
Naval Postgraduate School; 9, 10 Feb 2004

Protocol Exploration

With Modern Model Checkers
(I’ll be using SAL)

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Protocol Exploration with SAL: 1

Introduction

� It is well-known that bugs in cryptographic protocols can often be found using a

conventional model checker
� Build a model of the protocol
� Build a model of the intruder
� Specify some numbers of participants, intruders, runs
� Specify (safety) properties of interest
� Explore all reachable states (similar for liveness)
� Relies on raw power to do this

� Cf. specialized crypto protocol analyzers
� Where some of this is built in
� Used to optimize the search

John Rushby, SR I Protocol Exploration with SAL: 2

What’s New?

� Modern model checkers offer a variety of notations
� Hardware description languages (SMV, BLIF)
� Programming languages (Java, C)
� Civilized modeling languages (SAL)
� Intermediate languages (SAL again)

� They offer several different tools
� Symbolic, bounded model checkers (nuSMV)
� Explicit-state, symbolic, bounded, infinite-bounded, witness model checkers

(SAL)

� They are modular and scriptable
� Bogor
� SAL

John Rushby, SR I Protocol Exploration with SAL: 3

So What?

� The modeling can be very direct at higher levels of abstraction
� And more realistic (e.g., programs) at lower levels

� Easy to model powerful intruders

� Can choose the right tool for the analysis concerned
� Have the power to examine the vast number of states generated by powerful

intruder models

� Can model and analyze other parts/properties than security

� Can do exploration as well as model checking

John Rushby, SR I Protocol Exploration with SAL: 4

Example: Needham Schroeder

What did you expect?

Message 1.
� � �

:
� ��� ����� �
	 ������ �����

Message 2.
� � �

:
� ��� ����	 ���
	 � � ��� � � �

Message 3.
� � �

:
� ��� ����	 � � ��� �����

.

I’m going to model and analyze this in SAL

John Rushby, SR I Protocol Exploration with SAL: 5

Getting Started: the Network

� Want a “network” that is generic wrt. message type

� Acts like a one-place buffer

� Messages can be written (if empty),

� And read, copied, overwritten (if full)

John Rushby, SR I Protocol Exploration with SAL: 6

Network

network � msg: TYPE; � : CONTEXT =

BEGIN

bufferstate: TYPE = � empty, full � ;
action: TYPE = � read, write, overwrite, copy � ;

network: MODULE =

BEGIN

INPUT act: action, inms: msg

OUTPUT nstate: bufferstate, buffer: msg

INITIALIZATION

nstate = empty;

TRANSITION

...

John Rushby, SR I Protocol Exploration with SAL: 7

Network (ctd.)

[

act’ = write AND nstate = empty -->

nstate’ = full; buffer’ = inms’;

[]

act’ = overwrite AND nstate = full -->

buffer’ = inms’;

[]

act’ = read AND nstate = full -->

nstate’ = empty;

[]

act’ = copy AND nstate = full -->

nstate’ = nstate;

[]

ELSE -->

]

John Rushby, SR I Protocol Exploration with SAL: 8

The Participants

� Need at least two principals

� And an intruder

� These are subtypes of participants

� Useful to have an extra “error” id for initialization etc.

John Rushby, SR I Protocol Exploration with SAL: 9

Participants

needhamschroeder: CONTEXT =

BEGIN

ids: TYPE = � a, b, e, X � ;

participants: TYPE = � x: ids | x /= X � ;
intruder(x: participants): BOOLEAN = x=e;

intruders: TYPE = � x: participants | intruder(x) � ;
principals: TYPE = � x: participants | NOT intruder(x) � ;

John Rushby, SR I Protocol Exploration with SAL: 10

Nonces

� In practice, need to make sure these are fresh

� In modeling, they can be deterministic
� Do not endow the intruder with guessing ability

nonces: TYPE = ids;

nonce(a: participants): nonces = a;

John Rushby, SR I Protocol Exploration with SAL: 11

Messages

� Messages contain an encrypted component
� When decrypted it’s a triple dmsg
� arb is used for the initial value

dmsg: TYPE = [ids, nonces, nonces];

arb: dmsg = (X,X,X);

Otherwise the model checker might use a “magic” value
� An encrypted message records the key used

emsg: TYPE = DATATYPE

enc(key: ids, payload: dmsg)

END;
� An encrypted message on the network indicates its source and destination

msg: TYPE = [# from: participants, to: participants,

em: emsg #];

� Tuple, datatype, record, just for variety

John Rushby, SR I Protocol Exploration with SAL: 12

Decryption

Can successfully decrypt an encrypted message only if you are the participant whose

key was used

dec(k: participants, m:emsg): dmsg =

IF key(m)=k THEN payload(m) ELSE arb ENDIF;

Otherwise, get arb

John Rushby, SR I Protocol Exploration with SAL: 13

State of the Principals

� Initially sleeping

� May decide to initiate a dialog and go to waiting

� And then to engaged if the protocol completes

states: TYPE = � sleeping, waiting, engaged,

tentative, responding � ;

� If another initiates the dialog, go to tentative

� And then to responding if the protocol completes

� In either case, responder is the identity of the other

John Rushby, SR I Protocol Exploration with SAL: 14

Principals

Initially, each principal is sleeping, and its responder is set to itself

principal[i: principals]: MODULE =

BEGIN

INPUT nstate: net!bufferstate, imsg: msg

GLOBAL act: net!action, omsg: msg

LOCAL pc: states, responder: participants

INITIALIZATION

pc = sleeping;

responder = i;

John Rushby, SR I Protocol Exploration with SAL: 15

Principals (ctd. 1)

Waking up and initiating a dialog with j

TRANSITION

[

([] (j: participants): i /= j AND

pc = sleeping AND nstate = net!empty -->

pc’ = waiting;

responder’ = j;

omsg’ = (# from := i, to := j,

em := enc(j, (i, nonce(i), X)) #);

act’ = net!write;

)

John Rushby, SR I Protocol Exploration with SAL: 16

Principals (ctd. 2)

Waking up and responding to a dialog initiated by j

[]

([] (j: participants): i /= j AND

pc = sleeping AND nstate = net!full

AND imsg.from = j AND imsg.to = i

AND dec(i, imsg.em).1=j -->

responder’ = j;

pc’ = tentative;

act’ = net!overwrite;

omsg’ = (# from := i, to := j,

em := enc(j, (X, dec(i,imsg.em).2, nonce(i)))#);

)

John Rushby, SR I Protocol Exploration with SAL: 17

Principals (ctd. 3)

Initiator accepts the response from j

[]

pc = waiting AND nstate = net!full

AND imsg.from = responder AND imsg.to = i

AND dec(i,imsg.em).2 = nonce(i) -->

pc’ = engaged;

act’ = net!overwrite;

omsg’ =(# from := i, to := responder,

em := enc(responder, (X, dec(i,imsg.em).3, X))#);

John Rushby, SR I Protocol Exploration with SAL: 18

Principals (ctd. 4)

Responder accepts second message from initiator j

[]

pc = tentative AND nstate = net!full

AND imsg.from = responder AND imsg.to = i

AND dec(i,imsg.em).3 = nonce(i) -->

pc’ = responding;

act’ = net!read;

[]

ELSE -->

]

END;

Otherwise do nothing

John Rushby, SR I Protocol Exploration with SAL: 19

Intruders

Need to provide the intruder with memory for messages it has seen but not been able

to decrypt, and for the contents of messages (i.e., nonces) that it has decrypted

intruder[x:intruders]: MODULE =

BEGIN

GLOBAL act: net!action, omsg: msg

INPUT nstate: net!bufferstate, imsg: msg

LOCAL nmem, n1, n2: nonces, mmem: emsg

INITIALIZATION

nmem = nonce(e);

mmem = enc(X,(X,X,X));

We provide memory for one of each: nmem and mmem; n1 and n2 are temporaries

John Rushby, SR I Protocol Exploration with SAL: 20

Intruders (ctd. 1)

Intruder can read and decrypt messages sent to itself

TRANSITION

[

nstate = net!full AND imsg.to = x -->

nmem’ IN � dec(x,imsg.em).2, nmem � ;
act’ IN � net!read, net!copy � ;

Nondeterministically replaces saved nonce with the new one, and removes the

message or copies it

John Rushby, SR I Protocol Exploration with SAL: 21

Intruders (ctd. 2)

Can save whole messages not addressed to itself

[]

nstate = net!full AND imsg.to /= x -->

mmem’ IN � imsg.em, mmem � ;
act’ IN � net!read, net!copy � ;

John Rushby, SR I Protocol Exploration with SAL: 22

Intruders (ctd. 3)

Can send remembered message to j, while masquerading as i

[]

([] (i: participants, j: principals): TRUE -->

act’ = IF nstate = net!empty

THEN net!write

ELSE net!overwrite ENDIF;

omsg’ = (# from := i, to := j, em := mmem #);

)

John Rushby, SR I Protocol Exploration with SAL: 23

Intruders (ctd. 4)

And can manufacture messages containing its own nonce or a remembered one

[]

([] (i: participants, j: principals): TRUE -->

act’ = IF nstate = net!empty

THEN net!write

ELSE net!overwrite ENDIF;

n1’ IN � nmem, nonce(x) � ; n2’ IN � nmem, nonce(x) � ;
omsg’ =(# from := i,to := j,em := enc(j, (i, n1’, n2’))#);

)

[]

ELSE -->

]

END;

And that’s all it can do

John Rushby, SR I Protocol Exploration with SAL: 24

The Complete System

� Asynchronously compose some collection of principals and intruders

� And synchronously compose that compound with the network

� We’ll have two principals a and b, and single intruder e

No explicit limit on interleaved runs

system: MODULE =

(([] (id: principals): principal[id]) [] intruder[e])

|| (RENAME buffer TO imsg, inms TO omsg IN net!network);

� We rename the buffer and inms of the network so that they connect up to the imsg

and omsg of the principals and intruder

John Rushby, SR I Protocol Exploration with SAL: 25

Authentication Property

� The property we wish to examine is correct authentication

� Whenever a principal x reaches the responding state with a principal y, must be that

y initiated the protocol with x
� That is, y must be in the waiting or engaged states and have x as its responder

� We specify this as the property prop

prop: THEOREM system |- G((FORALL (x,y: principals):

(pc[x]=responding AND responder[x]=y) =>

((pc[y]=waiting OR pc[y]=engaged)

AND responder[y]=x)));

John Rushby, SR I Protocol Exploration with SAL: 26

Model Checking

� Symbolic model checking
� sal-smc -v 3 needhamschroeder prop

Builds a transition relation on 150 state bits, 339,917,146 reachable states, and

reports a counterexample ten steps long in about 20 secs

� Witness model checking
� sal-wmc -v 3 needhamschroeder prop

Also reports the counterexample, in about 40 secs

� Bounded model checking
� sal-bmc -v 3 -d 10 needhamschroeder prop

Builds a SAT problem with 40,756 nodes and reports the counterexample in about

40 secs

John Rushby, SR I Protocol Exploration with SAL: 27

The Counterexample
Step 0: Initialization

--

Step 1: a sends message 1 to e

pc[a] = waiting; pc[b] = sleeping; responder[a] = e;

omsg.from = a; omsg.to = e; omsg.em = enc(e, (a, a, X));

--

Step 2: e remembers a’s nonce: nmem = a;

--

Step 3: e (masquerading as a) send message 1 to b

omsg.from = a; omsg.to = b; omsg.em = enc(b, (a, a, a));

--

Step 4: b sends message 2 to a, but it is intercepted by e

pc[a] = waiting; pc[b] = tentative; responder[b] = a;

omsg.from = b; omsg.to = a; omsg.em = enc(a, (X, a, b));

--

Step 5: e remembers encrypted part of b’s message

mmem = enc(a, (X, a, b));

--

Step 6: e sends message 2 (using remembered part) to a

omsg.from = e; omsg.to = a; omsg.em = enc(a, (X, a, b));

--

Step 7: a sends message 3 to e

pc[a] = engaged; pc[b] = tentative;

omsg.from = a; omsg.to = e; omsg.em = enc(e, (X, b, X));

--

Step 8: e remembers b’s nonce from a’s message 3: nmem = b;

--

Step 9: e (masquerading as a) sends message 3 to b (with remembered nonce)

omsg.from = a; omsg.to = b; omsg.em = enc(b, (a, e, b));

--

Step 10: b falsely believes it has authenticated a: pc[b] = responding;

John Rushby, SR I Protocol Exploration with SAL: 28

The Counterexample (ctd.)

Is essentially the classic one

Message 1a.
� � �

:
� ��� ����� �
	 �� ��� ��� �

Message 1b.
��� � �

:
� � � ����� �
	 ������ �����

Message 2b.
� � � �

:
� ��� ����	 ���
	 � � ��� � � �

Message 2a.
� � �

:
� ��� ����	 � �
	 � � ��� � � �

Message 3a.
� � �

:
� ��� ����	 � � ��� ��� �

Message 3b.
��� � �

:
� � � ����	 � � ��� �����

.

Here,
� �

indicates
�

masquerading as
�

, and the suffices a, and b on the message

numbers indicate which run of the protocol they belong to

John Rushby, SR I Protocol Exploration with SAL: 29

Repairing The Protocol

The protocol is easily fixed by including the identity of the responder in the encrypted

portion of the second message (this prevents the replay of the encrypted portion of 2b

in 2a)

Message 2 � .
� � �

:
� ��� ��� � � 	 � � 	 � ����� � � �

John Rushby, SR I Protocol Exploration with SAL: 30

Repairing The Protocol (ctd.)

� In SAL, we need to change the final assignment on slide 17 to the following (the X is

changed to i)

omsg’ = (# from := i, to := j,

em := enc(j, (i, dec(i,imsg.em).2, nonce(i)))#);

� The guard on slide 18 must then be changed (by addition of the third line below) to

check that the message really does come from the expected responder

pc = waiting AND nstate = net!full

AND imsg.from = responder AND imsg.to = i

AND dec(i,imsg.em).1 = responder

AND dec(i,imsg.em).2 = nonce(i) -->

John Rushby, SR I Protocol Exploration with SAL: 31

Model Checking Again

� Symbolic model checking
� sal-smc -v 3 needhamschroeder prop

This time there are 339,954,654 reachable states, and the property is “verified” in 25

seconds
� Verification is relative to the intruder model and dimensions used

� Witness model checking
� sal-wmc -v 3 needhamschroeder prop

Verifies the property in 30 seconds, and (internally) constructs a witness

� Bounded model checking
� sal-bmc -v 3 -d 10 needhamschroeder prop

Finds no counterexamples to depth 10 in 85 seconds

John Rushby, SR I Protocol Exploration with SAL: 32

Exploration

� Finding bugs and verifying are extreme examples of exploration

� In general, want to see runs that take us to interesting states or through interesting

scenarios as a way of increasing our understanding and confidence in the operation

of the system

� Can do this in a simulator, but have to think of all the inputs and interactions

ourselves

� Supposing we had a simulator built on a model checker

� Then we could tell the model checker to find a path to an interesting state, then take

over and explore in detail, and so on

� The SAL simulator does this

John Rushby, SR I Protocol Exploration with SAL: 33

Exploration with the SAL Simulator

� Suppose we are interested in the scenario where the intruder spoofs both principals

into thinking they are responding to the other

� We start the simulator and tell it to take us to a state where both principals are in

tentative state

tulip:sal> sal-sim

SAL Simulator (Version 2.2). Copyright (c) 2003, 2004 SRI

sal > (import! "needhamschroeder")

sal > (start-simulation! "system")

sal > (run! "(and (= pc[a] tentative) (= pc[b] tentative))")

#t

� The #t means it succeeded

� Notice we’re using LSAL syntax here

John Rushby, SR I Protocol Exploration with SAL: 34

Exploration with the SAL Simulator (ctd. 1)

� Now we would like to see the intruder continue and bring both principals to the

responding state

sal >(run!"(and (=pc[a]responding) (=pc[b]responding))")

#f

� The #f means it failed

� Perplexed, we see if it can bring either to completion

sal >(run!"(or (=pc[a] responding) (=pc[b] responding))")

#f

� Hmm! Let’s restart and find a path where a is responding to the intruder

sal > (start-simulation! "system")

sal > (run! "(and (= pc[a] responding) (= responder[a] e))")

#f

John Rushby, SR I Protocol Exploration with SAL: 35

Exploration with the SAL Simulator (ctd. 1)

� So let’s get to a state where a is in the tentative state (which we already know is

possible)

sal > (run! "(and (= pc[a] tentative) (= responder[a] e))")

#t

� Now we know that the intruder should be able to construct the message to take a to

the responding state provided it knows a’s nonce (which is also a)

� So let’s see if the intruder does know this nonce in the current state

sal > (filter-curr-states! "(= nmem a)")

sal > (display-curr-states)

#t

Evidently not—the #t means the filtered set is empty (we also could have just looked

at the current state)

John Rushby, SR I Protocol Exploration with SAL: 36

Exploration with the SAL Simulator (ctd. 2)

� So now let’s get back to where we were

sal > (backtrack!)

sal > (run! "(and (= pc[a] tentative) (= responder[a] e))")

#t

� And look for a state where the intruder knows the nonce

sal > (run! "(= nmem a)")

#f

� Hmm! Let’s go back to the beginning and look for any state where it knows this

nonce

sal > (start-simulation! "system")

sal > (run! "(= nmem a)")

#t

sal > (display-curr-states)

John Rushby, SR I Protocol Exploration with SAL: 37

Exploration with the SAL Simulator (ctd. 3)

� It turns out the simulator has found a run where a initiated the dialog

� It seems that the intruder can learn a’s nonce when a is the initiator, but not when it

is the responder

� The difference between these cases is that a’s nonce is in the second position of the

emsg tuple in the former case, and the third in the latter

� Sure enough, the command in the relevant step of the intruder is the following

nmem’ IN � dec(x,imsg.em).2, nmem �

It should, of course, be changed as follows

nmem’ IN � dec(x,imsg.em).2, dec(x,imsg.em).3, nmem �

John Rushby, SR I Protocol Exploration with SAL: 38

Exploration with the SAL Simulator (ctd. 3)

� After making this change, we exit the simulator and restart it, and again check the

properties of interest

sal > (import! "needhamschroeder")

sal > (start-simulation! "system")

sal > (run!"(and (=pc[a] responding) (=responder[a] e))")

#t

sal > (run!"(and (=pc[a] responding) (=pc[b]responding))")

#t

This time, the simulator is able to find suitable paths

� We also check that the authentication property is still true using sal-smc

John Rushby, SR I Protocol Exploration with SAL: 39

Summary

� Modern model checkers are attractive and effective tools for exploring protocols

� Can add GUIs and also raise modeling level

� For example, Guido Wimmel at TUM models e-commerce protocols in the Focus

graphical environment
� Messages are specified as secret, authentic, etc.
� A suitable intruder model is synthesized
� Properties are selected
� And the whole lot sent to a model checker

John Rushby, SR I Protocol Exploration with SAL: 40

Summary (ctd.)

� A simulation environment built on a model checker provides a powerful environment

for exploring protocols

� The sal-sim environment is scriptable in Scheme

� In fact, the SAL model checkers are just Scheme scripts on the underlying API

� Can develop novel capabilities as scripts on this API
� Example: test case generation

� See fm.csl.sri.com for our tools

�
http://www.csl.sri.com/users/rushby/abstracts/needham03 for this

example

John Rushby, SR I Protocol Exploration with SAL: 41

Putting More Things Together
� It is now fairly routine to have model checkers as backends to theorem provers (e.g.,

PVS), or proof assistants as front ends to model checkers (e.g., Cadence SMV)
� But we envisage a larger collection of symbolic computational procedures

� Decision procs, ITPs, abstractors, inv generators, model checkers, static

analyzers, test generators, ITPs, rewriters
� Interacting through a scriptable tool bus
� The bus manages symbolic and concrete artifacts

� Test cases, abstractions, theorems, invariants

Over which it performs evidence management
� Focus shifts from verification to symbolic analysis

� Iterative application of analysis to artifacts to yield new artifacts, insight and

evidence

John Rushby, SR I Protocol Exploration with SAL: 42

Integrated, Iterated Analysis

John Rushby, SR I Protocol Exploration with SAL: 43

