<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Satisfiability Modulo Theories (SMT) 9. Surface the problem of determining satisfiability of formulas modulo ackground theories. 9. Examples of background theories. 9. Examples of background theories. 9. Example of lock ($f(x)$)) = x . 9. Example of formula: 1. $f - f = f + 2, f(f + 3) \neq f(f + 6)$	<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>	 Yeree and State State
Supported Features	Using Yices • Starting yices shell: ./yices -i • Batch mode: • Yices format: ./yices ex1.ys • SMT-LIB format: ./yices -smt ex1.smt • Dimacs format: ./yices -d ex1.cmf • Increasing verbosity level: ./yices -v 3 ex1.ys • Producing models: ./yices -e ex1.ys	<pre>First Example (define f::(-> int int)) (define i::int) (define j::int) (assert (= (- i 1) (+ j 2))) (assert (/= (f (+ i 3)) (f (+ j 6)))) → unsat</pre>	<pre>Check</pre>
<pre>texterestInter-,st Extracting Models /yices -e ex3.ys (define x::int) (define f::(-> int int)) (assert (/= (f (+ x 2)) (f (- y 1)))) (assert (= x (- y 4))) (check) → sat (= x -2) (= y 2) (= (f 0) 1) (= (f 1) 3)</pre>	<pre>type: Description: Descri</pre>	<section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></section-header>	<pre>Retracting Assertions Assertions asserted with assert+ can be retracted. Lemmas are reused in the next call to (check). Yices knows which lemmas are safe to reuse. (assert+ (= (+ i (* 2 k)) 10)) (assert+ (= (f k) (f i))) (assert+ (= (f k) (f i))) (assert+ (/= (f (+ i 3)) (f (+ j 6)))) (check) → unsat (retract 2) (check)</pre>
 Stacking logical contexts (push) Saves the current logical context on the stack. (pop) Restores the context from the top of the stack. Pops it off the stack. Any changes between the matching push and pop commands are flushed. The context is restored to what it was right before the push. Applications (depth-first search): Symbolic Simulation Extended Static Checking 	$\label{eq:barrent} \begin{split} & \textbf{Weighted MaxSat} \\ \textbf{Subscript{absence}} \\ \textbf{s./yices -e ex5.ys} \\ & (assert+ (= (+ i (* 2 k)) 10) & 10) \\ & (assert+ (= (- i 1) (+ j 2)) & 20) \\ & (assert+ (= (f k) (f i)) & 30) \\ & (assert+ (/= (f (+ i 3)) (f (+ j 6))) 15) \\ & (max-sat) \\ & \rightarrow sat \\ & unsatisfied assertion ids: 4 \\ & (= i 10) (= k 0) (= j 7) (= (f 0) 11) \\ & (= (f 10) 11) (= (f 13) 12) \\ & cost: 10 \end{split}$	Type checking 9. A generative system is the input is correct. 9. By default, fices assumes the input is correct. 9. It may crash if the input has type errors. 9. Our can core Yiese to "type check" the input. 9. Jyiege to extly system is the input system is the inpu	 → Sat Other useful commands (reset) - reset the logical context. (status) - display the status of the logical context. (echo [string]) - prints the string [string].

 Function (Array) Theory Process (like PVS) does not make a distinction between arrays and functions. Function updates. Lambda expressions. Extensionality 	<pre>Function (Array) Theory (cont.) . tample: ./yices fl.ys (define A1::(-> int int)) (define A2::(-> int int)) (define x1:int) (define w1:int) (define x1:int) (define w1:int) (define f1:(-> int int)) (define f1:(-> int int)) (assert (= (update A1 (x) v) A2)) (assert (= (update A1 (x) v) A2)) (assert (= (update A1 (y) w) A2)) (assert (= (g A1) (g A2))) (check) → unsat</pre>	Lambda expressions • Example: ./yices -e f2.ys (define f::(-> int int)) (assert (or (= f (lambda (x::int) 0)) (= f (lambda (x::int) (+ x 1))))) (define x::int) (assert (and (>= x 1) (<= x 2))) (assert (>= (f x) 3)) (check) \rightarrow sat (= x 2) (= (f 2) 3)	<pre>Provide the set of the set</pre>
<pre>Fixed-size bit-vectors 4. It is implemented as a satellite theory. 4. Straightforward implementation: 4. Singlification rules: 4. Singlige for all bit-vector operators but equality. 4. Singlige between bit-vector terms and the boolean variables. 5. Straighe: /yices - e bv.ys (define b::(bitvector 4)) (assert (= b (bv-add 0b0010 0b0011))) (check) 4. unsat (= b 0b0101) </pre>	<pre>Dependent types 4. Useful for stating properties of uninterpreted functions. 5. Useful for stating properties of uninterpreted functions. 5. Useful for usef</pre>	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>
<pre>Quantifiers: example /yices q.ys (define f::(-> int int)) (define g::(-> int int)) (define a::int) (assert (forall (x::int) (= (f x) x))) (assert (forall (x::int) (= (g (g x)) x))) (check) → unsat</pre>	<pre>C API . Yices distribution comes with a C library. . Yices_c.h . yices_c.h . yicesl_c.h (Lite version).</pre>	 Conclusion Yices an efficient and flexible SMT solver. Yices supports all theories in SMT-LIB and much more. Is being used in SAL, PVS, and CALO. Yices in coll Call Yices in coll Call Yices is freely valiable for end-users. Ib try: //yices.csl.sri.com Usupported Platforms: Linux Windows: Cygwin & MinGW Mac OSX 	