Marktoberdorf NATO Summer School 2016, Lecture 4

Formal Models for Human-Machine Interactions

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, California, USA

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 1

Introduction

No passenger aircraft accidents or incidents due to software
implementation

o DO-178C is effective—but expensive
o Cf. work of Gerard Holzmann on NASA spacecraft

Several incidents due to flawed requirements

Dominant source of accidents used to be CFIT

o Controlled Flight Into Terrain
o Fixed by EGPWS
o Extended Ground Proximity Warning System

Now it is LOC

o Loss of Control
o Example: AF447 (GIG to CDG, pitot tubes iced up)

Do human operators not understand the automation?

Or is the automation badly designed?

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 2

Example

Watch this: http://www.youtube.com/watch?v=VqmrRFeYzBI

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 3

Topics

e We know about modeling systems (and God)

o How about modeling humans?

e [here are many types of model checkers

o Let's look at bounded model checkers driven by SMT solvers
(“infinite bounded”)

e [here are many types of abstraction

o Let's look at relational abstractions

e Instead of specifying properties in temporal logic

o Let's look at doing it with synchronous observers

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 4

Premise for HMI Models

e Human interactions with automated systems are guided by
mental models (Craik 1943)

e EXxact nature of the models is a topic of debate and research

o Behavioral representation that allows mental simulation
* e.g., state machine

o Stimulus/response rules

o Both

wWe'll assume the first of these

e An automation surprise can occur when the behavior of the
real system and the mental model diverge

e Can discover potential surprises by model checking

o Build state machines for the system and its model, explore
all possible behaviors looking for significant divergences

e This works! (Rushby 1997/2002)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 5

Mental Models
e Aviation psychologists elicit pilot’s actual mental models

e However, a well-designed system should induce an effective
model, and the purpose of training is to develop this

e SO can construct plausible mental models by extracting state
machines from training material, then applying known
psychological simplification processes (Javaux 1998)

o Frequential simplification
o Inferential simplification

e But there are some basic properties that should surely be
true of any plausible mental model

o e.g., pilots can predict whether their actions will cause
the plane to climb or descend

e Yet many avionics systems are so poor that they provoke an
automation surprise even against such core models

e \We will use models of this kind

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 6

System Models

e [he real system will have many parts, and possibly complex
internal behavior

e But there is usually some externally visible physical plant

o e.g., a car, airplane, vacuum cleaner, iPod

e And what humans care about, and represent in their mental
models, is the behavior of the plant

e And divergence between a mental model and the real system
should be in terms of this plant behavior

o e.g., does the car or plane go in the right direction, does
the vacuum cleaner use the brush or the hose, does the
iPod play the right song?

e SO our analysis should model the plant behavior

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 7

Hybrid Systems

e Many plants are modeled by differential equations

o e.g., 6 DOF models for airplanes

e Compounded by different sets of equations in different
discrete modes

o e.g., flap extension

e [hese models are called hybrid systems

o Combine discrete (state machine) and continuous
(differential equation) behavior

e [he full system model will be the composition of the hybrid
plant model with its controller and its interface and. ..

e Can do accurate simulations (e.g., Matlab)
e But that's just one run at a time, we need all runs

e And formal analysis of hybrid systems is notoriously hard

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 8

Relational Abstractions

We need to find suitable abstractions (i.e., approximations)
for hybrid systems that are sufficiently accurate for our
purposes, and are easy to analyze

Several abstractions available for hybrid systems, we use a
kind called relational abstractions (Tiwari 2011)

For each discrete mode, instead of differential equations to
specify evolution of continuous variables, give a relation
between them that holds in all future states (in that mode)

Accurate relational abstractions for hybrid systems require
specialized invariant generation and eigenvalue analysis

But for our purposes, something much cruder suffices

o e.g., if pitch angle is positive, then altitude in the future
will be greater than it is now

Rather than derive these rel’'ns, we assert them as our spec’'n

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 9

Model Checking Infinite State Systems

e Our relational abstractions get us from hybrid systems back
to state machines

e But these state machines are still defined over continuous
quantities (i.e., mathematical real numbers)

o Altitude, roll rate, etc.

e How do we model check these?

o i.e., do fully automatic analysis of all reachable states
o When there's potentially an infinite number of these

e We can do it by Bounded Model Checking (BMC) over theories
decided by a solver for Satisfiability Modulo Theories (SMT)

o This is infinite BMC

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 10

SMT Solvers: Disruptive Innovation in Theorem Proving

e SMT solvers extend decision procedures with the ability to
handle arbitrary propositional structure

o Previously, case analysis was handled heuristically or
interactively in a front end theorem prover

* Where must be careful to avoid case explosion
o SMT solvers use the brute force of modern SAT solving

e Or, dually, they generalize SAT solving by adding the ability
to handle arithmetic and other decidable theories

e Typical theories: uninterpreted functions with equality, linear
arithmetic over integers and reals, arrays of these, etc.

e [here is an annual competition for SMT solvers
e Very rapid growth in performance

e Biggest advance in formal methods in last 25 years

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 11

Bounded Model Checking (BMC)

e Given system specified by initiality predicate I and transition
relation T on states S

e Is there a counterexample to property P in k steps or less?

e i.e., can we find an assignment to states sq,...,s; satisfying
I(sg) NT(sg,81) NT(s1,82) AN+ ANT(Sk—1,5k) N (P(sg) A--- N\ P(sk))

o Try fork=1,2,...

e Given a Boolean encoding of I, T, and P (i.e., circuits), this
is a propositional satisfiability (SAT) problem

e If I, T, and P are over the theories decided by an SMT
solver, then this is an SMT problem

o Then called Infinite Bounded Model Checking (inf-BMC)
e Works for LTL (via Blichi automata), not just invariants

e Extends to verification via k-induction

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 12

Synchronous Observers

e [or safety properties, instead of writing the specification as a
temporal logic formula and translating it to an automaton

e \We could just write the specification directly as a state machine

e Specifically, a state machine that is synchronously composed
with the system state machine

e And that observes its state variables

e And signals an alarm if the intended behavior is violated,
or ok if it is not (these are duals)

e [his is called a synchronous observer

e [hen we check that alarm or NOT ok are unreachable:
o G(ok) or G(NOT alarm)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 13

Benefits of Synchronous Observers

e \We only have to learn one language

o [he state machine language

e Instead of two

o State machine plus temporal logic specification language
e And only one way of thinking
e Can still do liveness: F(ok)
e Plus there are several other uses for synchronous observers
e I'll illustrate one in the example

e But test generation is a good one

o ODbserver raises ok when it has seen a good test
o Model check for G(NOT ok) and counterexample is a test

e Observe this is slow with explicit state model checkers:
no problem for symbolic ones (just adds more constaints)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 14

Specifying Relations
e Most model checking notations specify state variables of new
state in terms of those in the old; may be nondeterministic
e For example, guarded command in SAL
o pitch > 0 --> alt’ IN {x: REAL | x > alt}
If pitch is positive, new value of alt is bigger than old one
e But how do we say that x and y get updated such that
o x*¥x + y*xy < 17
e \Various possibilities, depending on the model checker, but
one way that always works is to use a synchronous observer
e Main module makes nondeterministic assignments to x and y
e An observer module sets ok false if relation is violated
o NOT(x*x + y*y < 1) —--> ok’ = FALSE

e Model check for the property we care about only when ok is
true: G(ok IMPLIES property)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 15

Example: Airbus Speed Protection

e Systems similar to that described below were used in A310,
A320, A330, and A340 airplanes; this is the A320 version

e Autothrottle modes
o SPD: try to maintain speed set in the FCU
e Autopilot vertical modes and submodes

o VS/FPA: fly at the fight path angle specified in the FCU

o OP CLB: climb toward target altitude set in the FCU,
using max thrust at an FPA that maintains set airspeed

o OP DES: ...if target altitude is lower than current
e Speed protection
o On descent in SPD VS/FPA modes, allow overspeed
o But if it exceeds the MAX, change to OP mode
o Will be OP CLB if target altitude is above current
o MAX speed is lower when flaps are extended

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 16

Modeling Airbus Speed Protection

e Composition of three main components
o Pilots: nondeterministically set vertical mode, dial values
into FCU, deploy flaps
x Organized by mental mode (descend, climb, level)
o Automation: determines actual mode and applies control
laws to determine thrust and pitch

o Airplane: uses thrust and pitch values, and flap setting,
to calculate airplane trajectory (altitude and airspeed)

e Plus constraints, which is an observer that sets ok to enforce
plausible relations among pitch, altitude, etc.

e And observer, which sets alarm if airplane climbs while
mental mode is descend

e Model check for G(ok IMPLIES NOT alarm)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 17

Fragment of Pilots Module

INPUT

airspeed: speedvals, altitude: altvals
INITIALIZATION

mental_mode = level; fcu_mode = other; flaps = retracted;
TRANSITION

[extend_flaps: mental_mode = descend and flaps = retracted -->
flaps’ = extended
[] retract_flaps: mental_mode = climb and flaps = extended -->
flaps’ = retracted
[] dial_fcu_alt: fcu_mode = other --> fcu_alt’ IN {x: altvals | TRUE}
[] dial_descend: mental_mode /= descend -->
mental_mode’ = descend; fcu_mode’ = vs_fpa;
fcu_fpa’ IN {x: pitchvals | x < 0};
[] dial_climb: mental_mode /= climb -->
mental_mode’ = climb; fcu_mode’ = vs_fpa;
fcu_fpa’ IN {x: pitchvals | x > 0};
[] pilots_idle: TRUE -->
1 END;

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 18

Fragment of Automation Module

DEFINITION
max_speed = IF flaps = retracted THEN VMAX ELSE Vfe ENDIF;

TRANSITION

[track-fcu-mode: fcu_mode’ /= fcu_mode --> actual_mode’ = fcu_mode’

[] mode_reversion: actual_mode = vs_fpa AND airspeed > max_speed -->
actual_mode’ = IF fcu_alt > altitude THEN op_clb ELSE op_des ENDIF;

[] vs_fpa_mode: actual_mode = vs_fpa AND airspeed <= max_speed —->
pitch’ IN vs_fpa_pitch_law(...)

[] op_clb_mode: actual_mode = op_clb —--> pitch’ IN op_clb_pitch_law(...)

[] op_des_mode: actual_mode = op_des --> pitch’ IN op_des_pitch_law(...)

[] automation_idles: ELSE -->

] END;

NB. vs_fpa_pitch law(...) etc. are uninterpreted functions:
SMT solver will synthesize suitable functions

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 19

Fragment of Airplane Module

INITIALIZATION
airspeed = 200; altitude = 3000;
TRANSITION

[flying_clean: flaps = retracted -->
airspeed’ IN
speed_dynamics_clean(airspeed, altitude, thrust, pitch);
altitude’ IN alt_dynamics_clean(...);
[l flying_flaps: flaps = extended -->
airspeed’ IN speed_dynamics_flaps(...);
altitude’ IN alt_dynamics_flaps(...);
1 END;

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 20

Fragment of Constraints Module (synchronous observer)

INITIALIZATION

ok = TRUE;

TRANSITION

[

[]
[]
[]
[]
[]
[]
[]

actual_mode =
actual_mode =
actual_mode =
actual_mode =
pitch > O AND
pitch < O AND

op_des AND pitch > 0 --> ok’ = FALSE;
op_clb AND pitch < 0 --> ok’ = FALSE;
vs_fpa AND fcu_fpa <= 0 AND pitch > 0 --> ok’ = FALSE;
vs_fpa AND fcu_fpa >= 0 AND pitch < 0 --> ok’ = FALSE;
altitude’ < altitude --> ok’ = FALSE;
altitude’ > altitude --> ok’ = FALSE;

pitch=0 AND altitude’ /= altitude --> ok’ = FALSE;

ELSE -->

] END;

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 21

Observer Module (another synchronous observer)

observer: MODULE =
BEGIN
OUTPUT
alarm: BOOLEAN
INPUT
mental_mode: mental_modes, altitude: altvals
INITIALIZATION
alarm = FALSE
TRANSITION
alarm’ = alarm OR (mental_mode = descend AND altitude’ - altitude > 90)
END;

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 22

The System, the Property, the Analysis

system: MODULE = airplane || automation || pilots || constraints || observer;
surprise: THEOREM system |- G(ok IMPLIES NOT alarm);

sal-inf-bmc a320sp.sal surprise -v 3 -it -d 20

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 23

First Counterexample

step act_mde airspd alt fcu_alt fcu_fpa fcu_md flaps mx_spd mntl_md pitch

1 other 200 3000 3001 -1 other rtrctd 400 level 0
Commands: flying_clean, track_fcu_md, dial_descend

2 vs_fpa 401 3000 3001 -2 vs_fpa rtrctd 400 descend 0
Commands: flying_clean, mode_reversion, extend_flaps

3 op_clb 180 3000 3001 -2 vs_fpa extnd 180 descend 0
Commands: flying_flaps, op_clb_mode, pilots_idle

4 op-clb 0 3000 3001 -2 vs_fpa extnd 180 descend 1
Commands: flying_flaps, op_clb_mode, pilots_idle

5 op-clb 0 3091 3001 -2 vs_fpa extnd 180 descend 0

e Mode reversion has occurred

e Causing a climb while the mental_mode iS descend

e But it is due to airspeed abruptly increasing from 200 to 401
e Also, in steps 4 and 5 the airspeed decays to O

e Our abstraction is too crude: need more constraints

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 24

Additional Constraints

[] airspeed’ > airspeed+10 OR airspeed’ < airspeed-10 --> ok’ = FALSE;
[] pitch > O AND altitude’ < altitude+10*pitch --> ok’ = FALSE;

[] pitch < O AND altitude’ > altitude+10*pitch --> ok’ = FALSE;

[1 pitch=0 AND

(altitude’ > altitude+10 OR altitude’ < altitude-10) --> ok’ = FALSE;

e \Want airspeed changes to be gradual

e And altitude coupled more closely to pitch

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 25

Second Counterexample

step act_mde airspd alt fcu_alt fcu_fpa fcu_md flaps mx_spd mntl_md pitch

1 other 200 3000 3291 -1/50 other rtrctd 400 level -1/100
Commands: flying_clean, track_fcu_md, dial_descend

2 vs_fpa 201 2989 3291 -1/100 vs_fpa rtrctd 400 descend -1/100
Commands: flying_clean, vs_fpa_mode, extend_flaps

3 vs_fpa 200 2988 3291 -1/100 vs_fpa extnd 180 descend 0
Commands: flying_flaps, mode_reversion, pilots_idle

4 op-clb 201 2989 3291 -1/100 vs_fpa extnd 180 descend 0
Commands: flying_flaps, op_clb_mode, pilots_idle

5 op-clb 200 2990 3291 -1/100 vs_fpa extnd 180 descend 1/50
Commands: flying_flaps, op_clb_mode, pilots_idle

6 op-clb 190 3291 3291 -1/100 vs_fpa extnd 180 descend 3/100

e The fcu_alt is set to 3291 while the aircraft is flying at 3000
e The pilots decide to descend and enter a negative fcu_fpa

e T hen extend the flaps

e Causes overspeed and a mode reversion to op_clb mode

e Which in turn causes a strong climb.

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 26

Confirm by Simulation

e Since the modeling is crude, we confirm the scenario by
reproducing it in a simulator

e Used WMC (Work Models that Compute) in collaboration
with Gabriel Gelman and Karen Feigh of Georgia Tech

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 27

Indeed, That Scenario Is Real

e It happened on 24 September 1994 to an Airbus A310,
registration YR-LCC, operating as Tarom Flight 381 from
Bucharest to Paris Orly

e Take a look at the following video of the incident
http://www.youtube.com/watch?v=VqmrRFeYzBI

o First part is a reconstruction based on information from
the flight data recorder
o The second part is actual video taken from the ground

o sound track from the voice data recorder is synchronized
to both parts

e Official incident report is available here http://www.bea.aero/
docspa/1994/yr-a940924a/htm/yr-a940924a.html

e Due to this and other similar incidents, Airbus modified its
speed protection package

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 28

Workflow

e Although it is very approximate, our modeling is sound
o We include all real behaviors

e Idea is to refine the constraints until we get a realistic
scenario that we can take to a high-fidelity simulation

o Or discover that the counterexample was due to excessive
approximation

e Formally equivalent, but a conceptual distinction between
constraints that truly refine the model and those that serve
merely to nudge the counterexample in a preferred direction

o If desired, the latter can be placed in a separate
constraints module

o e.g., the values for pitch and fcu_fpa in our example are
implausible

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 29

Conclusion

e Model checking systems against mental models is an
effective way to discover automation surprises

o Can extend to more detailed mental models and
procedures (e.g., task models, with errors) and more
realistic ones (e.g., cognitive models)

e Using hybrid systems increases the range of systems for
which approach is feasible and realistic

e Approximate modeling is OK: we are not analyzing
performance of a control system

e [here is speculation that similar scenarios may explain last

week's 777 crash at Dubai

o TOGA inhibited after wheels meet runway
o TOGA thrust limit reset when VNAV engaged after flaps
extended

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 30

Conclusion (ctd.)

e Observe the technologies employed

e Model checking with SMT: infinite bounded model checking

O

O

Blurs line between theorem proving and model checking
The tool I used (SAL) is now rather old; current ones
include nuXmv, Sally, Spacer, Z3:; for verification these
use k-induction or IC3/PDR or a combination

e Relational abstractions are simple and effective

e Enabled by use of synchronous observers

O

O

O

Extremely versatile, easy to use

Basic model generates more behaviors than required
Synchronous observer recognizes those that are interesting
Effective because easier to write recognizers than generators
Requires only trivial LTL: G(ok IMPLIES property)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 31

Coming Up

Next, we'll look at formal methods and assurance in the
Internet of Things, and in systems such as automated driving

References

[1] Ellen J. Bass, Karen M. Feigh, Elsa Gunter, and John Rushby. Formal
modeling and analysis for interactive hybrid systems. In Fourth
International Workshop on Formal Methods for Interactive Systems:
FMIS 2011, VVolume 45 of Electronic Communications of the EASST,
Limerick, Ireland, June 2011.

[2] Gabriel Gelman, Karen Feigh, and John Rushby. Example of a
complementary use of model checking and human performance
simulation. IEEE Transactions on Human-Machine Systems,
44(5):576—590, October 2014.

[3] John Rushby. Using model checking to help discover mode confusions
and other automation surprises. Reliability Engineering and System
Safety, 75(2):167—177, February 2002.

[4] John Rushby. The versatile synchronous observer. In S. Iida,
J. Meseqguer, and K. Ogata, editors, Specification, Algebra, and
Software, A Festschrift Symposium in Honor of Kokichi Futatsugi,
Volume 8373 of Springer-Verlag Lecture Notes in Computer Science,
pages 110—-128, Kanazawa, Japan, April 2014.
Marktoberdorf 2016, Lecture 4 John Rushby, SRI 32

Other References

Check out papers by others using related methods

e Ellen Bass (Drexel)

e Matthew Bolton (SUNY Buffalo)

e Paul Curzon (Queen Mary)

e Paolo Masci (Braga)...see his YouTube presentations

e Harold Thimbleby (Swansea)

Marktoberdorf 2016, Lecture 4 John Rushby, SRI 33

