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Introduction

• We’ve distributed the PVS Verification System since 1993

◦ Formal specification and theorem proving environment comparable to

Isabelle/HOL

• PVS is more automated than most other systems

◦ Decision procedures, model checker, abstractor, evaluation

• But now we’re looking for a massive increase in automation

1. It’s the only way for technology transfer into industrial/commercial use

2. Part of a potential paradigm shift in how verification systems are built and used

• I’ll talk mostly about the first of these, returning to the second near the end
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Industrial Applications of Formal Methods

• Mostly driven by assurance concerns

◦ In critical (often regulated) industries

◦ And others with high cost of failure

• In these contexts, formal methods are about calculating properties of computer

system designs

• Just like engineers in traditional disciplines use calculation to examine their designs

◦ E.g., PDEs for aero, finite elements for structures

• So, with suitable design descriptions, we could use formal calculations to

◦ Determine if all reachable states satisfy some property

◦ Determine whether a certain state is always achievable
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But Hasn’t That Been Tried and Failed?

Yes, it failed for three reasons

• No suitable design descriptions

◦ Code is formal, but too big, and too late

◦ Requirements and specifications were informal

◦ Engineers rejected formal spec’n languages (e.g., ours)

• Narrow notion of formal verification

◦ Didn’t contribute to traditional processes (e.g., testing)

◦ Didn’t fit the flow

◦ Didn’t reduce costs or time (e.g., by early fault detection)

◦ It was “all or nothing”

• Lack of automation

◦ Couldn’t mechanize the huge search effectively

◦ So needed human guidance—and interactive theorem proving is an arcane skill,

and not everyone finds it fun!
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Formal Verification by Theorem Proving: The Wall
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Newer Technologies Have Reduced The Wall Somewhat
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But Effort/Assurance Relationship Is Not Linear

Assurance

Effort

The interesting area is the blank spot to the left
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The Opportunity

A convergence of three trends

• Industrial adoption of model-based devel’t environments

◦ Use a model of the system (and its environment) as the focus for all design and

development activities

◦ E.g., Simulink/Stateflow, SCADE and Esterel, UML

◦ Some are ideal for FM (others not, but can make do)

• New kinds of formal activities

◦ Fault tree analysis, test case generation, extended static checking (ESC), formal

exploration, runtime verification, environment synthesis, controller synthesis

• More powerful, more automated deductive techniques

◦ Approaches based on “little engines of proof”

◦ New engines: commodity SAT, Multi-Shostak

◦ New techniques: (infinite) bounded model checking
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Industrial Adoption of Model-Based Development

• Give access to formal descriptions throughout the lifecycle

• Being adopted at a surprisingly rapid pace

• A380 (SCADE), 7E7 (TBD) software developed this way

• 550,000 Matlab licenses; how many UML?

• It was Ford that induced Mathworks to develop Stateflow

◦ Appears to have complex semantics, but we have a surprisingly simple

formalization

• Not just embedded systems

◦ “Business logic”

◦ System C and System Verilog: projections of 50,000 block designers, and

500,000 who assemble blocks

• Now, we just need to add analysis
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New Kinds of Formal Analyses and Activities

• Support design exploration in the early lifecycle

◦ “Can this state and that both be active simultaneously?”

◦ “Show me an input sequence that can get me to here with x > y”

• Provide feedback and assurance in the early lifecycle

◦ Extended static checking

? E.g., Spark Examiner

◦ Reachability analysis (for hybrid and infinite-state as well as discrete systems)

• Automate costly and error-prone manual processes

◦ E.g., test case generation

• Together, these can provide a radical improvement in the traditional “V”; FM

disappears inside traditional processes
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Simplified Vee Diagram

system
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Automated formal analysis can tighten the vee
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Tightened Vee Diagram
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Example: Stateflow

Statechart and flowchart notation of Matlab/Simulink
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Analyzing Stateflow

• First, we need a formal semantics

• Stateflow is superficially similar to other statecharts notations

• But is actually quite different

• It’s a purely sequential programming language

• Semantics needs to explicate this

• We do this with an SOS semantics

◦ Hamon and Rushby, FASE ’04

• Have a static analyzer to enforce restrictions and guidelines

◦ E.g., no dependence on 12 o’clock rule

• Now suppose we want a test case to reach a particular state

◦ Need to solve the path predicates that get us there

• Both require deciding/constraint satisfaction for propositional combinations of

arithmetic expressions
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Little Engines of Proof (LEP)

• In contrast to one size fits all uniform proof procedures (e.g., resolution), LEP

focuses on efficient solutions to important cases, and making them work together

• In the early lifecycle we have cts quantities (real numbers and their derivatives),

integers, other infinite and rich domains

• Later in the lifecycle, we have bounded integers, bitvectors, abstract data types

• Several of these theories are decidable, such as

◦ Real closed fields

◦ Integer linear arithmetic

◦ Equality with uninterpreted functions

◦ Fixed-width bitvectors

• Challenge is: decide their combination and to do it efficiently
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Decision Procedures

• Tell whether a formula is inconsistent, satisfiable, or valid

• Or whether one formula is a consequence of others

◦ E.g., does 4 × x = 2 follow from x ≤ y, x ≤ 1 − y, and 2 × x ≥ 1 when the

variables range over the reals?

Can use heuristics for speed, but must always terminate and give the correct answer

• Most interesting formulas involve several theories

◦ E.g., does

f(cons(4 × car(x) − 2 × f(cdr(x)), y)) = f(cons(6 × cdr(x), y))

follow from 2 × car(x) − 3 × cdr(x) = f(cdr(x)) ?

Requires the theories of uninterpreted functions, linear arithmetic, and lists

simultaneously
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Deciding Combinations Of Theories

• We want methods for deciding combinations of theories that are modular (combine

individual decision procedures), integrated (share state for efficiency), and sound

• Need to make some compromises

◦ The combination of quantified integer linear arithmetic with equality over

uninterpreted functions is undecidable

But the ground (unquantified) combination is decidable

• Our method (Shostak) works for theories that are canonizable and solvable

◦ Most theories of practical concern

◦ Others can be integrated using the slower method of Nelson-Oppen

◦ Or by a new insight that relaxes solvability
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Shostak’s Method

• Yields a modular, integrated, sound decision procedure for the combined theories

◦ Invented at SRI more than 20 years ago

◦ Developed continuously since then

◦ First correct treatment published in 2002

◦ Correctness has been formally verified in PVS

◦ Previous/other treatments are incomplete, nonterminating, don’t work properly for

more than two theories

• Combination of canonizers is a canonizer for the combination

◦ Independently useful—e.g., for compiler optimizations

◦ Assert path predicates leading to two expressions; expressions are equal if they

canonize to identical forms
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Deciding Combinations Of Theories

Including Propositional Calculus

• So far, can tell whether one formula follows from several others—satisfiability for a

conjunction of literals

• What if we have richer propositional structure

◦ E.g., x < y ∧ (f(x) = y ∨ 2 ∗ g(y) < ε) ∨ . . . for 1000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

• Get a solution from a SAT solver (if none, we are done)

• Restore the interpretation of variables and send the conjunction to the core decision

procedure

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment—but isn’t it expensive to keep doing this?
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Deciding Combinations Of Theories Including Propositional Calculus (ctd.)

• Yes, so first, do a little bit of work to find fragments that explain the unsatisfiability,

and send these back to the SAT solver as additional constraints (i.e., lemmas)

• Iterate to termination

• We call this “lemmas on demand” or “lazy theorem proving”

• Example, given integer x: (x < 3 ∧ 2x ≥ 5) ∨ x = 4

◦ Becomes (p ∧ q) ∨ r

◦ SAT solver suggests p = T, q = T, r =?

◦ Ask decision procedure about x < 3 ∧ 2x ≥ 5, it says No!

◦ Add lemma ¬(p ∧ q) to SAT problem

◦ SAT solver then suggests r = T

◦ Interpret as x = 4 and we are done

• It works really well
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ICS: Integrated Canonizer/Solver

• ICS is our implementation of everything just described

◦ And some things not described: proof objects, rich API

ICS decides the combination of unquantified integer and real linear arithmetic,

bitvectors, equality with uninterpreted functions, arrays, tuples, coproducts, recursive

datatypes (e.g., lists and trees), and propositional calculus

◦ Linear arithmetic solver uses a fast new method

• Its SAT solver is specially engineered for this application

◦ Large gains over loose combination with commodity SAT solver

Benchmarking confirms ICS is competitive as a SAT solver, orders of magnitude

faster than other decision procedures

• Accessed as a C library, can be called from virtually any language, also has an

interactive ascii front end
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ICS (continued)

• Developed under RedHat Linux, but ported to Solaris, MAC OS X, and to Cygwin (for

Windows)

• Discharges tens of thousand ESC-type problems per second

• Can be used instead of legacy decision procedures in PVS

• Used in SAL (see later)

• Free for noncommercial purposes under license to SRI

• Visit ics.csl.sri.com or ICanSolve.com

• Plans include integer completeness, nonlinear arithmetic, quantifier elimination,

definition expansion

◦ And more builtin glue logic

• Anything previously done with a SAT solver (e.g., diagnosis, planning, controller

synthesis) can be done better with ICS
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Bounded Model Checking

• A key technology that finds many applications in tightening the Vee is bounded

model checking (BMC)

• Is there a counterexample to this property of length k?

• Same method generates structural test cases

◦ Counterexample to “there’s no execution that takes this path”

And can be used for exploration

• Try k = 1, 2, . . . 100 . . . until you find a bug or run out of resources or patience
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Bounded Model Checking (ctd.)

• Given a system specified by initiality predicate I and transition relation T on states

S, there is a counterexample of length k to invariant P if there is a sequence of

states s0, . . . , sk such that

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬P (sk)

• Given a Boolean encoding of I and T (i.e., a circuit), this is a propositional

satisfiability (SAT) problem

• Needs less tinkering than BDD-based symbolic model checking, can handle bigger

systems, find deeper bugs

• Now widely used in hardware verification

◦ Though they generally use several methods in cascade
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Infinite BMC

• Suppose T is not a circuit, but software, or a high-level specification

• It’ll be defined over reals, integers, arrays, datatypes, with function symbols,

constants, equalities, inequalities etc.

• So we need to solve the BMC satisfiability problem

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬P (sk)

over these theories

• Typical example

◦ T has 1,770 variables, formula is 4,000 lines of text

◦ Want to do BMC to depth 40

• Hey! That’s exactly what ICS does
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Infinite and Finite BMC

• Later lifecycle products replace infinite integers by representations as fixed width

bitvectors, etc.

• Can encode some of these datatypes in pure SAT

◦ E.g., bitvectors as array of booleans

• And give SAT-level implementations of operations on them

◦ E.g., hardware-like adders, shifters

• Exponentially less efficient than ICS decision procedures on some things (e.g.,

barrel shifter)

• But more efficient on others

• Exact tradeoffs are fuzzy, and some applications already split things up (e.g., into

arrays) before sending to ICS

• So we’re providing a “dial” that determines how much of the analysis for finite types

is handled by decision procedures and how much by SAT
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SAL: Symbolic Analysis Laboratory

• SAL is our system for analyzing state machines

• Civilized (intermediate) language, similar to PVS

◦ Parameterized modules, subtypes etc.

◦ Specialized to transition systems

◦ Both guarded commands and SMV-like assignments

◦ Synchronous and asynchronous composition

◦ Orthogonal assertion languages (currently LTL and CTL)

• State-of-the-art SMC and BMC model checkers for LTL

◦ SMC uses CUDD, BMC can use several SAT solvers

• Unique infinite bounded model checker for LTL

◦ Can use several decision procedures

• Unique witness model checker (WMC) for CTL

• Pretty good explicit state model checker

• Scriptable (Scheme) interface over powerful API
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Application to (Stateflow) Test Case Generation

• Well known that model checkers can generate test cases

◦ Set trap variables at targeted states or transitions

◦ Model check assertions that trap variables are always false

◦ Counterexamples are the test cases

• Generates many short test cases with much redundancy

• Instead, write a 10-line Scheme program on the SAL API that

◦ Searches for satisfaction of any trap variable

◦ From there searches for sat’n of any other trap variable

◦ Iterates previous step, slicing transition relation each time

◦ Iterates the whole thing to completion

• Finds a single test case of length 86 for Stateflow specification of shift scheduler for

4-speed automatic transmission that achieves full state and transition coverage
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Broader Picture: Verification with SMC

• Symbolic model checkers can verify finite state systems

• And via predicate abstraction (automated by decision procedures), they can verify

infinite state systems

• Symbolic model checkers can calculate the reachable stateset

◦ Which is the strongest invariant

• The concretization of the reachable states of an abstraction is an invariant of the

concrete system

◦ And often a strong one

• Theorem provers need invariants

• So modify a symbolic model checker to return the reachable states as a formula that

a theorem prover can manipulate

• Has been done (by Sergey Berezin) for CMU SMV and is used in InVeSt [Bensalem,

Lakhnech & Owre, CAV 99]
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Aside: Property-Preserving Abstractions

• Given a transition relation T on S and property P , a property-preserving abstraction

yields a transition relation T̂ on Ŝ and property P̂ such that

T̂ |= P̂ ⇒ T |= P

Where T̂ and P̂ that are simple to analyze

• A good abstraction typically (for safety properties) introduces nondeterminism while

preserving the property
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Aside: Calculating an Abstraction

• Transition needed between given pair of abstract states?

• Given abstraction function φ : [S→Ŝ] we have

T̂ (ŝ1, ŝ2) ⇔ ∃s1, s2 : ŝ1 = φ(s1) ∧ ŝ2 = φ(s2) ∧ T (s1, s2)

• We use highly automated (i.e., sound but incomplete) theorem proving to construct

the abstracted system:

◦ If we include transition iff the formula is proved

◦ There’s a chance we may fail to prove true formulas

◦ This will produce unsound abstractions

• So turn the problem around and calculate when we don’t need a transition: omit

transition iff the formula is proved

¬T̂ (ŝ1, ŝ2) ⇔ ` ∀s1, s2 : ŝ1 6= φ(s1) ∨ ŝ2 6= φ(s2) ∨ ¬T (s1, s2)

• Now theorem-proving failure affects accuracy, not soundness

• We call this “failure tolerant theorem proving”
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Aside: Hybrid Abstraction

• A variant on this approach can reduce hybrid systems (e.g., Simulink/Stateflow) to

sound discrete abstractions

◦ Which are then examined by model checking

• Abstracts polynomials over continuous variables and their first j derivatives to their

qualitative signs {−, 0, +}.

• Computation uses a decision procedure over real closed fields

• The method is complete for linear hybrid systems

• Heuristically effective for others

• Allows computation of reachable states for hybrid systems (e.g., “will these two

aircraft ever collide?”)

• Has solved much harder problems than other methods
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Broader Picture 2:

Extending (Infinite and Finite) BMC to Verification

• In BMC, we should require that s0, . . . , sk are distinct

◦ Otherwise there’s a shorter counterexample

• And we should not allow any but s0 to satisfy I

◦ Otherwise there’s a shorter counterexample

• If there’s no path of length k satisfying these two constraints, and no

counterexample has been found of length less than k, then we have verified P

◦ By finding its finite diameter

• Seldom works in practice
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Alternative: Automated k-Induction

• Ordinary inductive invariance (for P ):

Basis: I(s0) ⊃ P (s0)

Step: P (r1) ∧ T (r1, r2) ⊃ P (r2)

• Extend to induction of depth k:

Basis: No counterexample of length k or less

Step: P (r1) ∧ T (r1, r2) ∧ P (r2) ∧ · · · ∧ P (rk−1) ∧ T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Avoid loops and degenerate cases in the antecedent paths as in BMC

• Method does work in practice and is complete for some problems (e.g., timed

automata)
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k-Induction is Powerful

Violations get harder as k grows

invariant

reachable states

all states

initial states
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Broader Picture 3:

Integrating BMC With Informal Methods

• With big problems, may be unable to take k far enough for BMC to get to interesting

states

• So, instead, start from states found during random simulation

• Can be seen as a way to amplify the power of simulation

• Or to extend its reach
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Amplifying The Power Of Simulation

Test sequence found by simulation

Test sequence amplified by bounded model checking
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Extending The Reach Of Simulation

Random simulation can have trouble reaching some parts of the state space

Test sequence found by simulation

Unvisited states
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Extending The Reach Of Simulation

So use BMC to jumpstart entry into those parts

Test sequence found

by model checking

Test sequence found by simulation

Test sequence continued by simulation
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Putting It All Together: Maybe a Paradigm Shift

• It is now fairly routine to have model checkers as backends to theorem provers (e.g.,

PVS), or proof assistants as front ends to model checkers (e.g., Cadence SMV)

• But we envisage a larger collection of symbolic computational procedures

◦ Decision procedures, abstractors, invariant generators, model checkers, static

analyzers, test generators, ITPs

• Interacting through a scriptable tool bus

• The bus manages symbolic and concrete artifacts

◦ Test cases, abstractions, theorems, invariants

Over which it performs evidence management

• Focus shifts from verification to symbolic analysis

◦ Iterative application of analysis to artifacts to yield new artifacts, insight and

evidence

John Rushby, SRI ICS, SAL, and Stateflow: 40



Integrated, Iterated Analysis
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Summary: Near-Term Opportunity

• Model-based design methods are a (once-in-a-lifetime?) opportunity to get at formal

artifacts early enough in the lifecycle to apply useful analysis within the design loop

• And formal analysis tools are now powerful enough to do useful things without

interactive guidance

• The challenge is to find good ways to put these two together

◦ Deliver analyses of interest and value to the developers

◦ Or certifiers

◦ But must fit in their flow

So can shift from technology push to pull

• Disappearing (or invisible) formal methods is our slogan for this approach: apply

formal automation to familiar practices
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Summary: Longer-Term Promise

• Symbolic analysis could become the dominant method in systems development and

assurance

• And programming could be supplanted by construction of logical models

• And deduction will do the hard work
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Summary: Technology

• The technology of automated deduction (and the speed of commodity workstations)

has reached a point where we can solve problems of real interest and value to

developers of embedded systems

• Embodied in our systems

PVS.csl.cri.com: comprehensive interactive theorem prover

ICS.csl.sri.com: embedded decision procedures

SAL.csl.sri.com: model checking toolkit (explicit, symbolic, bounded,

infinite-bounded), and (soon) tool-bus

• And in numerous papers accessible from http://fm.csl.sri.com,

including our Roadmap
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A Bigger Vision: 21st Century Mathematics

• The industrialization of the 19th and 20th century was based on continuous

mathematics

◦ And its automation

• That of the 21st century will be based on symbolic mathematics

◦ Whose automation is now feasible

Allows analysis of systems too complex and numerically too indeterminate for

classical methods

• Example: symbolic systems biology

◦ Knockouts in E.Coli (SRI; Maude)

◦ Cell differentiation in C.Elegans (Weizmann; Play-in/out)

◦ Delta-Notch signaling (SRI, Stanford; Hybrid SAL)

◦ Sporolation in B.Subtilis (SRI; Hybrid SAL)
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