertion checking on programs with such program ex-
pressions is coNP-hard. However, the good news is that this prob-
lem is still decidable, as we show in Section6. Also observe that
the validity of the assertiony = 2x requires the knowledge of the
loop guardflag 6= w inside the loop. Our algorithm in Section6
can also reason about disequality guards and can hence prove the
validity of such assertions.

The assertionz = 2w involves discovering the loop invariant
z = 2 × flag and reasoning about the equality guardflag = w .
Reasoning about such linear arithmetic expressions in presence of
equality guards has been shown to be undecidable in general [15].
This assertion thus points out the limitation of the techniques de-
scribed in this paper, namely that they cannot reason precisely
about the equality guards. However, we do present a heuristic in
Section8 that can also reason about simple examples such as this
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Program Unification type of theory Assertion checking Examples Generalizes
nodes of program expressions complexity
a–d Strict Unitary PTIME LA, UF [9, 14, 15]
a–d Bitary coNP-hard LA+UF, C [10]
a–e Finitary-Convex Decidable LA+UF+C+AC [14, 10]
a–d,f Strict Unitary PTIME LA, Unary [16]

Strict Unitary
(PTIME)

Bitary
(coNP-hard)

Finitary Convex
(Decidable)

Figure 2. Summary of results in this paper. Program nodes refer to those in Figure3. If a program contains nodes from Column 1 and the
theory underlying the program expressions belongs to the class given in Column 2, then its assertion checking problem has time complexity
given in Column 3. Rows 1 and 4 additionally require some additional minor technical assumptions. Column 4 contains examples of theories
for which the corresponding result holds:- LA: Linear Arithmetic, UF: Uninterpreted Functions, C: Commutative Functions, AC: Associative-
Commutative Functions, Unary: Unary Uninterpreted Functions. The symbol+ denotes combination of theories. The last column gives those
references whose results are generalized by our result. The diagram on the right shows the containment relationship between the different
theory classes.

one. We formalize the notion of reasoning about disequality guards
as opposed to reasoning about equality guards by making all con-
ditionals non-deterministic, and introducingAssume nodes, as de-
scribed in Section2.1.

The main observation at the core of the technical results (de-
scribed in Section3) is the connection between assertion checking
for programs whose expressions are from some theoryT and uni-
fication in the theoryT. An assertion holds at a program point if it
evaluates to true in every run of the program. Every run of a pro-
gram returns a valuation of the program variables. This valuation
can be seen as a substitution. If every such substitution makes an as-
sertiontrue, then each substitution would also validate some max-
imally generalT-unifier of the assertion. Using this basic principle,
we show that unification algorithms can be used to strengthen as-
sertions during assertion checking using backward analysis. Quite
interestingly, the same basic principle also helps us show hardness
results in some cases.

In particular, the main contributions of this paper are the follow-
ing general results that relate thecomplexityof assertion checking
in programs with theunification typeof the theory of program ex-
pressions. These results are also summarized in Figure2.

• We describe a generic PTIME algorithm for assertion checking
in programs when the program expressions are from a strict
unitary theory (Section4). We also describe some conditions
under which this algorithm can be extended to perform a precise
interprocedural analysis in PTIME (Section7). We show that
these conditions are met for the theory of linear arithmetic and
unary uninterpreted functions. The latter result partially solves
the open problem of interprocedural global value numbering.

• We introduce the notion of a bitary theory, and prove that
several interesting theories are bitary. We prove that assertion
checking in programs whose program expressions are from a
bitary theory is coNP-hard (Section5). For example, the theory
of commutative functions is bitary.

• We describe a generic algorithm for assertion checking in pro-
grams when the program expressions are from a finitary convex
theory, thereby proving decidability. We prove that the (rich)
theory of combination of linear arithmetic with functions that
are uninterpreted, commutative, or associative-commutative
(AC) is finitary and convex (Section6). The significance of
such functions lie in the fact that they can be used to model
important properties of otherwise hard to reason about pro-
gram operators. For example, commutative functions can be
used to model floating-point operators (which do not obey as-
sociativity), while AC functions can be used to model bit-wise
operators.

The above results uniformly generalize several known re-
sults [9, 10, 12, 15, 16, 14], and also provide several new results.
All prior results on the complexity of assertion checking have been
for specific abstractions. For example, in an earlier paper [10] we
showed that intraprocedural assertion checking in the combination
of linear arithmetic and uninterpreted functions was coNP-hard, but
decidable, using a unification based approach. This paper substan-
tially, and nontrivially, generalizes the results of [10]. The results
in this paper go much beyond one or two specific program ab-
stractions and apply to intra- and inter-procedural analysis of wide
classes of program abstractions. They can be used to quickly clas-
sify the hardness of these analyses for new abstractions.

The results in this paper establish closer connections between
program analysis and theorem proving. The traditional way of us-
ing theorem proving in program analysis has been via decision pro-
cedures. In this usage scenario, decision procedures are used to dis-
charge verification conditions generated from programs annotated
with loop invariants. In this paper, theorem proving technology is
more tightly integrated in program analysis to make it more precise
and efficient, even in the absence of loop-invariant annotations.

The results in this paper should also be viewed in the context of
developing new algorithmic techniques for performing intra- and
inter-proceduralbackwardanalysis of programs. This paper shows
that standard unification algorithms can be used during intraproce-
dural backward analyses of programs. This same backward propa-
gation procedure, enabled with unification, can also be used in the
interprocedural setting. The only difference is that we need back-
ward propagation and unification to work on generic assertions.
This uniformity is appealing from the viewpoint of understanding
the difficulty of interprocedural analysis. (Unification on equations
arising from generic assertions is often much harder than standard
unification.) It also enables, in the specific abstraction of unary un-
interpreted symbols, a new polynomial time procedure for inter-
procedural analysis, which is an important step towards the more
general open problem of interprocedural global value numbering
problem (when all program operators are treated as uninterpreted).
Finally, although this paper focuses solely on backward analysis,
we believe that our observations enable new ways of combining
both forward and backward analyses using theorem proving tech-
nology to improve the overall efficiency and precision [7].

2. Preliminaries
2.1 Program Model

We assume that each procedure in a program is abstracted using
the flowchart nodes shown inFigure 3. In the assignment node,
x refers to a program variable whilee denotes some expression
in the underlying abstraction. We refer to the language of such
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(a) Assignment
Node

x := e

ψ 0

ψ

(b) Non-deterministic
Assignment Node

x := ?

ψ 0

ψ

ψ2ψ1

ψ

(c) Join Node

*True False

ψ

ψ1 ψ2

ψ 0 ψ 0

Call P( )Assume (e1≠e2)

ψψ

(e) Assume Node(d) Non-deterministic
Conditional Node

(f) Procedure 
Call Node

Figure 3. Flowchart nodes in our abstracted program model.

expressions asexpression language of the program. Following are
examples of the expression languages for some abstractions that we
refer to in this paper:

• Linear arithmetic:

e ::= y | c | e1 ± e2 | c× e

Herey denotes some variable whilec denotes some arithmetic
constant.

• Uninterpreted functions:

e ::= y | f(e1, . . . , en)

Heref denotes some uninterpreted function of arityn.

• Combination of linear arithmetic and uninterpreted functions:

e ::= y | c | e1 ± e2 | c× e | f(e1, . . . , en)

• Commutative Functions

e ::= y | f(e1, e2)

Heref denotes a commutative function.

A non-deterministic assignmentx :=? denotes that the variable
x can be assigned any value. Such non-deterministic assignments
are used as a safe abstraction of statements (in the original source
program) that our abstraction cannot handle precisely.

A join node has two incoming edges. Note that a join node with
more than two incoming edges can be reduced to multiple join
nodes each with two incoming edges.

Non-deterministic conditionals, represented by∗, denote that
the control can flow to either branch irrespective of the program
state before the conditional. They are used as a safe abstraction
of guarded conditionals, which our abstraction cannot handle pre-
cisely. We abstract away the guards in conditionals because oth-
erwise the problem of assertion checking can be easily shown to
be undecidable even when the program expressions involves opera-
tors from simple theories like linear arithmetic [15] or uninterpreted
functions [14] (in which case our result in Section4 would not be
possible, and the result in Section5 would become trivial). This
is a very common restriction for a program model while proving
preciseness of a program analysis for that model.

However, (for our result in Section6) we do allow for assume
statements of the formAssume(e1 6= e2), which we also refer to
asdisequality guards. Note that a program conditional of the form
e1 = e2 can be reduced to a non-deterministic conditional and
assume statementsAssume(e1 = e2) (on the true side of the con-
ditional) andAssume(e1 6= e2) on the false side of the conditional.
Hence, the presence of disequality guards in our program model
allows for partial reasoning of program conditionals.

In Section7, we show how our techniques can be used to reason
about procedure calls. For simplicity, we assume that the inputs and
outputs of a procedure are passed as global variables [23]. Hence,

the procedure call node simply denotes the name of the procedure
to be called.

2.2 Unification Terminology

A substitutionσ is a mapping that maps variables to expressions
such that for every variablex, the expressionσ(x) contains vari-
ables only from the set{y | σ(y) = y}. A substitution mappingσ
can be (homomorphically) lifted to expressions such that for every
expressione, we defineσ(e) to be the expression obtained from
e by replacing every variablex by its mappingσ(x). Often, we
denote the application of a substitutionσ to an expressione using
postfix notation aseσ. We sometimes treat a substitution mapping
σ as the following formula, which is a conjunction of non-trivial
equalities between variables and their mappings:

^

x

x = xσ

A substitutionσ is a unifier for an equalitye1 = e2 (in theory
T) if e1σ = e2σ (in theoryT). A substitutionσ is a unifier for
a set of equalitiesE if σ is a unifier for each equality inE. A
substitutionσ1 is more-generalthan a substitutionσ2 if there exists
a substitutionσ such thatxσ2 = (xσ1)σ for all variablesx. 2 A set
C of unifiers forE is completewhen for any unifierσ for E, there
exists a unifierσ′ ∈ C that is more-general thanσ. The reader is
referred to [2] for an introduction to unification theory.

We use the notationUnif(E), whereE is some conjunction of
equalitiesE, to denote the formula that is a disjunction of all uni-
fiers in some complete set of unifiers forE. (If E is unsatisfiable,
thenE does not have any unifier andUnif(E) is simplyfalse.)

EXAMPLE 1. Consider the equalityf(x) + f(y) = f(a) + f(b)
over theory of combination of linear arithmetic and unary uninter-
preted functionf . The substitution{x 7→ a, y 7→ b} is a unifier for
it. A complete set of unifiers, however, contains two unifiers, viz.
{x 7→ a, y 7→ b} and{x 7→ b, y 7→ a}. Hence,

Unif(f(x) + f(y) = f(a) + f(b)) =

(x = a ∧ y = b) ∨ (x = b ∧ y = a)

Theories can be classified based on the cardinality of complete
set of unifiers for its equalities as follows.

Unitary Theory A theoryT is said to beunitary if for all equal-
ities e = e′ in theoryT, there exists a complete set of unifiers of
cardinality at most1, that is, there is a unique most-general uni-
fier. We define a unitary theory to bestrict if for any sequence of
equationse1 = e′1, e2 = e′2, . . ., the sequence of most-general uni-
fiers Unif(e1 = e′1), Unif(e1 = e′1 ∧ e2 = e′2), . . . contains at
mostn distinct unifiers wheren is the number of variables in the

2 The more-general relation is reflexive, i.e., a substitution is more-general
than itself. All equalities are interpreted modulo theoryT.

3 2006/7/15



given equations3. The theory of linear arithmetic and the theory of
uninterpreted functions are both strict unitary.

Bitary Theory We define a theoryT to bebitary if there exists an
equalitye = e′ in theoryT such thaty 7→ z1 andy 7→ z2 form
a complete set of unifiers fore = e′, wherey, z1 andz2 are some
variables. In other words,Unif(e = e′) is y = z1 ∨ y = z2.
In addition, we require a technical side condition that for new
variablesy′ andz′1, it is the case thatUnif(e = e[y′/y, z′1/z1])
andUnif(e′ = e′[y′/y, z′1/z1]) are bothy = y′ ∧ z1 = z′1.

The theories of a commutative function, combination of linear
arithmetic and a unary uninterpreted function, combination of two
associative-commutative functions are all bitary (as proved in Sec-
tion 5.2). Intuitively, bitary theories are theories that can encode
disjunction.

Finitary Theory A theoryT is said to befinitary if for all equal-
ities e = e′ in theoryT, there exists a complete set of unifiers of
finite cardinality. Note that every unitary theory is, by definition,
finitary. Hence, the theories of linear arithmetic and uninterpreted
functions are both finitary. The theory of combination of linear
arithmetic and uninterpreted functions is also finitary (as proved
in [10]). In this paper, we show that the more general theory of
combination of linear arithmetic, uninterpreted functions, commu-
tative functions, and associative-commutative functions is also fini-
tary (Section6.2).

A theory is said to beconvexif whenevere1 = e′1 ∨ e2 = e′2 is
valid in the theory, then eithere1 = e′1 or e2 = e′2 is valid in the
theory. The above-mentioned finitary theories are also convex.

3. Connection between Unification and Assertion
Checking

Forward program analysis is based on computing over-approximations
of the reachable states. In the process of forward program analy-
sis, over-approximating the states is alwayssound, but not always
complete. Backward analysis, in contrast, computes the assertion
that must be true at intermediate and initial program points to
guarantee that a given assertion holds at a given program point.
Under-approximations, that is, replacing an assertion by a stronger
assertion, is alwayssoundin this case, but not always complete.

Unification procedure can be used to strengthen and simplify an
assertion. The formulaUnif(E) logically impliesE, but it is, in
general, not equivalent toE. Since it is often “simpler” thanE, we
may wish to replaceE by Unif(E) at intermediate points during
backward analysis. This process issound, that is, ifUnif(E) is an
invariant, then clearlyE will also be an invariant. (See Figure4 for
an example.) But this process is notcompletein general, that is,
if we fail to prove thatUnif(E) is an invariant, then we can not
conclude anything aboutE. The crucial and surprising observation
presented in this section is that,in many useful abstractions, we
do not lose completeness by this replacement. For instance, unifi-
cation preserves completeness and helps prove the assertion in the
example of Figure4.

LEMMA 1. Letπ be a program point in a program specified using
nodes (a)-(d) of Figure3 using the expression language of theory
T. An equalitye = e′ holds at a program pointπ iff UnifT(e = e′)
holds atπ.

The proof of this lemma is fairly simple and is given in Appen-
dix ??. The key insight is thatrunsof a program are just substitu-
tions and if every run validates an assertion, then every run should
also validate some maximally general unifier of that assertion.

3 This is an ascending (unifier) chain condition.

We use this soundness and completeness preserving strengthen-
ing of assertions in Section4 as part of a generic PTIME backward
analysis procedure for assertion checking in a certain class of pro-
grams. Surprisingly, we use this same result to also showhardness
of assertion checking for another class of programs in Section5.
This simplifies, and simultaneously generalizes, our previous result
on hardness of assertion checking for a specific theory [10].

We can generalize Lemma1 to also work in the presence of
disequality guards4 as stated below.

LEMMA 2. Letπ be a program point in a program specified using
nodes (a)-(e) of Figure3 using the expression language of a convex
theory T. Let φi be some conjunction of equalities. Then,

W
i

φi

holds at a program pointπ iff
W
i

Unif(φi) holds atπ.

The proof is given in Appendix??. In Section6, we argue that
the standard backward analysis procedure for assertion checking,
if enhanced by unification based assertion strengthening, yields a
decision procedurefor a large class of programs.

This connection between unification and assertion checking is
used to develop a novel way to computeprocedure summaries. We
use these summaries for assertion checking in presence of proce-
dure calls (i.e., node (f) inFigure 3). Developed further in Section7,
the main observation is that summary computation involves per-
forming backward analysis, enabled with unification, in the pres-
ence of new variables that are required to represent generic asser-
tions at the end of a procedure.

4. PTIME Decidability of Assertion Checking for
Strict Unitary Theories

In this section, we prove PTIME complexity (by describing a
polynomial-time algorithm) for the problem of assertion checking
when the expression language of the program comes from a strict
unitary theory, and the flowchart representation of the program is
abstracted using nodes (a)-(d) shown inFigure 3.

This PTIME complexity result generalizes two earlier known
results for theories of linear arithmetic and uninterpreted func-
tions (both of which are unitary theories). Gulwani and Necula
gave a polynomial-time algorithm for discovering all assertions
of bounded size when the program model consists of nodes (a)-
(d) and the expression language consists of uninterpreted func-
tions, thereby proving PTIME complexity of assertion-checking for
such programs [9]. Müller-Olm, R̈uthing, and Seidl [14] have also
pointed out that assertion checking on program with nodes (a)-(d)
using the uninterpreted symbols’ abstraction (Herbrand equalities)
is in PTIME . Muller-Olm and Seidl [15] proved PTIME complex-
ity for assertion checking of programs with nodes (a)-(d) and ex-
pression language of linear arithmetic by simplifying Karr’s algo-
rithm [12].

4.1 Algorithm

Our algorithm for assertion checking is based on weakest precondi-
tion computation. It represents invariants (that need to be satisfied
for the assertion to be true) at each program point by a formula
that is eitherfalse, true, or a conjunction of equalities of the form
e = e′.

Suppose the goal is to check whether an assertione1 = e2 is an
invariant at program pointπ. The algorithm performs a backward
analysis of the program computing a formulaψ at each program
point such thatψ must hold at that program point for the assertion

4 We remark here that the program nodes for which unification does not
preserve completeness, viz.positive guards, are exactly responsible for
undecidabilityof assertion checking for many abstractions.
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1 if (*) { x := a; y := b; }
2 else { x := b; y := a; }
3 endif
4 while (*) {
5 x := fx; y := fy;
6 a := fa; b := fb;
7 }
8 assert(x+ y = a+ b);

pc Assertion atpc
w/o unification w/ unification

7 x+ y = a+ b x = a+ b− y
4 x+ y = a+ b ∧ (x = a ∧ y = b)∨

fx+ fy = fa+ fb ∧ · · · (x = b ∧ y = a)
1 non-termination true

pc Assertion
1 true
3 {x = a ∧ y = b}t

{x = b ∧ y = a}
= x+ y = a+ b

7 true

(a) Program (b) Backward Analysis (c) Forward Analysis

Figure 4. This figure illustrates the advantage of using unification in backward analysis. The assertion on line7 of program in Figure (a) is
true. Standard backward analysis based procedure, illustrated in Figure (b) Column 1, fails to prove the assertion because it fails to terminate
across the loop. Forward analysis in Figure (c) requiresjoin computation. Unless we unreasonably assume that the join operator returns the
infiniteset of facts [11],

V
i f

ix+ f iy = f ia+ f ib, it also fails. When using unification to strengthen assertions in backward analysis, as in
Figure (b) Column 2, the fixpoint terminates and we can prove the assertion.

e1 = e2 to be true at program pointπ. This formula is computed
at each program point from the formulas at the successor program
points in an iterative manner. The algorithm uses the transfer func-
tions described below to compute these formulas across the flow-
chart nodes shown inFigure 3. The algorithm declarese1 = e2 to
be an invariant atπ iff the formula computed at the beginning of
the program after fixed-point computation isvalid.

Initialization: The formula at all program points exceptπ is
initialized to true. The formula at program pointπ is initialized
to bee1 = e2.

Assignment Node: SeeFigure 3(a).
The formulaψ′ before an assignment nodex := e is obtained from
the formulaψ after the assignment node by substitutingx by e in
ψ.

ψ′ = ψ[e/x]

Non-deterministic Assignment Node:SeeFigure 3(b).
The formulaψ′ before a non-deterministic assignment nodex :=?
is obtained from the formulaψ after the non-deterministic assign-
ment node by substituting program variablex by some fresh vari-
able (which does not occur in the program and substitutionψ).

ψ′ = ψ[y/x]

Join Node: SeeFigure 3(c).
The formulasψ1 andψ2 on the two predecessors of a join node are
same as the formulaψ after the join node.

ψ1 = ψ andψ2 = ψ

Non-deterministic Conditional Node: SeeFigure 3(d).
The formulaψ before a non-deterministic conditional node is ob-
tained by taking the conjunction of the formulasψ1 andψ2 on the
two branches of the conditional, and then pruning away the redun-
dant equations using theUnif procedure.

ψ = UPrune(ψ1 ∧ ψ2)

We say an equatione = e′ is redundantwith respect to a formula
ψ if Unif(ψ) is a unifier fore = e′. The functionUPrune(ψ)
sequentially checks if each equatione = e′ in ψ is redundant with
respect toψ − {e = e′} and removes the redundant ones. Thus,
Unif(ψ) andUnif(UPrune(ψ)) are equivalent.

Fixed-point Computation: In presence of loops in procedures,
the algorithm goes around each loop until the formulas computed
at each program point in two successive iterations of a loop have
equivalent unifiers, or if any formula becomes unsatisfiable.

4.1.1 Correctness

We now prove that the above algorithm is correct, i.e., an asser-
tion e = e′ holds at program pointπ iff the algorithm claims so.

The correctness of the algorithm follows from the interesting con-
nection between program analysis and unification theory stated in
Lemma1. Specifically, Lemma1 implies the correctness of pruning
and the fixpoint detection steps. It shows that the formula computed
by our algorithm before a flowchart node is the weakest precondi-
tion of the formula after that node. The correctness of the algorithm
now follows from the fact that the algorithm starts with the correct
assertion atπ and iteratively computes the correct weakest precon-
dition at each program point in a backward analysis.

4.1.2 Complexity

Termination of the fixed-point computation in polynomial time
relies on the unitary theory being strict. The following theorem
(whose proof is given in AppendixB) states the complexity of the
algorithm.

THEOREM 1. LetT be a strict unitary theory. Suppose thatTUnif(n)
is the time complexity for computing the most-generalT-unifier of
equations given in a shared representation.5 Then the assertion
checking problem for programs of sizen, which are specified us-
ing nodes (a)-(d) and the language ofT, can be solved in time
O(n4TUnif(n

2)).

The above complexity result is conservative because it is based on a
generic argument. It can be improved for specific theories, but that
is not the focus of this paper.

4.2 Examples of Strict Unitary Theories

If the most-generalT-unifiers do not contain anynew variables,
then clearly any chain of increasingly less general substitutions,
σ1, σ1σ2, σ1σ2σ3, . . ., will have at mostn distinct elements since
each new distinct element will necessarily instantiate one uninstan-
tiated variable. This is the case for the theory of linear arithmetic
and uninterpreted symbols. The theory of Abelian Groups is uni-
tary, but the most-general unifiers contain new variables. However,
using a different argument it can be checked that this theory also
satisfies thestrictnesscondition.

5. coNP-Hardness of Assertion Checking for
Bitary Theories

In this section, we first show that the problem of assertion checking,
when the expression language of the program comes from a bitary
theory, is coNP-hard, even when the program is loop-free and
the flowchart representation of the program only involves nodes
(a)-(d). In the second part of this section, we show that several

5 We assume that theT-unification procedure returnstrue when presented
with an equation that is valid (true) inT.
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% Suppose formulaψ hask variablesx1, . . . , xk andm clauses numbered1 tom.
% Let variablexi occur in positive form in clauses #Ai[0], . . . , Ai[ci]; and in negative form in clauses #Bi[0], . . . , Bi[di].

IsUnSatisfiableT(ψ)
% gi = x0 represents clause i is unsatisfied
% gi = x1 represents clause i is satisfied.
for i = 1 to m do

gi := x0;
for i = 1 to k do

if (*) then % set xi to true
for j = 0 to ci do

gAi[j] := x1;
else % set xi to false

for j = 0 to di do
gBi[j] := x1;

% Check if at least one of gi is unsatisfied.
CheckT(g1, . . . , gm, x0);

CheckT(α1, . . . , αm, x)
% This procedure checks if (x = α1) ∨ . . . ∨ (x = αm).
% Let e = e′ be an equality in theory T s.t.
% Unif(e = e′) is y = z1 ∨ y = z2.
e1 := e[x�y, α1�z1 , α2�z2 ];
e′1 := e′[x�y, α1�z1 , α2�z2 ];
for j = 1 to m− 2 do

ej+1 := e[ej�y, e
′
j�z1 , ej [αj+2/x]�z2 ];

e′j+1 := e′[ej�y, e
′
j�z1 , ej [αj+2/x]�z2 ];

Assert(em−1 = e′m−1);

Figure 5. A program that illustrates the coNP-hardness of assertion checking when the expression language is from a bitary theory.

interesting theories are bitary, thereby establishing that the problem
of assertion checking when program expressions are from any of
those theories is coNP-hard.

Gulwani and Tiwari [10] showed that the assertion checking
problem is coNP-hard when the expression language involves com-
bination of linear arithmetic and uninterpreted functions and when
the program model consists of nodes (a)-(d). This section nontriv-
ially generalizes the core idea of the proof of [10] to give a simple
characterization of programs for which assertion checking is coNP-
hard. This is used to obtain hardness results for several new and
unrelated theories.

5.1 Reduction from 3-SAT

Let e = e′ be the equality in theoryT that hasy 7→ z1 and
y 7→ z2 as its complete set of unifiers. The key observation in
proving the coNP-hardness result is that a disjunctive assertion of
the formx = α1 ∨ x = α2 can be encoded as the non-disjunctive
assertione1 = e′1, wheree1 = e[x�y, α1�z1 , α2�z2 ] ande′1 =
e[x�y, α1�z1 , α2�z2 ]. The procedureCheckT(α1, . . . , αm, x) in
Figure 5 generalizes this encoding for the disjunctive assertion
x = α1 ∨ . . . ∨ x = αm. Once such a disjunction can be
encoded, we can reduce the unsatisfiability problem to the problem
of assertion checking as follows.

Consider the program shown inFigure 5. We will show that
the assert statement in the program is true iff the input boolean
formulaψ is unsatisfiable. Note that,for a givenψ, the procedures
IsUnSatisfiable andCheck can be reduced to one procedure
whose flowchart representation consists of only the nodes shown
in Figure 3. (These procedures use procedure calls and loops with
guarded conditionals only for expository purposes.) This can be
done by unrolling the loops and inlining procedureCheckT inside
procedureIsUnSatisfiableT. The size of the resulting procedure
is polynomial in the size of the input boolean formulaψ.

The procedureIsUnSatisfiable containsk non-deterministic
conditionals, which together choose a truth value assignment for
the k boolean variables in the input boolean formulaψ, and ac-
cordingly set its clauses to true (x1) or false (x0). The boolean for-
mulaψ is unsatisfiable iff at least one of its clauses remains unsatis-
fied in every truth value assignment to its variables, or equivalently,
mW

i=1

gi = x0 in all executions of the procedureIsUnSatisfiable.

The procedureCheck(g1, . . . , gm, x0) performs the desired check
as stated in the following lemma.

LEMMA 3. The assert statement inCheck(α1, . . . , αm, x) is true

iff
mW

i=1

x = αi holds at the beginning ofCheck(α1, . . . , αm, x).

The procedureCheck constructs an equation whose complete set

of unifiers is
mW

i=1

x = αi. Lemma3 is then an easy consequence of

Lemma1.
Hence, the following theorem holds.

THEOREM 2. Assertion checking is coNP-hard for (even loop-free)
programs specified using nodes (a)-(d) with expressions from the
language of a bitary theory.

5.2 Examples of Bitary Theories

We present a few examples of bitary theories, by presenting a
witness equatione = e′ for each theory. It is easily verified that
y 7→ z1 andy 7→ z2 form a complete set of unifiers fore = e′ in
each theory. Moreover,e ande′ can also be verified to satisfy the
technical side condition in each case.

The theory of acommutative functionf can be shown to be
bitary using the following equality:

f(f(y, y), f(z1, z2)) = f(f(y, z1), f(y, z2)) (1)

The theory ofcombination of linear arithmetic and a unary
uninterpreted functionf is also bitary. The following equality is
a witness:

f(f(y) + f(y)) + f(f(z1) + f(z2))

= f(f(y) + f(z1)) + f(f(y) + f(z2)) (2)

Note that the equationsf(y) + f(z1 + z2 − y) = f(z1) + f(z2)
andf(f(y)) + f(f(z1) + f(z2)− f(y)) = f(f(z1)) + f(f(z2))
also have the same set of unifiers, but they do not satisfy the
technical side condition. We can use the latter equation ase = e′

in Check function and prove coNP-hardness. However the generic
hardness proof currently uses a stronger side condition which is
only satisfied by Equation2.

The theory ofcombination of an AC functiong and a unary un-
interpreted functionf is also bitary. The following equality shows
this.

g(f(g(y, y)), f(g(z1, z2)))

= g(f(g(y, z1)), f(g(y, z2))) (3)

The theory ofcombination of two AC functionsf andg is also
bitary as shown by the following equality, wherec is some constant

6 2006/7/15



or a fresh variable distinct fromy, z1 andz2.

g(f(g(y, y), c), f(g(z1, z2), c))

= g(f(g(y, z1), c), f(g(y, z2), c)) (4)

Note the similarity between the equalities used in all of the
above examples. They are obtained by encoding a commutative
function in different theories in different ways.

We conjecture that the hardness result also holds if we drop the
technical side condition in the definition of a bitary theory. The
technical side condition only identifies a smaller class for which the
generic constructionof Check function and thegeneric hardness
proofwork.

6. Decidability of Assertion Checking for Finitary
Convex Theories

In this section, we first describe a generic algorithm (thereby prov-
ing decidability) for assertion checking when the expression lan-
guage of the program comes from a finitary theory that is con-
vex, and the flowchart representation of the program consists of
nodes (a)–(e) shown inFigure 3. In the second part of this sec-
tion, we show that the (rich) theory of combination of linear arith-
metic, uninterpreted functions, commutative functions, associative-
commutative functions is finitary and convex. This establishes the
decidability of assertion checking over this theory.

Our result here generalizes, using a uniform framework, the re-
sult of Müller-Olm, R̈uthing, and Seidl [14] about decidability of
checking validity of Herbrand equalities in presence of disequal-
ity guards. It also subsumes our earlier result [10] of decidability
of assertion checking for programs whose nodes are restricted to
Nodes (a)–(d) and whose expression language involves combina-
tion of linear arithmetic and uninterpreted functions. Our new gen-
eral decidability result is surprising since the abstract lattice (un-
derlying the abstractions based on convex finitary theories) often
has infinite height, which implies that a standard abstract interpre-
tation [3] based algorithm cannot terminate in a finite number of
steps.

6.1 Algorithm

The algorithm is based on weakest precondition computation and
is similar to the one described in Section4. It computes (in a
backward analysis) a formulaψ at each program pointπ such that
the formulaψ must hold atπ for the given assertion to be true.
The formulaψ computed at each program point is either false or a
disjunction of conjunction of equalities of the formx = e such that
each disjunct represents a valid substitution. Müller-Olm, R̈uthing,
and Seidl [14] have used a similar representation.

The initialization and the transfer functions for assignment and
join nodes are exactly same as the one for the algorithm described
in Section4. We describe the transfer functions for the remaining
nodes below.

Non-deterministic Conditional Node: SeeFigure 3(d).
The formulaψ before a non-deterministic conditional node is ob-
tained by taking the conjunction of the formulasψ1 andψ2 on the
two branches of the conditional, and invokingUnif on each result-
ing disjunct.

ψ =
_

i,j

Unif(ψi
1 ∧ ψj

2), whereψ1 =
_

i

ψi
1 andψ2 =

_

j

ψj
2

Assume Node: SeeFigure 3(e).
The formulaψ′ before an assume nodee1 6= e2 is obtained from
the formulaψ after the assume node as follows.

ψ′ = ψ ∨ Unif(e1 = e2)

6.1.1 Correctness

The correctness of the algorithm is an easy consequence of Lemma2
that shows that unification can be used to strengthen assertions
without any loss in soundness or precision.

6.1.2 Termination

We now prove that the above algorithm terminates in a finite num-
ber of steps. It suffices to show that the weakest precondition com-
putation across a loop terminates in a finite number of iterations.
This follows from the following lemma.

LEMMA 4. LetC be a chainψ1, ψ2, . . . of formulas that are dis-

junctions of substitutions. Letψi =
miW
`=1

ψ`
i for some integermi

and substitutionsψ`
i . Suppose

(a) ψi+1 =
miW
`=1

niW
j=1

Unif(ψ`
i ∧ αj

i ), for some substitutionsαj
i .

(b) ψi 6⇒ ψi+1.
Then,C is finite.

The proof of Lemma4 is by establishing a well founded ordering
onψ′is, and is given in AppendixE.

Lemma4 implies termination of our assertion checking algo-
rithm. (Note that the weakest preconditionsψ1, ψ2, . . . generated
by our algorithm at any given program point inside a loop in suc-
cessive iterations satisfy condition (a), and henceψi+1 ⇒ ψi for
all i. Lemma4 implies that there existsj such thatψj ⇒ ψj+1

and henceψj ≡ ψj+1, at which point the fixed-point computation
across that loop terminates.)

THEOREM 3. Let T be a convex finitary theory. Then, assertion
checking is decidable for programs specified using nodes (a)-(e)
with expressions from the language ofT.

6.2 Examples of Finitary Convex Theory

In this section, we prove that the (rich) theory of combination of
linear arithmetic, uninterpreted functions, commutative functions,
associative-commutative functions is finitary and convex.

Let TLA,TUF ,TC ,TAC denote respectively the theories of
linear arithmetic, uninterpreted functions, commutative functions,
and associative-commutative functionsover disjoint signatures. Let
TAll = TLA ∪ TUF ∪ TC ∪ TAC .

We use the following well-known result [2] to show thatTAll is
finitary.

PROPOSITION1 ([2]). Let T1, . . . ,Tn be non-trivial equational
theories over disjoint signatures that are finitary forTi-unification
with linear constant restrictions. ThenT1 ∪ · · · ∪ Tn is finitary for
elementary unification.

For a theoryT, if unification with constants is finitary, then uni-
fication with linear constant restriction, which is more restrictive,
is also finitary. Unification with constants is unitary forTUF and
TLA, whereas it is finitary forTC andTAC . Therefore, it follows
from Proposition1 thatTAll is finitary for elementary unification.
SinceTUF is included inTAll, it follows that thatTAll is finitary
for general unification as well. In fact, an algorithm to generate the
complete set of unifiers inTAll can be obtained using the generic
methodology for combining unification algorithms [2].

Since equational theories are convex, the theoryTAll is convex.
Using these observations and Theorem3, we can conclude that
assertion checking forTAll is decidable.

7. Interprocedural Analysis
In this section, we show how to efficiently extend our assertion
checking procedures to handle procedure calls. This is achieved by
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computing procedure summaries that give constraints (on the input
variables of the procedure) that must be satisfied for some generic
assertion (involving output variablesoi of the procedure) to hold
at the end of the procedure. Representation of generic assertions
depends on the theory.

For example, the theory of linear arithmetic has one generic as-
sertion that can be represented asα +

P
i αioi = 0, whereα’s

represent unknown constants. The theory of unary uninterpreted
functions has one generic assertion for each pair of variableso1
ando2 and can be represented aso1 = αo2, whereα represents
an unknown sequence of unary uninterpreted functions, or equiva-
lently, an unknown string. Procedure summaries are in the form of
constraints that involve input variables and the unknownα’s. For
example, the summary of procedureP in Figure 6reads as: The
generic assertionx = αy holds at the end of procedureP iff the
constraintx = αy ∧ fgx = αgfy ∧ fx = αfy holds at the
beginning of procedureP . The only solution of this constraint is
α 7→ f, x 7→ fy. (Herex andy are both input as well as out-
put variables of procedureP , andf andg are unary uninterpreted
functions).

The key idea that we use in computing such procedure sum-
maries is to perform a backward analysis of procedures by doing
unification in presence of such unknownα’s. These special vari-
ables are formally calledcontext variablesand the unification prob-
lem is referred to ascontext unificationin the theorem proving com-
munity, where it is an active area of research [22].

In the next two sub-sections, we show how to use these ideas
to build PTIME inter-procedural analyses for the unary uninter-
preted abstraction, and the linear arithmetic abstraction. The for-
mer partially solves the long-standing open problem of interproce-
dural global value numbering, while the latter is a new proof, in
our uniform setting, for a recently published result [16]. We then
generalize these ideas to a class of strict unitary theories, thereby
extending the results in Section4 to inter-procedural setting. The
hardness result for bitary theories (in Section5) trivially holds in
the inter-procedural setting. It remains an open challenge to see
if the decidability result for finitary convex theories of Section6
would generalize to an inter-procedural setting.

7.1 Unary Uninterpreted Functions

In this section, we describe a PTIME algorithm for inter-procedural
assertion checking when the program is specified using nodes (a)-
(d) and (f), and the expression language of the program involves
unary uninterpreted functions. Unary uninterpreted functions can
be used to model fields of structures and objects in programs. The
case when the expression language of the program involves unin-
terpreted functions of any arity is also referred to as interproce-
dural global value numbering. We mention a brief history of this
long-standing open problem below. The results in this section, thus,
make progress towards solving this open problem.

Our results in this section use two key ideas: (a) computation
of procedure summaries using unification over unknown sequences
of uninterpreted functions, (b) efficient PTIME representation and
manipulation of potentially exponentially large sequences using
singleton context-free grammars.

7.1.1 History of Global Value Numbering

Since checking equivalence of program expressions is an unde-
cidable problem in general, program operators are commonly ab-
stracted as uninterpreted functions to detect expression equiva-
lences. This form of equivalence is also calledHerbrand equiva-
lence[20] and the process of discovering it is often referred to as
value numbering. Kildall [ 13] discovers these equivalences by per-
forming an abstract interpretation [3] over the lattice of Herbrand
equivalences in exponential time. There are several polynomial-

time, but less precise, algorithms that are complete for basic blocks,
but are imprecise in the presence of joins and loops in a pro-
gram [1, 20, 6]. A polynomial time intraprocedural algorithm was
given by Gulwani and Necula [8, 9] and Müller-Olm, R̈uthing, and
Seidl [14]. However, polynomial-time interprocedural global value
numbering algorithm has been elusive. There are some new results,
but only under severe restrictions that functions are side-effect free
and one side of the assertion is a constant [18]. Neither of these
assumptions is satisfied by the example in Figure6.

7.1.2 Computing Procedure Summaries

Terms constructed using unary function symbols can be repre-
sented as strings. For example,f(g(x)) can be treated as the string
fgx. We will denote string variables byα and concrete strings by
C,D,E, F with suitable annotations.

Let x1, . . . , xn be all the program variables (assumed global).
Consider one of then(n − 1) generic assertions, sayx1 = αx2.
We compute a summary for this generic assertion by backward
propagation. This process generates a conjunction of equations of
the formCxi = αC′xj at any point in the procedure. Note that
if we generateCxi = αC′xj at the beginning of the procedure,
then it simply means that there is some run (execution path) of
the procedure in which{x1 7→ Cxi, x2 7→ C′xj , . . .}. Since the
number of paths is unbounded, these conjunctions can grow.

The main observation enabling summary computation is that
these conjunctions can besimplifiedto containat mostn(n−1)+1
equations of the formCxi = α′C′xj—at most one equation for
every pairxi, xj of variables except one pair, for which we can have
two–and one equation of the formα = Eα′F . When we perform
this simplification, we replaceα by Eα′F and the summary is of
the form “x1 = Eα′Fx2 holds at the end of the procedure if some
constraints overα′ and the variables hold at the beginning of the
procedure.” See Figure6 for an example.

The observation that we need to keep only a small number of
equationsCxi = αC′xj intuitively means that we keep only a
few runs. However, these runs in thesimplifiedformula may not
correspond to any real runs, but some equivalent hypothetical runs.

The summary computation algorithm, illustrated in Figure6,
uses the following transfer functions to compute formulas at each
program point from those at successor program points in an itera-
tive manner.

Initialization: The formula at all program points, except at pro-
cedure return, is initialized totrue. The formula at procedure return
point is initialized to bex1 = αx2. (We will later repeat this com-
putation for every pair of variables.) Thus the initial summary of
the procedure is that “x1 = αx2 holds at the end of the procedure
if true holds at the beginning.”

Assignment Node: SeeFigure 3(a).
The formulaψ′ before an assignment nodex := e is obtained from
the formulaψ after the assignment node by substitutingx by e in
ψ, that is,ψ′ = ψ[e/x]. Note that this step preserves theform
Cxi = αC′xj of the equations.

Non-deterministic Assignment Node:SeeFigure 3(b).
If ψ is the formula after the non-deterministic assignment node
x :=?, the formulaψ′ before a non-deterministic assignment node
isψ if x does not occur inψ, and is false otherwise.

Join Node: SeeFigure 3(c).
The formulasψ1 andψ2 on the two predecessors of a join node are
same as the formulaψ after the join node.

Non-deterministic Conditional Node: SeeFigure 3(d).
The formulaψ before a non-deterministic conditional node is ob-
tained by taking the conjunction of the formulasψ1 andψ2 on the
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P (){
1 while (*) { x := fgx; y := gfy; }
2 if (*) { Q(); }
3 }
Q(){

4 while (*) { x := fx; y := fy; }
5 if (*) { P (); }
6 }
main(){

7 y := a; x := fa; P ();
8 assert(x = fy);
9 }

Ite Procedure P Procedure Q
0 true true
1 x = αy, fgx = αgfy x = βy, fx = βfy

(⇔ x = αy, fgα = αgf) (⇔ x = βy, fβ = βf)
2 x = αy, fgx = αgfy, fx = αfy x = βy, fx = βfy, fgx = βgfy

(⇔ x = αy, fgα = αgf, fα = αf) (⇔ x = βy, fβ = βf, fgβ = βgf)
(⇔ x = α′fy, gα′ = α′g, fα′ = α′f) (⇔ x = β′fy, fβ′ = β′f, gβ′ = β′g)
(⇔ x = α′fy, α′ = ε) (⇔ x = β′fy, β′ = ε)
x = fy x = fy

3 x = fy x = fy

(a) Program (b) Summary Computation forP () andQ()

Figure 6. This figure illustrates summary computation for interprocedural analysis over the unary abstraction. In Table (b), the summary
consists of the constraints that must hold at the beginning of the procedureP (orQ) for x = αy (or x = βy respectively) to be an invariant
at the end of the procedure.

two branches of the conditional. However, nowψ is not of the de-
sired form as it can have more thann(n− 1) + 1 equations of the
formCxi = αC′xj . Therefore, we first callSimplify on it:

〈ψ, α = Eα′F 〉 = Simplify(ψ1 ∧ ψ2)

The procedureSimplify , described later, guarantees that (i) every
solution ofψ1∧ψ2 is given byα = Eα′F , whereα′ is constrained
by ψ, and (ii)ψ has at mostn(n − 1) + 1 equations. Finally, we
replaceα byEα′F globally in all formulas.

Procedure Call Node: See Figure3(f).
The formulaψ′ before a procedure call node “CallP ()” is obtained
from the formulaψ after the procedure call node by using the
current summary of the procedureP . If ψ is unsatisfiable, or it
has a unique value forα, then computingψ′ is straight-forward. In
the general case, letCx = αC′y be an equation inψ and let the
summary ofP , for variablesx, y, be given by “x = EβFy holds
at the end of the procedure if

V
u,v

V
i=1,2 Cuviu = βC′

uviv holds
at the beginning.”

We show how to compute the weakest preconditionψ′′ ofCx =
αC′y. It is clear thatCx = αC′y is true after the procedure call
node if

αC′ = CEβF ∧
^

u,v

^

i=1,2

Cuviu = βC′
uviv

holds before the procedure call node. However, this is not of the
required form. The equationαC′ = CEβF simplifies to an equa-
tion of the formα = CEβF ′ or of the formαC′′ = CEβ. In the
first case,ψ′′ is

^

u,v

^

i=1,2

Cuviu = βC′
uviv

with α replaced byCEβF ′ globally. In the second case,ψ′′ is
^

u,v

^

i=1,2

CECuviu = αC′′C′
uviv.

Fixed-point Computation: In presence of loops and/or recur-
sively defined procedures, the algorithm iterates until the formulas
and/or summaries computed at each program point have the same
solutions, or if any formula has no solutions. The example in Fig-
ure6 illustrates this process.

Correctness

Lemma1 shows that unification computation preserves invariance.
Hence, for correctness, we only need to show thatSimplify pre-
serves all unifiers.

Letψ =
V

x,y ψxy, where, for a fixed pairx, y of variables,ψxy

contains all equations of the formCx = αC′y in ψ. We show that
in Lemma5 thatψxy can be simplified to a set containing at most
one equation of the formCx = α′C′y and finitely many equations
of the formEα′ = α′E′, whereα = Fα′.

LEMMA 5. The setψxy = {Cix = αC′
iy : i = 1, 2, 3, . . . , k} of

equations either has no solutions, or all of its solutions are given
by α = Fα′, whereα′ is constrained by a computable set of the
form{Dx = α′D′y,Eiα

′ = α′E′
i, i = 2, . . . , k}.

In the next step, the set of equations{Eiα
′ = α′E′

i, i =
2, . . . , k} ∪ {EFα′ = Fα′E′} is simplified by repeated use of
Lemma6.

LEMMA 6. The equation setψ = {D1α = αD′
1, D2α = αD′

2}
is either unsatisfiable, or has a unique solution, or is equivalent to
a set of the formψ′ = {Dα′ = α′D′, α = α′E}. Moreover, there
is a algorithm that computes these outcomes.

In this way, using the above two results, any formulaψ ≡V
xy ψxy can be simplified to a formula of the formψ′ ≡ α =

Eα′F ∧
V

xy ψ
′
xy whereψ′xy contains at most one equation of the

form Cx = α′C′y and at most one of the formEα′ = α′E′.
However,Cx = α′C′y ∧ Eα′ = α′E′ is easily seen to be
equivalent toCx = α′C′y ∧ ECx = α′E′C′y which is
of the required form. Note that the formulaEα′ = α′E′ does
not depend on the variablesx, y. Hence,ψ needs to have at most
n(n − 1) + 1 equations–one for each pair of variables and one to
encodeEα′ = α′E′ in the required form.

Termination

If we add a new equationCx = αC′y to ψ while computing fix-
point across a loop, andψ becomes unsatisfiable, then the fixpoint
iterations stop immediately. Ifα is uniquely determined by the new
equation, then the iterations stop in one more step. If the new equa-
tion is redundant, then again the iterations stop. Finally, if the new
equation is not redundant andψ is still satisfiable, then either the
cardinality ofψ increases (but it is bounded byn2 + 1), or, its car-
dinality remains the same but the size of|E| (whereEα = αE′

is the strongest such equation implied byψ′) is at most half of its
original size. (This can be observed from the proofs of Lemma5
and Lemma6.) This shows that the fixpoint iterations terminate in
polynomial number of steps.

Interprocedural assertion checking

Assertion checking in the interprocedural case is performed in
a two phase process. In the first phase, we compute summaries
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for each procedure, as described above. The final summary of a
procedureP with n output variables andm input variables will
consist of the following: for each ordered pairx1, x2 of output
variables, we will have “x1 = EαFx2 if some constraintψ
containing (at most)n(n− 1)+1 equations holds at the beginning
of the procedure.” Thus, the summary for any procedure has at most
n4 equations.

In the second phase, we perform assertion checking using back-
ward analysis starting from thegivenassertion, and using the pro-
cedure summaries computed above.

7.1.3 Efficient Representations

The Simplify procedure inherent in the proof of Lemma5 and
Lemma6 is easily seen to take time polynomial in the size of the
equation setψ. However, using a naive (explicit) representation, the
size ofψ can beexponentialin the size of the program, as in the
following example.

EXAMPLE 2. Consider then proceduresP0, . . . , Pn−1 defined as

Pi(xi) { t := Pi−1(x); yi := Pi−1(t); return(yi); }
P0(x0) { y0 := fx0; return(y0); }

The summary of procedurePi is: yi = αxi iff α = f2i

.

Here we appeal to shared representation of strings usingsin-
gleton context-free grammars(SCFG). Since the program itself
implicitly represents the stringsCi’s (in the set of equations in
Lemma5) using this shared representation, we know that such a
shared representation is linear in the size of the program.

EXAMPLE 3. Following up on Example2, we note that the string
f2n

can be represented by the SCFG with start symbolAn and
productions{Ai+1 → AiAi : i = 1, . . . , n} ∪ {A0 → f}. In
particular, the summaries of the procedures can be represented as:
yi = αxi iff α = Ai.

A classic result by Plandowski [19] shows that equality of two
strings represented as SCFGs can be checked in polynomial time.
It is an easy exercise to see that prefix testing and largest common
prefix/suffix computation can also be performed in polynomial
time. Hence, the computational procedure outlined above can be
implemented in polynomial time using the SCFG representation of
strings. In conclusion, this shows that summaries can be computed
in PTIME on the abstraction of unary symbols. We remark here that
Plandowski’s result has been generalized to trees [21] suggesting
that it may be possible to generalize our result to the interprocedural
global value numbering problem.

7.2 Linear Arithmetic

Müller-Olm and Seidl [16] showed that procedure summaries can
be efficiently computed for the abstraction of linear arithmetic
(with only equalities). This result has a simple proof in our frame-
work. Since the theory of linear arithmetic is unitary, we just have to
compute summaries for the generic assertionα1o1 + · · ·+αnon +
α0, whereα0, . . . , αn are regular arithmetic variables. Hence, the
conjunctionψ of equations at any point in the procedure contains
linear equationsoverthe(n+ 1)2 variablesαi and(αixj), where
i = 0, 1, . . . , n andxj are program variables (bounded byn). We
know that there can not be more than(n + 1)2 linearly indepen-
dent (non-redundant) equations. This shows thatψ can have at most
(n+1)2 equations, which means that summaries are small and fix-
point iterations terminate.

As a final step, note that the coefficient can be large (since
the program can encode large numbers succinctly) and hence to
get a true PTIME procedure, we will have to resort to modulo
arithmetic and randomization. We remark here that the proof of

Müller-Olm and Seidl [16] is based on the the observation thatruns
of a procedure correspond to linear transformations and there can
be only quadratic many linearly-independent transformations.

7.3 General Result for Unitary Theories

The interprocedural analyses presented in Sections7.1 and 7.2
are instances of a more general framework for unitary theories.
In a unitary theory, assertions can always be reduced to the form
∧ixi = ei (Lemma1). Hence a generic assertion can be written
asx1 = α[x2, . . . , xn], whereα is a context variable representing
the unknown term structure. In the general framework, procedure
summaries are computed by backward propagating these generic
assertions through nodes (a)-(d) and (f) of Figure3. This will gen-
erate conjunctionsψ of equations of the forme1 = α[e2, . . . , en],
whereei’s are expressions in the theory.

We can obtain a PTIME interprocedural analysis for programs
using expressions from a strict unitary theoryT if
(a) there is a PTIME simplification procedure (technically, proce-
dure for unification in theoryT in the presence of at most one con-
text variable) that, givenψ, returnsψ′ that has the same solutions
asψ and that has a polynomially bounded number of equations;
(b) there is a succinct representation for the expressionsei’s and
the above procedure can efficiently work over this representation;
(c) any setψ can only be strengthened a polynomially-bounded
number of times.
These conditions guarantee, respectively, that summaries are small,
they can be efficiently computed, and fixpoint iterations terminate
quickly. These conditions are satisfied for unary symbols (Sec-
tion 7.1) and linear arithmetic (Section7.2). It is still open if they
hold for arbitrary uninterpreted symbols (global value numbering).

This general framework is also applicable to two special cases
considered in the literature—procedures have only one return value
and no side effects [17, 18], and all assertions have one side con-
stant [18]. In these cases, summary computation simplifies consid-
erably since the context variableα can be effectively eliminated.
This partly explains why the interprocedural extension in these
cases is (almost) “free” [17].

8. Discussion
In this section, we discuss the broader significance of the results
that we have presented in this paper.

8.1 Handling Positive Guards

The results in this paper have uniformly assumed that there are no
assumenodes with positive equalities. In the presence of positive
assume nodes, we lose precision (completeness, but not soundness)
if we use unification to replace a weaker assertion by a stronger
assertion. This loss in completeness is not surprising since the
presence ofpositive guardscan cause assertion checking to become
undecidablefor several abstractions [15, 14].

In practice, heuristics can be used to deal with positive guards.
For instance, the preconditionψ′ before a program nodeAssume(x=y)
can be obtained from the formulaψ after the assume node as fol-
lows:ψ′ ≡ ψ ∨ ψ[x/y] ∨ ψ[y/x]. For rest of the program nodes,
we can use the transfer functions suggested by backward propaga-
tion enhanced with unification. This simple heuristic allows us to
prove the assertionz = 2w in the example given in Figure1. This
suggests that the unification based backward analysis procedure
proposed in this paper can be effective in practice.

8.2 Backward vs. Forward Analysis

The results in this paper advance the state of the art of back-
ward analyses by establishing new techniques for backward pro-
gram analysis based on unification algorithms. Cousot [4] formal-
ized the semantics of sound backward analyses as computing an
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over-approximation of the set of program states obtained by push-
ing the negation of the goal backwards (which is equivalent to
under-approximation of the set of program states obtained by push-
ing the goal backwards). This assumes that the abstract domain is
closed under negation. However, abstract domains are, in general,
not closed under negation, as is the case for all the equality based
abstract domains that we consider in this paper. Additionally, most
of these domains do not have precise transfer functions for for-
ward analysis. Hence, there is no automatic recipe to construct al-
gorithms for performing forward or backward analysis of arbitrary
abstract domains. The results in this paper show how to perform
precise backward analysis over a large class of abstract domains by
using unification algorithms from the corresponding logical theory.

Our algorithms for assertion checking are based on backward
analysis of programs. For several of these algorithms, we can argue
that they are better than forward analyses over corresponding pro-
gram abstractions in terms of efficiency. This is because in order to
perform precise assertion checking, a forward analysis would need
to discover all facts at each program point, since it is a-priori not
clear which facts would be useful to prove the assertion that occurs
later in the code. For some of the program abstractions described
in this paper (in Section6), the underlying abstract lattices over
which the computations need to be performed (to precisely decide
the validity of the assertions) have infinite height. Hence, forward
analyses over those abstractions would not terminate unless widen-
ing techniques are used, which would lead to imprecision. However
(as surprising as it may be) the backward analyses that we describe
in Section6 terminate over the same abstractions since they only
attempts to decide the validity of given assertions (which are finite
in number). Figure4 presents one such example.

On the other hand, for some abstractions, we can argue that for-
ward analyses are more suitable than backward analyses. For ex-
ample, abstractions that reason about pointers. Consider computing
the weakest pre-condition across the assignment∗p := q without
knowing the points-to-set forp. This will need to account for all
possible aliasing scenarios, while a simple forward alias analysis
might be able to establish a small points-to-set for pointerp.

The complementary power of forward and backward analy-
ses [4] is not surprising if we realize that these analyses use fun-
damentally different algorithms to reason over abstractions (that
are not closed under negation). For example, forward analyses use
quantifier elimination and join/widen algorithms over logical theo-
ries as their transfer functions [11]. On the other hand, in this paper,
we show how to use unification algorithms to perform backward
analysis. These new techniques will, therefore, enable new ways of
combining forward and backward analyses in an integrated manner
for program verification (e.g., as in [7]).

8.3 Connections between Program Analysis and Theorem
Proving

Another broader picture that emerges from this paper is the fruit-
ful transfer of results from the theorem proving community to the
world of program analysis. We have shown that forward program
analysis can be made more precise and efficient by a tighter cou-
pling of theorem proving technology [11]. In particular, we showed
how to use results from Nelson-Oppen combination of decision
procedures to generate a more powerful forward analysis by combi-
nation of different forward analyses. This paper demonstrates that
unification procedures can be critical in improving backward analy-
sis. Usingbackward analysis enhanced with unification, we showed
that the unification type of a theory determines the complexity of
the assertion checking problem for the corresponding abstraction.

We believe that observations such as the ones developed in this
paper can lead to significant new insights into program analysis. For
instance, the connection between unification and assertion check-

ing that we established in this paper resulted in a new approach to
computing precise procedure summaries for interprocedural analy-
sis. Summary computation for procedures was easily observed to
require backward propagation enhanced with context unification.
This helped us partially solve the open problem of inter-procedural
global value numbering (i.e., assertion checking in the presence of
uninterpreted symbols). In particular, we gave a polynomial time
algorithm for inter-procedural global value numbering in presence
of only unary uninterpreted functions.

9. Conclusion and Future Work
Unification theory plays a significant role in assertion checking.
The unification type of a theory–unitary, bitary, or finitary–is
critical in determining the complexity of the assertion checking
problem–PTIME , coNP-hard, or decidable–modulo some minor
assumptions on the theories and certain restrictions on the program
models. These results uniformly generalize several known results
and also yield several new ones (see Figure2).

Extension to interprocedural assertion checking is possible by
replacing regular unification by context unification to compute pro-
cedure summaries. This observation explains the interprocedural
analysis algorithm for linear arithmetic and gives a new PTIME in-
terprocedural assertion checking algorithm for the abstraction of
unary uninterpreted symbols. Moreover, it also opens up new av-
enues for building interprocedural analysis engines using context
unification procedures and shared representation for terms [21].

We believe the connections between theorem proving and pro-
gram analysis developed in this paper can lead to significant new
research in both the communities and increase cross-fertilization in
unprecedented ways.
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A. Proof of Lemma 1
First we prove an important property of substitutions and the com-
plete set of unifiers.

LEMMA 7. If T |=
V

i eiσ = e′iσ, thenT |= Unif(
V

i ei = e′i)σ.

PROOF: SupposeT |=
V

i eiσ = e′iσ. Let Unif(
V

i ei = e′i) =
σ1 ∨ · · · ∨ σk. Since{σ1, . . . , σk} is a complete set of unifiers
of
V

i ei = e′i, it follows that there is somej s.t. σj is more
general thanσ, that is,σ =T σjσ

′ for someσ′. For any variable
x, we will show thatσ makesx and xσj equal, that is, we
will show that xσ =T xσjσ. But in the theoryT, we have
xσ =T xσjσ

′ =T xσjσjσ
′ =T xσjσ, using the facts that

σ =T σjσ
′ and that substitutions are idempotent. This completes

the proof of the lemma.
�

We now prove Lemma1.

PROOF: We need to prove thatUnif(e = e′) holds atπ iff e = e′

holds atπ. We will show that in every run of the program,
Unif(e = e′) holds atπ iff e = e′ holds atπ. Therefore,
consider an arbitrary run of the program. This will be given by
some straight-line programs. Letσ be the substitution that maps
each program variablex to the symbolic value ofx (in terms of

the input variables of the program) at program pointπ obtained
by symbolic execution of the given straight-line program.

We need to show thatT |= e1σ = e2σ iff T |= Unif(e1 = e2)σ.
The⇐ direction is trivial sinceUnif(e1 = e2) impliese1 = e2
(in T). The⇒ direction is a consequence of Lemma7.

�

B. Proof of Theorem 1

PROOF: Since the program is of sizen, the number of variables
is bounded byn. Due to the strictness condition, each node in
the flowchart changes at mostn times. Since there are at most
n nodes, there are at mostn2 changes. For each change, we
may have to visit alln nodes once. Hence, there aren3 node
visits. In any such visit,UPrune is the most complex operation we
could perform. In this operation, there are at most2n equations
to check for redundancy. The size of each equation, in shared
representation, is bounded byn. This is because some path in the
program itself contains a representation for the expression in an
equation. Thus, pruning takes at most2n(TUnif(n

2)) time. Hence
the overall time complexity isO(n4(TUnif(n

2) + TValid(n
2))).

�

C. Proof of Lemma 2
We first prove a useful lemma.

LEMMA 8. Let φi be a conjunction of equalities for alli. If the
formulaφ1 ∨ φ2 is valid in a convex theoryT then eitherφ1 or
φ2 is valid in T. In general, if the formula

W
i φi is valid in T then

someφi is valid inT.

PROOF: Suppose the claim is false. Letφ1 be
V

i∈I1
φ1i andφ2

be
V

i∈I2
φ2i, whereφ1i, φ2i are equalities. Sinceφ1 is not valid

in T, there is ai ∈ I1 such thatφ1i is not valid inT. Similarly,
there is aj ∈ I2 such thatφ2j is not valid inT. Therefore, by
convexity, the formulaφ1i ∨ φ2j is not valid inT. This means
that the formulaφ1 ∨ φ2 is not valid inT, which contradicts the
assumption. The second claim can be proved by generalizing the
same argument.

�

We are now ready to prove Lemma2.

PROOF: (Lemma2) ⇒: We need to prove that
W

i Unif(
V

j eij =

e′ij) holds atπ. In other words, we need to show the formula
evaluates to truein every runof the program. Therefore, consider
an arbitrary run of the program. This will be given by some
straight-line code fragment. Letσ be the substitution that maps
each program variablex to the symbolic value ofx (in terms
of the program inputs or the initial values of program variables)
at program pointπ obtained by symbolic execution of the given
straight-line program. Letek 6= e′k, k ∈ K, be the symbolic
evaluations ofall the assume nodes in the straight-line code. SinceW

i

V
j eij = e′ij holds atπ, it follows that

T |=
V

k∈K ek 6= e′k ⇒ (
W

i

V
j eijσ = e′ijσ)

IFF T |=
W

k∈K ek = e′k ∨ (
W

i

V
j eijσ = e′ijσ)

IFF T |= ek = e′k for somek ∈ K, OR
T |=

V
j eijσ = e′ijσ for somei ∈ I

The last step is a consequence of Lemma8. If T |= ek = e′k, thenW
i Unif(

V
j eij = e′ij) holds in this run, and we are done. In the

other case, we haveT |=
V

j eijσ = e′ijσ, from which it follows
using Lemma7 thatT |= Unif(

V
j eij = e′ij)σ.
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⇐: This follows from the fact thatT |= Unif(
V

j eij = e′ij) ⇒V
j eij = e′ij , which is a consequence of the definition of unifiers.

�

D. Proof of Lemma 3
LEMMA 9. Let T be a bitary theory and Lete = e′ be the cor-
responding equation. Ife1, . . . , em−1 denote the symbolic expres-
sions constructed by programCheckT, thenUnif(ej = ej [α/x])
andUnif(e′j = e′j [α/x]) are bothx = α.

PROOF: We prove by induction onj. For the base casej = 1,

Unif(e1 = e1[α/x])
⇔ Unif(e[x/y, α1/z1, α2/z2] = e[x/y, α1/z1, α2/z2][α/x])

By definition
⇔ x = α ∧ α1 = α1

Using the technical side condition in definition of Bitary
⇔ x = α

The other case can be obtained by replacinge by e′ in the above
proof. For the induction step,

Unif(ej+1 = ej+1[α/x])
⇔ Unif(e[ej/y, e

′
j/z1, ej [αj+2/x]/z2] =

e[ej/y, e
′
j/z1, ej [αj+2/x]/z2][α/x])

⇔ Unif(e[y′/y, z′1/z1, z
′
2/z2] = e[y′′/y, z′′1 /z1, z

′
2/z2]∧

y′ = ej ∧ z′1 = e′j ∧ z′2 = ej [αj+2/x]∧
y′′ = ej [α/x] ∧ z′′1 = e′j [α/x])

By introducing new equational definitions
⇔ Unif(y′ = y′′ ∧ z′1 = z′′1 ∧ y′ = ej ∧ z′1 = e′j∧

z′2 = ej [αj+2/x] ∧ y′′ = ej [α/x] ∧ z′′1 = e′j [α/x])
Using the technical side condition in definition of Bitary

⇔ Unif(ej = ej [α/x] ∧ e′j = e′j [α/x])
Removing the dummy variables introduced above

⇔ x = α
By induction hypothesis

The other case can be obtained by replacinge by e′ in the above
proof.

�

We use Lemma9 to prove Lemma3 below.

PROOF: (Lemma3) We prove by induction onj thatAssert(ej =
e′j) holds iff Assert(

Wj+1
i=1 x = αi) holds. Using Lemma1,

it suffices to prove that, iftj and t′j are the symbolic terms
represented byej and e′j , then Unif(tj = t′j) is

Wj+2
i=1 x =

αi. For j = 1, sinceUnif(e = e′) is y = z1 ∨ y = z2
by assumption, it follows thatUnif(e[x�y, α1�z1 , α2�z2 ] =
e′[x�y, α1�z1 , α2�z2 ]) is x = α1 ∨ x = α2 (by variable
renaming).
For the induction step, using the same argument, we observe that

Unif(e[ej�y, e
′
j�z1 ,

ej [αj+2/x]�z2 ] =

e′[ej�y, e
′
j�z1 ,

ej [αj+2/x]�z2 ])
⇔ Unif(ej = e′j) ∨ Unif(ej = ej [

αj+2�x]) Bitary
⇔ Unif(ej = e′j) ∨ x = αj+1 By Lemma9
⇔ (

Wj+2
i=1 x = αi) Induction hyp.

�

E. Proof of Lemma 4

PROOF: We define measure of
miW
`=1

ψ`
i to be the multiset{k−|ψ`

i | :

1 ≤ ` ≤ mi, ψ
`
i 6≡ false}, wherek is the total number of

variables, and|ψ`
i | denotes the number of conjuncts inψ`

i . Since
eachψ`

i is a substitution mapping, this measure is a multiset
on natural numbers. We compare two measures using a multiset
extension of the ordering> on natural numbers [5].

We now show that the measure ofψi+1 is smaller than that ofψi.
Sinceψi 6⇒ ψi+1, there exists1 ≤ ` ≤ mi such thatψ`

i 6⇒ αj
i

for all 1 ≤ j ≤ ni. This implies that for all1 ≤ j ≤ ni, if
ψ`

i ∧αj
i is notfalse, then|Unif(ψ`

i ∧αj
i )| > |ψ`

i |. Also, note that
for all 1 ≤ `′ ≤ mi such that̀ ′ 6= `, if ψ`′

i ∧αj
i is notfalse, then

|Unif(ψ`′
i ∧αj

i )| ≥ |ψ`′
i | for all 1 ≤ j ≤ ni. Hence, the measure

of ψi+1 is smaller than that ofψi.

Since the multiset extension of a well-founded ordering is well-
founded [5], the measure cannot infinitely decrease. Hence, the
chainC is finite.

�

F. Proofs of Section 7
We prove Lemma5 by first showing how two equations of the form
Cx = αC′y can be simplified.

LEMMA 10. The two equations,Cix = αC′
iy for i = 1, 2, either

have zero solutions, or exactly one solution, or all its solutions are
given byα = Eα′ whereα′ is constrained by two equations of the
formCx = α′C′y andDα′ = α′D′.

PROOF: Wlog assume|C1| ≤ |C2|. We split the proof into cases.
(1)C1 is a suffix ofC2. LetC2 = D2C1.

C1x = αC′
1y, D2C1x = αC′

2y Initial ψ
⇔ C1x = αC′

1y, D2αC
′
1y = αC′

2y UsingC1x 7→ αC′
1y

⇔ C1x = αC′
1y, D2αC

′
1 = αC′

2 Cancely

If C′
1 is not a suffix ofC′

2, then there are no solutions. Otherwise
the second equation can be written in the formD2α = αD′,
whereC′

2 = D′C′
1.

(2) C1 is not a suffix ofC2. LetC = lcs(C1, C2) be thelargest
common suffixof C1 andC2. Therefore,C1 = D1C andC2 =
D2C for nonemptyD1, D2. Now, there are two subcases.
(2a)C′

1 is not a suffix ofC′
2. Let C′ = lcs(C′

1, C
′
2). We will

haveC′
1 = D′

1C
′ andC′

2 = D′
2C

′ whereD′
1, D

′
2 are nonempty

strings.

D1Cx = αC′
1y, D2Cx = αC′

2y Initial ψ
⇔ D1Cx = αD′

1C
′y, D2Cx = αD′

2C
′y C′ = lcs(C′

1, C
′
2)

⇔ Cx = C′y, D1 = αD′
1, D2 = αD′

2 Choice ofC′, D′

These equations, if satisfiable, will have at most one solution for
α which can be easily computed from the above equations.
(2b)C′

1 is a suffix ofC′
2. LetC′

2 = D′
2C

′
1.

D1Cx = αC′
1y, D2Cx = αC′

2y Initial ψ
⇔ D1Cx = αC′

1y, D2Cx = αD′
2C

′
1y UseC′

2 = D′
2C

′
1

Chooseα′ s.t.α′C′
2y = Cx andα = D1α

′

⇔ Cx = α′C′
1y, D2Cx = D1α

′D′
2C

′
1y Supress defn ofα

⇔ Cx = α′C′
1y, D2α

′ = D1α
′D′

2 CancelC′
1y

The second equation above has a solution only ifD1 is a prefix
of D2. In that case, it simplifies toDα′ = α′D′

2, whereD1D =
D2. This completes the proof.

�

PROOF: (Lemma5) Sort the equation s.t.|C1| ≤ |C2| ≤ · · · ≤ |Ck|.
We use Lemma10 on the first two equations. If there is a unique
solution, we test if it makes all other equations valid. If the first
two equations have no solutions, then we are again done. If we
instead get back{Cx = α′C′y,Dα′ = α′D′} andα = Eα′,
we replaceα byEα′ in all the other equations.
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We repeat the above process now on the set{Cx = α′C′y, Cix =
Eα′C′

iy, i = 3, . . . , k}. Note that |E| ≤ |C1| and hence
this new equation set, if satisfiable, can be written in the form
{Cx = α′C′y,Dix = α′C′

iy, i = 3, . . . , k}.

Since we reduce the number of equations by one in each step, after
k− 1 steps, we will be left with at most one equation of the form
Dx = α′D′y, at mostk − 1 equations of the formEα′ = α′E′,
and one equationα = Fα′ that keeps track of the relationship of
the current variableα′ with the original variableα.

�

We will next prove two useful lemmas about equations over
strings before proving Lemma6.

LEMMA 11. The equationCβ = βD has the same set of unifiers
as the equationClβ = βDl for all l ≥ 1.

PROOF: ⇒: If Cβ = βD, thenCCβ = CβD = βDD and
applying this repeatedly we conclude thatClβ = βDl.
⇐: We will show that every solution ofClβ = βDl is also a
solution ofCβ = βD. Let β be a solution ofClβ = βDl. First
suppose that the length ofβ is atmost|C|l. Therefore,β is a prefix
of Cl that is also a suffix ofDl. LetCl = ββ′. ThenD has to be
β′β. Therefore, there areA,B s.t.β = CmA, β′ = BCl−m−1,
C = AB, andD = BA. Now Cβ = ABCmA = Cm+1A
and βD = CmABA = Cm+1A and henceβ is a solution
for Cβ = βD. Finally, if length ofβ is more than|C|l, then
necessarilyβ = Cmβ′, wherem ≥ l and length ofβ′ is less
than|C|l. By previous case, we know thatCβ′ = β′D. Hence, it
is easy to see thatCβ = βD as well.

�

LEMMA 12. The equation set{Cβ = βC′, CDβ = βC′D′} has
the same unifiers as the set{Cβ = βC′, Dβ = βD′}.

PROOF: As far as the set of unifiers is concerned, note that

Cβ = βC′, CDβ = βC′D′

⇔ Cβ = βC′, CDβ = CβD′ ReplacingβC′ byCβ
⇔ Cβ = βC′, Dβ = βD′ CancellingC from both sides

�

PROOF: (Lemma 6) Wlog assume that|D1| ≤ |D2|. Note that
if |D1| 6= |D′

1| or |D2| 6= |D′
2|, then ψ has no solutions.

Henceforth, by convention, the length of the string represented
by unprimed variable (e.g.D2) will be always equal to the length
of the string represented by thecorrespondingprimed variable
(D′

2).

We distinguish the following cases:
(1) D1 is not a prefix ofD2: In this case we should have
lcp(D1, D2) = αlcp(D′

1, D
′
2), where lcp returns thelargest

common prefixof its arguments. This equation can have at most
one solution forα. Henceψ has at most one solution.
(2)D′

1 is not a suffix ofD′
2: Similar to the previous case, in this

case we would necessarily havelcs(D1, D2)α = lcs(D′
1, D

′
2).

This equation can have at most one solution forα. Henceψ has
at most one solution.
(3) EitherDl

1 is not a prefix ofD2 or D′
1

l is not a suffix ofD′
2,

wherel = b|D2|/|D1|c: Using Lemma11D1α = αD′
1 is equiv-

alent toDn
1α = αD′

1 for all n ≥ 1. Hence this case is similar to
(1) and (2) above and we will have at most one solution forα.
(4) Either D2 is not a prefix ofDl+1

1 or D′
2 is not a suffix of

D′
1

l+1, wherel = b|D2|/|D1|c: Similar to case (3), there is at
most one solution in this case.

(5) All cases above do not apply.In this case, we necessarily have
D1 = AB,D′

1 = B′A′,D2 = (AB)lA andD′
2 = A′(B′A′)l.

In the following equivalence preserving transformations, we do
not show definitions (equations of the formα = e) to conserve
space. First assumeA′B′ = B′A′.

ABα = αB′A′, (AB)lAα = αA′(B′A′)l Initial ψ
⇔ ABα = αB′A′, (AB)lAα = α(B′A′)lA′

UsingA′B′ = B′A′

⇔ (AB)lα = α(B′A′)l, (AB)lAα = α(B′A′)lA′ Lem.11
⇔ (AB)lα = α(B′A′)l, Aα = αA′ Lem.12
⇔ ABα = αB′A′, Aα = αA′ Lem.11

If A′B′ 6= B′A′, let C = lcp(A′B′, B′A′) and letD be
s.t. CD = B′A′. The equivalence preserving transformation
below shows that the set of all solutions forψ are given by
α = α1D(B′A′)l−1, whereα1 is constrained by

{ABα1 = α1DC, Aα1 = α1A
′′}

andA′′ is a solution forA′C = CA′′. If there is no suchA′′ then
there is no solution.

ABα = αB′A′, (AB)lAα = αA′(B′A′)l

⇔ (AB)lα = α(B′A′)l, (AB)lAα = αA′(B′A′)l

Lem.11
⇔ (AB)lα1 = αC, α = α1D(B′A′)l−1,

(AB)lAα = αA′(B′A′)l

By choice ofα1 andC
⇔ (AB)lα1 = α1D(B′A′)l−1C,

(AB)lAα1D(B′A′)l−1 = α1D(B′A′)l−1A′(B′A′)l

Supressing definition ofα
⇔ (AB)lα1 = α1D(B′A′)l−1C,

(AB)lAα1 = α1D(B′A′)l−1A′C
CancelD(B′A′)l−1

Sinceα1 was chosen such that(AB)lα1 is a prefix of(AB)lα1,
it follows that the right-hand side strings should also have the
same relation.

⇔ (AB)lα1 = α1D(B′A′)l−1C,
(AB)lAα1 = α1D(B′A′)l−1CA′′

NecessarilyA′C = CA′′ for someA′′

⇔ (AB)lα1 = α1D(B′A′)l−1C, Aα1 = α1A
′′

Using Lemma12
⇔ ABα = αB′A′, Aα1 = α1A

′′

Using definition ofα and Lemma11
⇔ ABα1D(B′A′)l−1 = α1D(B′A′)l, Aα1 = α1A

′′

Usingα = α1D(B′A′)l

⇔ ABα1 = α1DC, Aα1 = α1A
′′

CancelD(B′A′)l−1

In either case, note that the new pair of equation derived in the
last step (which is equivalent to initial equations modulo the
definition α) are smaller than the original set. In fact, the sum
of the lengths,|AB| + |A| is at most half the sum of lengths
|AB|+ |AB|l + |A|. Hence, the number of times this procedure
can be applied repeatedly is bounded bylog of the maximum
length of input strings, which is bounded by2n. As a result, after
at mostn iterations, we will terminate with just one equation
remaining (unless a unique solution is found or the equations are
detected to be unsatisfiable at some intermediate step).

�
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