
Introduction to Static Analysis for Assurance

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby Static Analysis for Assurance: 1

Overview

• What is static analysis?

• Examples of some techniques

• Tradeoffs

• Commercial static analyzers

• Use in Assurance

John Rushby Static Analysis for Assurance: 2

What Does This Program Do?

• Context: we have developed a program and want some

evidence about what it does and doesn’t do

• I’ll call it a program, even though it’s probably an embedded

system with multiple software components

◦ That makes use of systems software and libraries

◦ And interacts with hardware

We’ll come to these complexities later

• Evidence is a pretty strong notion: intended for assurance

◦ Never does certain things

⋆ e.g., a runtime exception

◦ Always does a certain thing

⋆ e.g., delivers a good value to the actuator

Weaker notions can be useful for bug finding

John Rushby Static Analysis for Assurance: 3

Evidence About Program Behavior

• One approach is testing

• We generate many tests and observe the program in

execution

◦ We are looking at the real thing—that’s good

◦ But how can we get evidence for always and never?

◦ Usually some notion of coverage, but it falls short of

evidence

• Let’s look at an example

John Rushby Static Analysis for Assurance: 4

The Bug That Stopped The Zunes

Real time clock sets days to number of days since 1 Jan 1980

year = ORIGINYEAR; /* = 1980 */

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1;

} else... loops forever on last day of a leap year

} else {

days -= 365;

year += 1;

}

}

Coverage-based testing will find this

John Rushby Static Analysis for Assurance: 5

A Hasty Fix

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 365) {

days -= 366;

year += 1;

}

} else {

days -= 365;

year += 1;

}

}

• Fixes the loop but now days can end up as zero

• Coverage-based testing might not find this

• Boundary condition testing would

• But I think the point is clear. . .

John Rushby Static Analysis for Assurance: 6

The Problem With Testing

• Is that it only samples the set of possible behaviors

• And unlike physical systems (where many engineers gained

their experience), software systems are discontinuous

• There is no sound basis for extrapolating from tested to

untested cases

• So we need to consider all possible cases. . . how is this

possible?

• It’s possible with symbolic methods

• Cf. x
2 − y

2 = (x − y)(x + y) vs. 5*5-3*3 = (5-3)*(5+3)

• Static Analysis is about totally automated ways to do this

John Rushby Static Analysis for Assurance: 7

The Zune Example Again

[days > 0]

while (days > 365) { [days > 365]

if (*)) {

if (days > 365) { [days > 365]

days -= 366; [days >= 0]

year += 1;

}

} else { [days > 365]

days -= 365; [days > 0]

year += 1;

}

}

[days >= 0 and days <= 365]

John Rushby Static Analysis for Assurance: 8

Approximations

• We were lucky that we could do the previous example with

full symbolic arithmetic

• Usually, the formulas get bigger and bigger as we accumulate

information from loop iterations (we’ll see an example later)

• So it’s common to approximate or abstract information to

try and keep the formulas manageable

• Here, instead of the natural numbers 0, 1, 2, . . . , we could

use

◦ zero, small, big

◦ Where big abstracts everything bigger than 365, small is

everything from 1 to 365, and zero is 0

◦ Arithmetic becomes nondeterministic

⋆ e.g., small+small = small | big

John Rushby Static Analysis for Assurance: 9

The Zune Example Abstracted

[days = small | big]

while (days = big) { [days = big]

if (*)) {

if (days = big) { [days = big]

days -= big; [days = big | small | zero]

year += 1;

}

} else { [days = big]

days -= small; [days = big | small]

year += 1;

}

}

[days = small | zero]

John Rushby Static Analysis for Assurance: 10

The Zune Example Abstracted Again

Suppose we abstracted to {negative, zero, positive}

[days = positive]

while (days = positive) { [days = positive]

if (*)) {

if (days = positive) { [days = positive]

days -= positive; [days = negative | zero | positive]

year += 1;

}

} else { [days = positive]

days -= positive; [days = negative | zero | positive]

year += 1;

} }

[days = negative | zero]

We’ve lost too much information: have a false alarm that days

can go negative (pointer analysis is sometimes this crude)

John Rushby Static Analysis for Assurance: 11

We Have To Approximate, But There’s A Price

• It’s no accident that we sometimes lose precision

• Rice’s Theorem says there are inherent limits on what can be

accomplished by automated analysis of programs

◦ Sound (miss no errors)

◦ Complete (no false alarms)

◦ Automatic

◦ Allow arbitrary (unbounded) memory structures

◦ Final results

Choose at most 4 of the 5

John Rushby Static Analysis for Assurance: 12

Approximations

reachable states

approximation

Sound approximations include all the behaviors and reachable

states of the real system, but are easier to compute

John Rushby Static Analysis for Assurance: 13

But Sound Approximations Come with a Price

reachable states

approximation

alarm

false

May flag an error that is unreachable in the real system: a false

positive, or false alarm

John Rushby Static Analysis for Assurance: 14

Unsound Approximations Come with a Price, Too

reachable states

underapproximation

false

negative

Can miss real errors: a false negative

John Rushby Static Analysis for Assurance: 15

Predicate Abstraction

• The Zune example used data abstraction

◦ A kind of abstract interpretation

• Replaces variables of complex data types by simpler

(often finite) ones

◦ e.g., integers replaced by {negative, zero, positive}

• But sometimes this doesn’t work

◦ Just replaces individual variables

◦ Often its the relationship between variables that matters

• Predicate abstraction replaces some relationships (predicates)

by Boolean variables

John Rushby Static Analysis for Assurance: 16

Another Example

start with r unlocked

do {

lock(r)

old = new

if (*) {

unlock(r)

new++

}

}

while old != new

want r to be locked at this point

unlock(r)

John Rushby Static Analysis for Assurance: 17

Abstracted Example

The significant relationship seems to be old == new

Replace this by eq, throw away old and new

[!locked]

do {

lock(r) [locked]

eq = true [locked, eq]

if (*) {

unlock(r) [!locked, eq]

eq = false [!locked, !eq]

}

} [locked, eq] or [!locked, !eq]

while not eq

[locked, eq]

unlock(r)

John Rushby Static Analysis for Assurance: 18

Yet Another Example

z := n; x := 0; y := 0;

while (z > 0) {

if (*) {

x := x+1;

z := z-1;

} else {

y := y+1;

z := z-1;

}

}

want y!= 0, given x != z, n > 0

• The invariant needed is x + y + z = n

• But neither this nor its fragments appear in the program or

the desired property

John Rushby Static Analysis for Assurance: 19

Let’s Just Go Ahead

First time into the loop
[n > 0]

z := n; x := 0; y := 0;

while (z > 0) { [x = 0, y = 0, z = n]

if (*) {

x := x+1;

z := z-1; [x = 1, y = 0, z = n-1]

} else {

y := y+1;

z := z-1; [x = 0, y = 1, z = n-1]

} [x = 1, y = 0, z = n-1] or [x = 0, y = 1, z = n-1]

}

Next time around the loop we’ll have 4 disjuncts, then 8, then

16, and so on

This won’t get us anywhere useful

John Rushby Static Analysis for Assurance: 20

Widening the Abstraction

• We could try eliminate disjuncts

• Look for a conjunction that is implied by each of the disjuncts

• One such is [x+y = 1, z = n-1]

• Then we’d need to do the same thing with

[x+y = 1, z = n-1] or [x = 0, y = 0, z = n]

• That gives [x + y + z = n]

• There are techniques that can do this automatically

• This is where a lot of the research action is

John Rushby Static Analysis for Assurance: 21

Tradeoffs

• We’re trying to guarantee absence of errors in a certain class

• Equivalently, trying to verify properties of a certain class

• Terminology is in terms of finding errors

TP True Positive: found a real error

FP False Positive: false alarm

TN True Negative: no error, no alarm—OK

FN False Negative: missed error

• Then we have

Sound: no false negatives

Recall: TP/(TP+FN) measures how (un)sound

TP+FN is number of real errors

Complete: no false alarms

Precision: TP/(TP+FP) measures how (in)complete

TP+FP is number of alarms

John Rushby Static Analysis for Assurance: 22

Tradeoff Space

• Basic tradeoff is between soundness and completeness

• For assurance, we need soundness

◦ When told there are no errors, there must be none

So have to accept false alarms

• But the main market for static analysis is bug finding in

general-purpose software, where they aim merely to reduce

the number of bugs, not to eliminate them

• Their general customers will not tolerate many false alarms,

so tool vendors give up soundness

• Will consider the implications later

• Other tradeoffs are possible

◦ Give up full automation: e.g., require user annotation

John Rushby Static Analysis for Assurance: 23

Tradeoffs In Practice

Testing is complete but unsound

Spark Ada with its Examiner is sound but not fully

automatic

Abstract Interpretation (e.g., PolySpace) is sound but

incomplete, and may not terminate

• Astrée is pragmatically complete for its domain

Pattern matchers (e.g. Lint, Findbugs) are not based on

semantics of program execution, neither sound nor complete

• But pragmatically effective for bug finding

Commercial tools (e.g., Coverity, Code Sonar, Fortify,

KlocWork, LDRA) are neither sound nor complete

• Pragmatically effective

• Different tools use different methods, have different

capabilities, make different tradeoffs

John Rushby Static Analysis for Assurance: 24

Properties Checked

• The properties checked are usually implicit

◦ e.g., uninitialized variables, divide by zero (and other

exceptions), null pointer dereference, buffer overrun

• Much of this is compensating for deficiencies of C and C++

◦ Some tools support Ada, Java, not much for MBD

◦ But Mathworks has Design Verifier for Simulink

• Some tools support user-specified checks, but. . .

• Some tools look at resources

◦ e.g., memory leaks, locks (not freed, freed twice, use

after free)

• Some (e.g., AbsInt) can do quantitative analysis

◦ e.g., worst case execution time, maximum stack height

John Rushby Static Analysis for Assurance: 25

Real Software

• It’s not enough to check individual programs

• Need information from calls to procedures, subroutines

◦ Analyze each in isolation, then produce a procedure

summary for use by others

• Need summaries for libraries, operating system calls

• Analyzer must integrate with the build process

• Must present the information in a useful and attractive way

• Much of the engineering in commercial tools goes here

John Rushby Static Analysis for Assurance: 26

So How Good Are Static Analyzers?

• Some tool licences forbid benchmarking

• Hard to get representative examples

• NIST SAMATE study compared several

◦ Found all had strengths and weaknesses

◦ Needed a combination to get comprehensive bug

detection

• This was bug finding, not assurance

• Anecdotal evidence is they are very useful for general QA

• Need to be tuned to individual environment

• e.g., Astrée tuned to Airbus A380 SCADE-generated digital

filters is sound and pragmatically complete

• There are papers by Raoul Jetley and others of FDA applying

tools to medical device software

John Rushby Static Analysis for Assurance: 27

Possible Futures: Combination With Testing

• Automated test generation is getting pretty good

• Use a constraint solver to find a witness to the path

predicate leading to a given state

◦ e.g., counterexamples from (infinite) bounded model

checking using SMT solvers

• So try to see if you can generate an explicit test case to

manifest a real bug for each positive turned up by static

analysis

• Throw away those you cannot manifest

• Aha! Next generation of tools do this

John Rushby Static Analysis for Assurance: 28

Possible Futures: Integration With Testing

• Knowledge that possible error is unreachable is information

that helps refine the abstraction

• So iterate abstraction, analysis, test generation

• Either finds error or proves its absence

• Microsoft India projects (Synergy, Dash, Yogi) explore this

area

• Counterexample Guided Abstraction Refinement (CEGAR) is

similar

John Rushby Static Analysis for Assurance: 29

Use in Assurance

• If you are satisfied with bug finding for standard properties

• Then one or more commercial static analyzers could do a

good job for you

• If you want your own properties, talk with the vendors

• If you want soundness

◦ PolySpace might work, or Simulink Design Verifier

◦ Talk with the vendors (some have a “dial”)

◦ Roll your own

John Rushby Static Analysis for Assurance: 30

Combined Methods

• Can think of static analysis as a search for invariants

• Other tools (e.g., model checkers) can use the invariants

• The more invariants and the stronger invariants you know,

the more you can verify

• Different analyzers find different (classes of) invariants

• But the tools do not disclose the invariants they find

• Cooperation would be good: an invariant bus

• There are other ways to search for candidate invariants

◦ Dynamic analysis: e.g., Daikon

• Could then use static analysis to confirm these

John Rushby Static Analysis for Assurance: 31

Rolling Your Own

• There’s plenty of promising research technology around

• But engineering it into an effective toolchain is a big

investment

• Because of the fundamental limitations, don’t expect a single

solution

◦ Future tools should support plugins, toolbus integrations

• Maybe collaborate with a research group

John Rushby Static Analysis for Assurance: 32

Combined Arguments for Assurance

• Remember: static code analysis is just for code defects; says

nothing about whether code meets requirements

• Standards vs. argument-based safety/assurance cases

• Multi-legged arguments

◦ e.g., static analysis plus testing

◦ Bayesian Belief Nets (BBNs)

• Backups and monitors

◦ A formally verified backup or monitor can support a claim

of possible perfection (e.g., 0.999 perfection)

◦ This is conditionally independent of the reliability claim

for the main system (e.g., 0.999 reliable)

◦ Can multiply these together: system reliability 0.999999

John Rushby Static Analysis for Assurance: 33

The End

John Rushby Static Analysis for Assurance: 34

