
Marktoberdorf NATO Summer School 2016, Lecture 4

Formal Models for Human-Machine Interactions

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 1

Introduction

• No passenger aircraft accidents or incidents due to software

implementation

◦ DO-178C is effective—but expensive

◦ Cf. work of Gerard Holzmann on NASA spacecraft

• Several incidents due to flawed requirements

• Dominant source of accidents used to be CFIT

◦ Controlled Flight Into Terrain

◦ Fixed by EGPWS

◦ Extended Ground Proximity Warning System

• Now it is LOC

◦ Loss of Control

◦ Example: AF447 (GIG to CDG, pitot tubes iced up)

• Do human operators not understand the automation?

• Or is the automation badly designed?

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 2

Example

Watch this: http://www.youtube.com/watch?v=VqmrRFeYzBI

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 3

Topics

• We know about modeling systems (and God)

◦ How about modeling humans?

• There are many types of model checkers

◦ Let’s look at bounded model checkers driven by SMT solvers

(“infinite bounded”)

• There are many types of abstraction

◦ Let’s look at relational abstractions

• Instead of specifying properties in temporal logic

◦ Let’s look at doing it with synchronous observers

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 4

Premise for HMI Models

• Human interactions with automated systems are guided by

mental models (Craik 1943)

• Exact nature of the models is a topic of debate and research

◦ Behavioral representation that allows mental simulation

? e.g., state machine

◦ Stimulus/response rules

◦ Both

We’ll assume the first of these

• An automation surprise can occur when the behavior of the

real system and the mental model diverge

• Can discover potential surprises by model checking

◦ Build state machines for the system and its model, explore

all possible behaviors looking for significant divergences

• This works! (Rushby 1997/2002)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 5

Mental Models

• Aviation psychologists elicit pilot’s actual mental models

• However, a well-designed system should induce an effective

model, and the purpose of training is to develop this

• So can construct plausible mental models by extracting state

machines from training material, then applying known

psychological simplification processes (Javaux 1998)

◦ Frequential simplification

◦ Inferential simplification

• But there are some basic properties that should surely be

true of any plausible mental model

◦ e.g., pilots can predict whether their actions will cause

the plane to climb or descend

• Yet many avionics systems are so poor that they provoke an

automation surprise even against such core models

• We will use models of this kind

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 6

System Models

• The real system will have many parts, and possibly complex

internal behavior

• But there is usually some externally visible physical plant

◦ e.g., a car, airplane, vacuum cleaner, iPod

• And what humans care about, and represent in their mental

models, is the behavior of the plant

• And divergence between a mental model and the real system

should be in terms of this plant behavior

◦ e.g., does the car or plane go in the right direction, does

the vacuum cleaner use the brush or the hose, does the

iPod play the right song?

• So our analysis should model the plant behavior

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 7

Hybrid Systems

• Many plants are modeled by differential equations

◦ e.g., 6 DOF models for airplanes

• Compounded by different sets of equations in different

discrete modes

◦ e.g., flap extension

• These models are called hybrid systems

◦ Combine discrete (state machine) and continuous

(differential equation) behavior

• The full system model will be the composition of the hybrid

plant model with its controller and its interface and. . .

• Can do accurate simulations (e.g., Matlab)

• But that’s just one run at a time, we need all runs

• And formal analysis of hybrid systems is notoriously hard

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 8

Relational Abstractions

• We need to find suitable abstractions (i.e., approximations)

for hybrid systems that are sufficiently accurate for our

purposes, and are easy to analyze

• Several abstractions available for hybrid systems, we use a

kind called relational abstractions (Tiwari 2011)

• For each discrete mode, instead of differential equations to

specify evolution of continuous variables, give a relation

between them that holds in all future states (in that mode)

• Accurate relational abstractions for hybrid systems require

specialized invariant generation and eigenvalue analysis

• But for our purposes, something much cruder suffices

◦ e.g., if pitch angle is positive, then altitude in the future

will be greater than it is now

• Rather than derive these rel’ns, we assert them as our spec’n

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 9

Model Checking Infinite State Systems

• Our relational abstractions get us from hybrid systems back

to state machines

• But these state machines are still defined over continuous

quantities (i.e., mathematical real numbers)

◦ Altitude, roll rate, etc.

• How do we model check these?

◦ i.e., do fully automatic analysis of all reachable states

◦ When there’s potentially an infinite number of these

• We can do it by Bounded Model Checking (BMC) over theories

decided by a solver for Satisfiability Modulo Theories (SMT)

◦ This is infinite BMC

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 10

SMT Solvers: Disruptive Innovation in Theorem Proving

• SMT solvers extend decision procedures with the ability to

handle arbitrary propositional structure

◦ Previously, case analysis was handled heuristically or

interactively in a front end theorem prover

? Where must be careful to avoid case explosion

◦ SMT solvers use the brute force of modern SAT solving

• Or, dually, they generalize SAT solving by adding the ability

to handle arithmetic and other decidable theories

• Typical theories: uninterpreted functions with equality, linear

arithmetic over integers and reals, arrays of these, etc.

• There is an annual competition for SMT solvers

• Very rapid growth in performance

• Biggest advance in formal methods in last 25 years

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 11

Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S

• Is there a counterexample to property P in k steps or less?

• i.e., can we find an assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s0) ∧ · · · ∧ P (sk))

• Try for k = 1, 2, . . .

• Given a Boolean encoding of I, T , and P (i.e., circuits), this

is a propositional satisfiability (SAT) problem

• If I, T , and P are over the theories decided by an SMT

solver, then this is an SMT problem

◦ Then called Infinite Bounded Model Checking (inf-BMC)

• Works for LTL (via Büchi automata), not just invariants

• Extends to verification via k-induction

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 12

Synchronous Observers

• For safety properties, instead of writing the specification as a

temporal logic formula and translating it to an automaton

• We could just write the specification directly as a state machine

• Specifically, a state machine that is synchronously composed

with the system state machine

• And that observes its state variables

• And signals an alarm if the intended behavior is violated,

or ok if it is not (these are duals)

• This is called a synchronous observer

• Then we check that alarm or NOT ok are unreachable:

◦ G(ok) or G(NOT alarm)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 13

Benefits of Synchronous Observers

• We only have to learn one language

◦ The state machine language

• Instead of two

◦ State machine plus temporal logic specification language

• And only one way of thinking

• Can still do liveness: F(ok)

• Plus there are several other uses for synchronous observers

• I’ll illustrate one in the example

• But test generation is a good one

◦ Observer raises ok when it has seen a good test

◦ Model check for G(NOT ok) and counterexample is a test

• Observe this is slow with explicit state model checkers;

no problem for symbolic ones (just adds more constaints)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 14

Specifying Relations

• Most model checking notations specify state variables of new

state in terms of those in the old; may be nondeterministic

• For example, guarded command in SAL

◦ pitch > 0 --> alt’ IN {x: REAL | x > alt}
If pitch is positive, new value of alt is bigger than old one

• But how do we say that x and y get updated such that

◦ x*x + y*y < 1 ?

• Various possibilities, depending on the model checker, but

one way that always works is to use a synchronous observer

• Main module makes nondeterministic assignments to x and y

• An observer module sets ok false if relation is violated

◦ NOT(x*x + y*y < 1) --> ok’ = FALSE

• Model check for the property we care about only when ok is

true: G(ok IMPLIES property)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 15

Example: Airbus Speed Protection

• Systems similar to that described below were used in A310,

A320, A330, and A340 airplanes; this is the A320 version

• Autothrottle modes

◦ SPD: try to maintain speed set in the FCU

• Autopilot vertical modes and submodes

◦ VS/FPA: fly at the fight path angle specified in the FCU

◦ OP CLB: climb toward target altitude set in the FCU,

using max thrust at an FPA that maintains set airspeed

◦ OP DES: ...if target altitude is lower than current

• Speed protection

◦ On descent in SPD VS/FPA modes, allow overspeed

◦ But if it exceeds the MAX, change to OP mode

◦ Will be OP CLB if target altitude is above current

◦ MAX speed is lower when flaps are extended

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 16

Modeling Airbus Speed Protection

• Composition of three main components

◦ Pilots: nondeterministically set vertical mode, dial values

into FCU, deploy flaps

? Organized by mental mode (descend, climb, level)

◦ Automation: determines actual mode and applies control

laws to determine thrust and pitch

◦ Airplane: uses thrust and pitch values, and flap setting,

to calculate airplane trajectory (altitude and airspeed)

• Plus constraints, which is an observer that sets ok to enforce

plausible relations among pitch, altitude, etc.

• And observer, which sets alarm if airplane climbs while

mental mode is descend

• Model check for G(ok IMPLIES NOT alarm)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 17

Fragment of Pilots Module

INPUT

airspeed: speedvals, altitude: altvals

INITIALIZATION

mental_mode = level; fcu_mode = other; flaps = retracted;

TRANSITION

[extend_flaps: mental_mode = descend and flaps = retracted -->

flaps’ = extended

[] retract_flaps: mental_mode = climb and flaps = extended -->

flaps’ = retracted

[] dial_fcu_alt: fcu_mode = other --> fcu_alt’ IN {x: altvals | TRUE}
[] dial_descend: mental_mode /= descend -->

mental_mode’ = descend; fcu_mode’ = vs_fpa;

fcu_fpa’ IN {x: pitchvals | x < 0};
[] dial_climb: mental_mode /= climb -->

mental_mode’ = climb; fcu_mode’ = vs_fpa;

fcu_fpa’ IN {x: pitchvals | x > 0};
[] pilots_idle: TRUE -->

] END;

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 18

Fragment of Automation Module

DEFINITION

max_speed = IF flaps = retracted THEN VMAX ELSE Vfe ENDIF;

TRANSITION

[track-fcu-mode: fcu_mode’ /= fcu_mode --> actual_mode’ = fcu_mode’

[] mode_reversion: actual_mode = vs_fpa AND airspeed > max_speed -->

actual_mode’ = IF fcu_alt > altitude THEN op_clb ELSE op_des ENDIF;

[] vs_fpa_mode: actual_mode = vs_fpa AND airspeed <= max_speed -->

pitch’ IN vs_fpa_pitch_law(...)

[] op_clb_mode: actual_mode = op_clb --> pitch’ IN op_clb_pitch_law(...)

[] op_des_mode: actual_mode = op_des --> pitch’ IN op_des_pitch_law(...)

[] automation_idles: ELSE -->

] END;

NB. vs fpa pitch law(...) etc. are uninterpreted functions:

SMT solver will synthesize suitable functions

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 19

Fragment of Airplane Module

INITIALIZATION

airspeed = 200; altitude = 3000;

TRANSITION

[flying_clean: flaps = retracted -->

airspeed’ IN

speed_dynamics_clean(airspeed, altitude, thrust, pitch);

altitude’ IN alt_dynamics_clean(...);

[] flying_flaps: flaps = extended -->

airspeed’ IN speed_dynamics_flaps(...);

altitude’ IN alt_dynamics_flaps(...);

] END;

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 20

Fragment of Constraints Module (synchronous observer)

INITIALIZATION

ok = TRUE;

TRANSITION

[actual_mode = op_des AND pitch > 0 --> ok’ = FALSE;

[] actual_mode = op_clb AND pitch < 0 --> ok’ = FALSE;

[] actual_mode = vs_fpa AND fcu_fpa <= 0 AND pitch > 0 --> ok’ = FALSE;

[] actual_mode = vs_fpa AND fcu_fpa >= 0 AND pitch < 0 --> ok’ = FALSE;

[] pitch > 0 AND altitude’ < altitude --> ok’ = FALSE;

[] pitch < 0 AND altitude’ > altitude --> ok’ = FALSE;

[] pitch=0 AND altitude’ /= altitude --> ok’ = FALSE;

[] ELSE -->

] END;

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 21

Observer Module (another synchronous observer)

observer: MODULE =

BEGIN

OUTPUT

alarm: BOOLEAN

INPUT

mental_mode: mental_modes, altitude: altvals

INITIALIZATION

alarm = FALSE

TRANSITION

alarm’ = alarm OR (mental_mode = descend AND altitude’ - altitude > 90)

END;

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 22

The System, the Property, the Analysis

system: MODULE = airplane || automation || pilots || constraints || observer;

surprise: THEOREM system |- G(ok IMPLIES NOT alarm);

sal-inf-bmc a320sp.sal surprise -v 3 -it -d 20

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 23

First Counterexample

step act mde airspd alt fcu alt fcu fpa fcu md flaps mx spd mntl md pitch

1 other 200 3000 3001 -1 other rtrctd 400 level 0

Commands: flying clean, track fcu md, dial descend

2 vs fpa 401 3000 3001 -2 vs fpa rtrctd 400 descend 0

Commands: flying clean, mode reversion, extend flaps

3 op clb 180 3000 3001 -2 vs fpa extnd 180 descend 0

Commands: flying flaps, op clb mode, pilots idle

4 op clb 0 3000 3001 -2 vs fpa extnd 180 descend 1

Commands: flying flaps, op clb mode, pilots idle

5 op clb 0 3091 3001 -2 vs fpa extnd 180 descend 0

• Mode reversion has occurred

• Causing a climb while the mental mode is descend

• But it is due to airspeed abruptly increasing from 200 to 401

• Also, in steps 4 and 5 the airspeed decays to 0

• Our abstraction is too crude: need more constraints

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 24

Additional Constraints

[] airspeed’ > airspeed+10 OR airspeed’ < airspeed-10 --> ok’ = FALSE;

[] pitch > 0 AND altitude’ < altitude+10*pitch --> ok’ = FALSE;

[] pitch < 0 AND altitude’ > altitude+10*pitch --> ok’ = FALSE;

[] pitch=0 AND

(altitude’ > altitude+10 OR altitude’ < altitude-10) --> ok’ = FALSE;

• Want airspeed changes to be gradual

• And altitude coupled more closely to pitch

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 25

Second Counterexample

step act mde airspd alt fcu alt fcu fpa fcu md flaps mx spd mntl md pitch

1 other 200 3000 3291 -1/50 other rtrctd 400 level -1/100

Commands: flying clean, track fcu md, dial descend

2 vs fpa 201 2989 3291 -1/100 vs fpa rtrctd 400 descend -1/100

Commands: flying clean, vs fpa mode, extend flaps

3 vs fpa 200 2988 3291 -1/100 vs fpa extnd 180 descend 0

Commands: flying flaps, mode reversion, pilots idle

4 op clb 201 2989 3291 -1/100 vs fpa extnd 180 descend 0

Commands: flying flaps, op clb mode, pilots idle

5 op clb 200 2990 3291 -1/100 vs fpa extnd 180 descend 1/50

Commands: flying flaps, op clb mode, pilots idle

6 op clb 190 3291 3291 -1/100 vs fpa extnd 180 descend 3/100

• The fcu alt is set to 3291 while the aircraft is flying at 3000

• The pilots decide to descend and enter a negative fcu fpa

• Then extend the flaps

• Causes overspeed and a mode reversion to op clb mode

• Which in turn causes a strong climb.

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 26

Confirm by Simulation

• Since the modeling is crude, we confirm the scenario by

reproducing it in a simulator

• Used WMC (Work Models that Compute) in collaboration

with Gabriel Gelman and Karen Feigh of Georgia Tech

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 27

Indeed, That Scenario Is Real

• It happened on 24 September 1994 to an Airbus A310,

registration YR-LCC, operating as Tarom Flight 381 from

Bucharest to Paris Orly

• Take a look at the following video of the incident

http://www.youtube.com/watch?v=VqmrRFeYzBI

◦ First part is a reconstruction based on information from

the flight data recorder

◦ The second part is actual video taken from the ground

◦ sound track from the voice data recorder is synchronized

to both parts

• Official incident report is available here http://www.bea.aero/

docspa/1994/yr-a940924a/htm/yr-a940924a.html

• Due to this and other similar incidents, Airbus modified its

speed protection package

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 28

Workflow

• Although it is very approximate, our modeling is sound

◦ We include all real behaviors

• Idea is to refine the constraints until we get a realistic

scenario that we can take to a high-fidelity simulation

◦ Or discover that the counterexample was due to excessive

approximation

• Formally equivalent, but a conceptual distinction between

constraints that truly refine the model and those that serve

merely to nudge the counterexample in a preferred direction

◦ If desired, the latter can be placed in a separate

constraints module

◦ e.g., the values for pitch and fcu fpa in our example are

implausible

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 29

Conclusion

• Model checking systems against mental models is an

effective way to discover automation surprises

◦ Can extend to more detailed mental models and

procedures (e.g., task models, with errors) and more

realistic ones (e.g., cognitive models)

• Using hybrid systems increases the range of systems for

which approach is feasible and realistic

• Approximate modeling is OK: we are not analyzing

performance of a control system

• There is speculation that similar scenarios may explain last

week’s 777 crash at Dubai

◦ TOGA inhibited after wheels meet runway

◦ TOGA thrust limit reset when VNAV engaged after flaps

extended

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 30

Conclusion (ctd.)

• Observe the technologies employed

• Model checking with SMT: infinite bounded model checking

◦ Blurs line between theorem proving and model checking

◦ The tool I used (SAL) is now rather old; current ones

include nuXmv, Sally, Spacer, Z3; for verification these

use k-induction or IC3/PDR or a combination

• Relational abstractions are simple and effective

• Enabled by use of synchronous observers

◦ Extremely versatile, easy to use

◦ Basic model generates more behaviors than required

◦ Synchronous observer recognizes those that are interesting

◦ Effective because easier to write recognizers than generators

◦ Requires only trivial LTL: G(ok IMPLIES property)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 31

Coming Up

Next, we’ll look at formal methods and assurance in the

Internet of Things, and in systems such as automated driving

References

[1] Ellen J. Bass, Karen M. Feigh, Elsa Gunter, and John Rushby. Formal

modeling and analysis for interactive hybrid systems. In Fourth

International Workshop on Formal Methods for Interactive Systems:

FMIS 2011, Volume 45 of Electronic Communications of the EASST,

Limerick, Ireland, June 2011.

[2] Gabriel Gelman, Karen Feigh, and John Rushby. Example of a

complementary use of model checking and human performance

simulation. IEEE Transactions on Human-Machine Systems,

44(5):576–590, October 2014.

[3] John Rushby. Using model checking to help discover mode confusions

and other automation surprises. Reliability Engineering and System

Safety, 75(2):167–177, February 2002.

[4] John Rushby. The versatile synchronous observer. In S. Iida,

J. Meseguer, and K. Ogata, editors, Specification, Algebra, and

Software, A Festschrift Symposium in Honor of Kokichi Futatsugi,

Volume 8373 of Springer-Verlag Lecture Notes in Computer Science,

pages 110–128, Kanazawa, Japan, April 2014.

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 32

Other References

Check out papers by others using related methods

• Ellen Bass (Drexel)

• Matthew Bolton (SUNY Buffalo)

• Paul Curzon (Queen Mary)

• Paolo Masci (Braga). . . see his YouTube presentations

• Harold Thimbleby (Swansea)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 33

