
New Directions in V&V

Evidence, Arguments, and Automation

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I V&V: Evidence, Arguments, Automation 1



V&V for Fault Management

Ideally, we’d like to understand, consider, examine, test

• all possible behaviors

Which raises some interesting issues

• Define all possible

• However you define it, that’s a lot of behaviors

• How can we handle that many?

• Can we do it subsystem by subsystem?

• Can we start the work early?

We need a framework and some technology and a methodology

John Rushby, SR I V&V: Evidence, Arguments, Automation 2



Existing Frameworks for V&V

• V&V and the larger processes of certification/approval

provide assurance that deploying a given system does not

pose an unacceptable risk of failure or adverse consequences

• Current methods explicitly depend on

◦ Standards, regulations, process

◦ Rigorous examination of the whole, finished system

And implicitly on

◦ Conservative practices

◦ Safety culture

• All of these are changing

John Rushby, SR I V&V: Evidence, Arguments, Automation 3



The Standards-Based Approach to Software Assurance

• E.g., airborne s/w (DO-178B), security (Common Criteria)

• Developer follows a prescribed method (or processes)

◦ Delivers prescribed outputs

? e.g., documented requirements, designs, analyses, tests

and outcomes; traceability among these

• Works well in fields that are stable or change slowly

◦ Can institutionalize lessons learned, best practice

? e.g. evolution of DO-178 from A to B to C

• But less suitable with novel problems, solutions, methods

John Rushby, SR I V&V: Evidence, Arguments, Automation 4



A Recent Incident

• Fuel emergency on Airbus A340-642, G-VATL, on 8 February

2005 (AAIB SPECIAL Bulletin S1/2005)

• Toward the end of a flight from Hong Kong to London: two

engines flamed out, crew found certain tanks were critically

low on fuel, declared an emergency, landed at Amsterdam

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; they cross-compare and the “healthiest” one

drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• Further backup systems were not invoked because the

FCMCs indicated they were not both failed

John Rushby, SR I V&V: Evidence, Arguments, Automation 5



Implicit and Explicit Factors

• See also ATSB incident report for in-flight upset of Boeing

777, 9M-MRG (Malaysian Airlines, near Perth Australia)

• How could gross errors like these pass through rigorous

assurance standards?

• Maybe effectiveness of current methods depends on implicit

factors such as safety culture, conservatism

• Current business/contracting models and mission ambitions

are leading to a loss of these

◦ Outsourcing, COTS, complacency, innovation, complexity

• Surely, a credible certification regime should be effective on

the basis of its explicit practices

• How else can we cope with the changes and challenges

ahead?

John Rushby, SR I V&V: Evidence, Arguments, Automation 6



Standards and Goal-Based Assurance

• All assurance is intellectually based on arguments that

purport to justify certain claims, based on documented

evidence

• Standards usually define only the evidence to be produced

• The claims and arguments are implicit

• Hence, hard to tell whether given evidence meets the intent

• E.g., is MC/DC coverage evidence for good testing or good

requirements?

• Recently, goal-based assurance methods have been gaining

favor: these make the elements explicit

John Rushby, SR I V&V: Evidence, Arguments, Automation 7



The Goal-Based Approach to Software Assurance

• E.g., UK air traffic management (CAP670 SW01),

UK defence (DefStan 00-56), growing interest elsewhere

• Developer provides an assurance case

◦ Whose outline form may be specified by standards or

regulation (e.g., 00-56)

◦ Makes an explicit set of goals or claims

◦ Provides supporting evidence for the claims

◦ And arguments that link the evidence to the claims

? Make clear the underlying assumptions and judgments

? Should allow different viewpoints and levels of detail

• Can be specialized to safety, security, dependability cases

• The case is evaluated by independent assessors

• Key point: explicit claims, evidence, argument

John Rushby, SR I V&V: Evidence, Arguments, Automation 8



Assurance Cases Allow Customization

• Standards such as DO-178B focus on correctness

• i.e., on verification more than validation

safety

verification

verification

correctness

safety goal system rqts

software rqts

code

software specs

system specs

• Whereas assurance cases liberate us to customize our V&V

John Rushby, SR I V&V: Evidence, Arguments, Automation 9



System-Focused Claims

• Goal-based assurance cases are driven by risk assessment

• Focus on hazards, risks, and their mitigations

• At the system level

• Flow down into subsystems and allow prioritization

• Multi-legged cases allow evidence for testing, say, to be

combined with analysis in a rational way using Bayesian

Belief Nets (BBNs)

John Rushby, SR I V&V: Evidence, Arguments, Automation 10



A BBN Example

O

T

C

V

Z

S

Z: System Specification

O: Test Oracle

S: System’s true quality

T: Tests

V: Analysis

C: V&V decision

Example joint probability table: successful test outcome

Correct System Incorrect System

Correct Oracle Bad Oracle Correct Oracle Bad Oracle

100% 50% 5% 30%

John Rushby, SR I V&V: Evidence, Arguments, Automation 11



Technology and Automation

• Goal-based assurance cases give us a framework to approach

V&V in a customized but rational way, focusing on

system-level hazards

• Traditional methods for assurance at the systems level, such

as hazard analysis (HA), FMEA, FTA, HAZOP

• Are really abstracted (i.e., approximate) ways to do

reachability analysis

◦ Enumeration of all the states that a system can get into

through interaction with its environment

• In other words, they are ways of exploring all possible

behaviors

• How about if we could do this for more detailed levels of

design?

John Rushby, SR I V&V: Evidence, Arguments, Automation 12



Informal Reachability Analysis

• Given a system model made up of interacting state machines

• i.e., the software design, hardware components

◦ And the environment

◦ Which can inject faults (think of it as the test harness)

• Work forward from the initial states to see if you can reach a

state where something bad happens (HA)

• Or work back from the bad states to see if you can reach an

initial state (FTA)

• Made feasible to do by hand by focusing on only certain

transitions (FMEA)

• And by using abstracted models (HAZOP)

• But suppose we could automate it?

John Rushby, SR I V&V: Evidence, Arguments, Automation 13



Automated Reachability Analysis

• We need “machinable” models of the system and its

environment; not PowerPoint pictures, not code

• E.g., Statecharts, UML, AADL, Simulink/Stateflow

• If we “downscale” these to finite state

◦ E.g., discretize continuous values

• Then we can do brute-force reachability analysis

• By running or simulating the system, backtracking to take

alternate paths, and remembering where we have been

• This is what an explicit state model checker (e.g., Spin) does

• Can handle tens of millions of reachable states

• Gives counterexample when an error found

• Errors defined by observer models, or property language

John Rushby, SR I V&V: Evidence, Arguments, Automation 14



Formal Reachability Analysis

• Ten million states is only 23 or 24 state bits

• Symbolic methods of reachability analysis can often handle

bigger systems. . . trillions of states, even infinite

• By representing states as formulas rather than explicit values

◦ e.g., x < y represents an infinite number of explicit states:

(0,1), (0,2), ... (1,2), (1,3)...

• Symbolic model checkers (e,g., nuSMV, SAL)

◦ Use Binary Decision Diagrams (BDDs)

• Bounded model checkers (e,g., nuSMV, SAL)

◦ Use Boolean satisfiability (SAT) solvers

• Infinite bounded model checkers (e,g., SAL)

◦ Use solvers for satisfiability modulo theories (SMT)

• BDDs, SAT, SMT solvers are commodities

John Rushby, SR I V&V: Evidence, Arguments, Automation 15



Reachability Analysis for Fault Management

• Construct state machine models for components,

environment, the FM algorithms (e.g., monitors and

responses) in some modeling notation

• Connect a model checker to the modeling tool set

◦ E.g., Mathworks’ own Design Verifier for

Simulink/Stateflow

◦ Or build your own—as Rockwell has

• And you will absolutely find large numbers of issues such as

those described for New Horizons fault management, or

Space Station architecture with negligible effort

• Find vastly more problems by examining all the behaviors of

a simplified model than by testing some of the behaviors of

the real thing

John Rushby, SR I V&V: Evidence, Arguments, Automation 16



A Spectrum of V&V Activities

A wealth of opportunities to the left; can apply them early, too
N

um
be

r 
of

 c
as

es
 e

xa
m

in
ed

Fidelity of model

10^2

10^4

10^6

10^8

10^10

state machines flight h/w

current

new

practice

opportunities

h/w in loopsimulationsmodels

John Rushby, SR I V&V: Evidence, Arguments, Automation 17



Reachability Analysis for Fault Management V&V

• V&V is more than debugging

• Want to make strong inference when the model checker no

longer finds bugs

• Requires judgement in modeling

◦ Often less is more: constraints rather than details

• And more sophisticated automation (research topics)

◦ K-induction rather than bounded model checking

◦ Counterexample-guided abstraction refinement (CEGAR)

◦ Hybrid systems (state machines plus differential

equations)

• And we need ways to keep different models, simulations, real

system in sync

John Rushby, SR I V&V: Evidence, Arguments, Automation 18



Test Automation for Fault Management V&V

• The counterexamples from model checkers can be used to

generate test cases to run on the implementation

◦ Tests can target model coverage, corner cases, specific

kinds of scenarios: focus shifts from constructing tests to

specifying test objectives

• Unit tests are pretty easy to generate automatically

• Integration tests are more challenging

◦ Depends how much control you have of other components

• Hardware in the loop is more difficult still (research)

◦ Some of the models are hybrid systems

• Automation can be used to extend random tests into corners

◦ There are very potent mixed concrete symbolic (concolic)

methods

John Rushby, SR I V&V: Evidence, Arguments, Automation 19



From Analysis to Synthesis

• The same reachability methods we use to analyze

monitor-response fault management rules

• Could be used to synthesize the rules

◦ Supervisory controller synthesis (Ramadge and Wonham)

◦ Set up as a game between fault management and the

environment

◦ Use reachability analysis to synthesize rules so that from

any state, no move by the environment can force us into

a losing state

• Could be used statically on the ground

• Or dynamically onboard the spacecraft (next talk)

John Rushby, SR I V&V: Evidence, Arguments, Automation 20



Overall V&V Process

Traditional Vee Diagram (Much Simplified)

system
requirements test

design/code unit/integration
test

time and money

John Rushby, SR I V&V: Evidence, Arguments, Automation 21



Vee Diagram Tightened with Formal Analysis

system
requirements test

design/code unit/integration
test

time and money

Example: Rockwell-Collins

John Rushby, SR I V&V: Evidence, Arguments, Automation 22



Systems and Subsystems

• The FAA certifies airplanes, engines and propellers

• Components and subsystems are certified only as part of an

airplane or engine

• That’s because it’s the interactions that matter and it’s not

known how to provide assurance for these compositionally

• But modern engineering and business practices use massive

subcontracting and component-based development that

provide little visibility into subsystem designs

• So we are forced to contemplate compositional and

incremental approaches to assurance and V&V

• Manifestation of noncompositionality in FM is the need to

run tests for days or weeks to get into interesting states

John Rushby, SR I V&V: Evidence, Arguments, Automation 23



Compositional and Incremental Assurance

• Compositional assurance means deriving the assurance case

for the system from those of its subsystems

• Without going into all the subsystem details

• It is difficult because

◦ The assurance case may not decompose along

architectural lines

• Spacecraft have inherent subsystem coupling

(through the plant)

• But we should surely eliminate unnecessary coupling

◦ Computer to computer and bus communication issues

◦ Partitioning

◦ Information hiding interfaces

John Rushby, SR I V&V: Evidence, Arguments, Automation 24



Computer to Computer and Bus Communications

• It’s easy to mess these up

◦ Bad fault modes (babbling—e.g., Clementine)

◦ Timing (e.g., recent spysat?)

• It is known how to do it right (e.g., TTA, SPIDER)

• These are more than just buses—they are frameworks for

integration

• That is, they facilitate compositional design

John Rushby, SR I V&V: Evidence, Arguments, Automation 25



Integration Framework Anecdotes

Powertrain integration: car engines from one plant,

gearboxes from another

• Typically months of work to get them to work together

• A few hours using TTA

Multi-channel FADEC integration: get single channel

working, then add second channel

• Typically months of work to get both channels

cooperating

• A few hours using TTA

Assurance benefits beyond those in integration

John Rushby, SR I V&V: Evidence, Arguments, Automation 26



Partitioning

• Subsystems may share processor resources

• Don’t want a fault in one subsystem to wreck others

◦ By messing with its state, timing, etc.

• Integrated modular avionics (IMA) for aircraft use

Partitioning RTOSs

• Similar RTOSs (but with higher assurance, called separation

kernels) used in embedded applications for high security

• Again, best seen as integration frameworks rather than just

protection mechanisms

John Rushby, SR I V&V: Evidence, Arguments, Automation 27



Information Hiding Interfaces

• Partitioning buses and RTOSs prevent propagation of faults

• And have the side effect of facilitating compositional design

• By eliminating unintended interactions and coupling

• We need to do this throughout the design

◦ “Complexity containment regions”

◦ That’s what interfaces are

◦ And architecture at a higher level

John Rushby, SR I V&V: Evidence, Arguments, Automation 28



Information Hiding Interfaces: Sensor Example

• Typically, send raw sensor samples with timestamp

• To integrate multiple samples, need to know the fault-status

and detailed behavior of each sensor

• Use complex variants of mid-value select to mask faults

• Instead, we could use intelligent sensor

(knows its own status, does local diagnosis)

• Sends sample as an interval: true value guaranteed to be

somewhere inside (if nonfaulty)

◦ Narrow interval when healthy, good sample; wider if not

• With a “use by” date

• Known how to combine intervals, even when some are faulty

• System does not need to know subsystem details

John Rushby, SR I V&V: Evidence, Arguments, Automation 29



True Value In Overlap Of Nonfaulty Intervals

S(2)

S(3)

S(1)

S(4)

John Rushby, SR I V&V: Evidence, Arguments, Automation 30



Compositional V&V

• Reachability analysis with a model checker examines whether

interacting components satisfy some requirement

◦ e.g, device, control, environment |= requirement

• We can try to find the weakest model D for the device that

still does the job (might have to adjust control)

◦ i.e., D, control’, environment |= requirement

• Then, later, show that the real device satisfies D

◦ i.e., device |= D

• So reachability tools can help develop interfaces that

promote compositional assurance

John Rushby, SR I V&V: Evidence, Arguments, Automation 31



Summary

• If we want to improve cost and effectiveness of V&V, we

need a framework to help us rethink it

◦ Goal based assurance cases are a promising framework

◦ Explicit claims, evidence, argument

• Model-based design opens the door to reachability analysis

◦ aka. model checking, formal methods

◦ This is automated, can be done early, examines vast

numbers of behaviors including interactions

◦ Preserves the valuable high-fidelity testbed

• Strong interfaces promote compositional assurance

◦ Reachability analysis can help develop these

• Autonomy is surely the way of the future; let’s get the V&V

right (reliable, early, affordable; enabler, not impediment)

John Rushby, SR I V&V: Evidence, Arguments, Automation 32


