
Logik Cafe, Vienna 23 May 2016

Mechanized Analysis of Reconstructions

of Anselm’s Ontological Argument

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I Mechanized Ontological Argument 1

Overview

• Why am I here?

◦ Computer Scientists confront philosophical problems

? Could use your help

◦ We have tools and perspectives that may be useful to you

? Hope to gain your interest

Focus here on the latter

• Verification Systems: powerful theorem provers

• Example application: Anselm’s Ontological Argument

◦ Specifically, the reconstruction of Eder and Ramharter

◦ Also Oppenheimer and Zalta, Campbell (and Gödel)

Can this add value?

• Back to the start: opportunities for collaboration?

John Rushby, SR I Mechanized Ontological Argument 2

Verification Systems

• General purpose systems developed over the last 30 years

◦ For reasoning about correctness of computational systems

? Algorithms, protocols, software, hardware

? HMI, requirements, biological systems

◦ Integrate a specification language

? Essentially a rich logic, invariably higher-order

◦ And mechanized deduction

? Combine interactive and automated theorem proving

? Decision procedures, SAT and SMT solvers, model

checkers

◦ Plus stuff for managing large formal developments

? Often tens of thousands of lines

• Recent focus is more specialization, more automation

John Rushby, SR I Mechanized Ontological Argument 3

Popular Verification Systems

• Unquantified First Order

◦ ACL2 (USA)

• Higher Order

◦ Coq (France)

◦ HOL (UK)

◦ Isabelle (Germany)

◦ PVS (USA)

? This is what I will use, first released 1993

? Classical Higher-Order Logic with predicate subtypes

? Winner of CAV Award 2015, 3,000 citations

John Rushby, SR I Mechanized Ontological Argument 4

Compared with Simple First Order Provers

• Verification systems tackle the whole problem

• Must be able to specify anything

◦ Without going outside the system

• Want guarantees of soundness (conservative extension)

• And ways of demonstrating consistency of axiomatizations

◦ Theory interpretations

• And ways to explore intuition (e.g., testing)

• Want modularity (theories and parameterization)

• And ways to manage and ensure consistency of large

developments

• Want automation for common CS theories

◦ Equality, arithmetic, bitvectors, arrays etc.

• Etc.

John Rushby, SR I Mechanized Ontological Argument 5

Anselm’s Ontological Argument

• Formulated by St. Anselm (1033–1109)

◦ Archbishop of Canterbury

◦ Aimed to justify Christian doctrine through reason

◦ Cf. Avicenna’s earlier proof of The Necessary Existent

• Disputed by his contemporary Gaunilo

◦ Existence of a perfect island

• Widely studied and disputed thereafter

◦ Descartes, Leibniz, Hume, Kant (who named it), Gödel

• Russell, on his way to the tobacconist: “Great God in

Boots!—the ontological argument is sound!”

• The later Russell: “The argument does not, to a modern

mind, seem very convincing, but it is easier to feel convinced

that it must be fallacious than it is to find out precisely

where the fallacy lies”

John Rushby, SR I Mechanized Ontological Argument 6

Analyses of Anselm’s Ontological Argument

• Reconstructions

◦ What did Anselm actually say?

◦ Can we accurately formulate that in modern logic?

• Analysis

◦ Is the argument sound?

◦ If not, where is the flaw, and can it be repaired?

◦ Other questions and lines of inquiry

• For computer scientists (a reason for my interest)

◦ An assurance case is an argument that aims to justify a

claim (typically about safety) on the basis of evidence

(premises) about the system

◦ The Ontological Argument is a good illustration of how

this differs from proof

◦ I became aware of it through Susanne Riehemann, who

worked in our lab and is married to Ed Zalta

John Rushby, SR I Mechanized Ontological Argument 7

Anselm’s Argument

• Appears in his Proslogion

◦ With variations and developments

◦ Written in Latin

• So scholars debate exact interpretation

• Here’s a fairly neutral modern translation

◦ We can conceive of something/that than which there is

no greater

◦ If that thing does not exist in reality, then we can

conceive of a greater thing—namely, something

(just like it) that does exist in reality

◦ Therefore either the greatest thing exists in reality or it is

not the greatest thing

◦ Therefore the greatest thing (necessarily) exists in reality

• That’s God

John Rushby, SR I Mechanized Ontological Argument 8

Günter Eder and Esther Ramharter’s Reconstruction

• Appears in Synthese vol. 192, October 2015

• Three stages: first-order, higher-order, modal logic

• I will cover just the first two

◦ Leave the third to Benzmüller and Woltzenlogel-Paleo

• My goal is to show that it is quite easy to represent and

mechanize this in a verification system

• I will not comment (much) on E&R’s reconstruction

◦ That’s a task for philosophers

◦ But I hope to show that mechanized support could aid

the discussion

John Rushby, SR I Mechanized Ontological Argument 9

First-Order: Understandable Objects, Gods

• Something is a God if there is nothing greater

Def C-God: Gx :↔ ¬∃y(y > x)

Here, x and y range over the “understandable objects,”

which is the implicit range of first-order quantification

• PVS is higher-order, so we need to be explicit about types

PVS fragment
U_beings: TYPE

x, y: VAR U_beings

>(x, y): bool

God?(x): bool = NOT EXISTS y: y > x

The VAR declaration saves us having to specify each

appearance; overloaded infix operators like > use prefix form

in declarations; the ? in God? is just a naming convention for

predicates; the = indicates this is a definition

John Rushby, SR I Mechanized Ontological Argument 10

First-Order: Conceive Of, Real Existence

• The Argument says we can conceive of something than which

there is no greater (i.e., a God); interpret this as a premise

• ExUnd: ∃xGx

• In PVS we render it as follows.

PVS fragment
ExUnd: AXIOM EXISTS x: God?(x)

• Real existence is not the ∃ of logic, but a predicate

◦ E&R write it as E!, I use re?

• Our goal is to prove that a God exists in reality

• God!: ∃x(Gx ∧ E!x)

• We write this in PVS as follows
PVS fragment

re?(x): bool

God_re: THEOREM EXISTS x: God?(x) AND re?(x)

John Rushby, SR I Mechanized Ontological Argument 11

First-Order: Additional Premises

• Cannot prove this without additional premise to connect >, E!

• Note, nothing so far says > is an ordering relation

• First attempt

Greater 1: ∀x(¬E!x→ ∃y(y > x))

If x does not exists in reality, then there is a greater thing

• In PVS, we write this as follows.

PVS fragment

Greater1: AXIOM FORALL x: (NOT re?(x) => EXISTS y: y > x)

John Rushby, SR I Mechanized Ontological Argument 12

First-Order: Complete PVS Specification

ontological_arg: THEORY

BEGIN

U_beings: TYPE

x, y: VAR U_beings

>(x, y): bool

God?(x): bool = NOT EXISTS y: y > x

re?(x): bool

ExUnd: AXIOM EXISTS x: God?(x)

Greater1: AXIOM FORALL x: (NOT re?(x) => EXISTS y: y > x)

God_re: THEOREM EXISTS x: God?(x) AND re?(x)

END ontological_arg

John Rushby, SR I Mechanized Ontological Argument 13

First-Order: PVS Proof

• PVS can prove the theorem given the following commands

PVS proof
(lemma "ExUnd") (lemma "Greater1") (grind :polarity? t)

• First two instruct PVS to use named formulas as premises

• Third instructs it to use general-purpose proof strategy,

observing the polarity (i.e., positive vs. negative occurrences)

of terms when searching for quantifier instantiations

• PVS reports that the theorem is proved

John Rushby, SR I Mechanized Ontological Argument 14

First-Order: Proofchain Analysis

• Proof is a local concept

• Proofchain analysis checks that all proofs are complete, and

also those of any lemmas they cite, plus any incidental proof

obligations

• It provides the following report

PVS proofchain
ontological_arg.God_re has been PROVED.

The proof chain for God_re is COMPLETE.

God_re depends on the following axioms:

ontological_arg.ExUnd

ontological_arg.Greater1

God_re depends on the following definitions:

ontological_arg.God?

John Rushby, SR I Mechanized Ontological Argument 15

First-Order: Second Attempt

• E&R observe Greater 1 is not a faithful reconstruction

◦ Not analytic: no a priori reason to believe it

◦ Argument does not follow Anselm’s structure

• Eder and Ramharter next propose the following premises

Greater 2: ∀x∀y(E!x ∧ ¬E!y → x > y), and

E!: ∃xE!x

An object that exists in reality is > than one that does not,

and there is some object that does exist in reality.

• In PVS, these are written as follows and replace Greater1

PVS fragment

Greater2: AXIOM FORALL x, y: (re?(x) AND NOT re?(y)) => x > y

Ex_re: AXIOM EXISTS x: re?(x)

John Rushby, SR I Mechanized Ontological Argument 16

First-Order: Second Attempt (ctd. 1)

• Same PVS proof strategy as before proves the theorem

• E&R consider this version unfaithful also

• Hence the higher-order treatment

• Higher-order:

◦ Functions can take functions as arguments

◦ And return them as values

◦ Can quantify over functions

◦ Need types to keep things consistent

◦ Predicates are just functions with range type Boolean

John Rushby, SR I Mechanized Ontological Argument 17

Higher-Order

• Anselm attributes properties to objects and some of these,

notably E!, contribute to evaluation of >

• Hypothesize some class P of “greater-making” properties on

objects; define one object to be greater than another exactly

when it has all the properties of the second, and more besides

Greater 3: x > y :↔ ∀PF (Fy → Fx) ∧ ∃PF (Fx ∧ ¬Fy),

where ∀PF indicates that the quantified higher-order variable

F ranges over the properties in P, and likewise for ∃PF

• In PVS we do this using predicate subtypes

PVS fragment
P: setof[pred[U_beings]]

re?: pred[U_beings]

F: VAR (P)

>(x, y): bool =

(FORALL F: F(y) => F(x)) AND (EXISTS F: F(x) AND NOT F(y))

Continued. . .
John Rushby, SR I Mechanized Ontological Argument 18

Higher-Order (ctd.)

• In PVS we do this using predicate subtypes

PVS fragment
P: setof[pred[U_beings]]

re?: pred[U_beings]

F: VAR (P)

>(x, y): bool =

(FORALL F: F(y) => F(x)) AND (EXISTS F: F(x) AND NOT F(y))

• We let P be some set of predicates over U beings

• Previously, we specified re? by re?(x): bool, but here we

specify it to be a constant of type pred[U beings]

• These are syntactic variants for the same type; we use the

latter form here for symmetry with the specification of P, so

that is clear that re? is potentially a member of P

• P is a set, equivalent to a predicate in HO logic; in PVS,

predicate in parentheses denotes corr. predicate subtype

• So F is a variable ranging over the members of P

John Rushby, SR I Mechanized Ontological Argument 19

Higher-Order: Realization

• Anselm starts with something than which there is no greater

• If that something does not exist in reality, consider same

thing augmented with the property of existence in reality

• Problem is, that may not be an understandable object

• E&R use additional premise realization to ensure that it is

• Realization: ∀PF∃x∀PF (F(F)↔ Fx)

This says that for any set F of properties in P, there is some

understandable object x that has exactly the properties in F

• Eder and Ramharter use the locution ∀PF to indicate a

third-order quantifier over all sets of properties in P

• In PVS, we make the types explicit and the corresponding

specification is as follows.

PVS fragment
Realization: AXIOM

FORALL (FF: setof[(P)]): EXISTS x: FORALL F: FF(F) = F(x)

John Rushby, SR I Mechanized Ontological Argument 20

Higher-Order Formulation in PVS

HO_ontological_arg: THEORY

BEGIN

U_beings: TYPE

x, y: VAR U_beings

re?: pred[U_beings]

P: set[pred[U_beings]]

F: VAR (P)

>(x, y): bool =

(FORALL F: F(y) => F(x)) & (EXISTS F: F(x) AND NOT F(y))

God?(x): bool = NOT EXISTS y: y > x

ExUnd: AXIOM EXISTS x: God?(x)

Realization: AXIOM

FORALL (FF:setof[(P)]): EXISTS x: FORALL F: FF(F) = F(x)

God_re: THEOREM member(re?, P) => EXISTS x: God?(x) AND re?(x)

END HO_ontological_arg

John Rushby, SR I Mechanized Ontological Argument 21

Higher-Order Proof in PVS (ugh)

(ground)

(expand "member")

(lemma "ExUnd")

(skosimp)

(case "re?(x!1)")

(("1" (grind))

("2"

(lemma "Realization")

(inst - "{ G: (P) | G(x!1) OR G=re? }")

(skosimp)

(inst + "x!2")

(ground)

(("1"

(expand "God?")

(inst + "x!2")

(expand ">")

(ground)

(("1" (lazy-grind)) ("2" (grind))))

("2" (grind)))))

John Rushby, SR I Mechanized Ontological Argument 22

Higher-Order: Quasi-id

• The heart of Anselm’s Argument

◦ If ExUnd does not exist in reality

◦ Then compare it with the itself, conceived as existing

A reconstruction must preserve this

• Eder and Ramharter define two objects to be quasi-identical,

written ≡D, if they have the same greater-making properties

apart from those in some subset D ⊆ P:

Quasi-id: x ≡D y :↔ ∀PF (¬D(F)→ (Fx↔ Fy))

• Eder and Ramharter prove that the Skolem constants a

(from Realization) and g (from ExUnd) appearing in their

formalization of the argument are quasi-identical: a ≡{E!} g

• In PVS, we define quasi-identity as follows

PVS fragment
quasi_id(x, y: U_beings, D: setof[(P)]): bool =

FORALL (F: (P)): NOT D(F) => F(x) = F(y)

And reproduce the same proof
John Rushby, SR I Mechanized Ontological Argument 23

Interim Conclusions

• I hope you agree: this was straightforward

• But does it add value?

• Eder and Ramharter made no errors!

• But I think there are opportunities beyond bug-finding

• Let’s look at some related examples

John Rushby, SR I Mechanized Ontological Argument 24

Oppenheimer and Zalta’s Treatments

• I previously mechanized a version of O&Z’s reconstruction

• It is identical to the first-order version of E&R with Greater 2

• But that may not be obvious due to different types and

representations

• O&Z version
PVS fragment

greatest: setof[U_beings] =

{ x | NOT EXISTS y: y > x }

P1: AXIOM nonempty?(greatest)

• E&R version
PVS fragment

God?(x): bool = NOT EXISTS y: y > x

ExUnd: AXIOM EXISTS x: God?(x)

• Sets and predicates are the same in higher-order logic, and

the set comprehension notation in PVS is equivalent to

lambda-abstraction, so we can conjecture equivalence. . .

John Rushby, SR I Mechanized Ontological Argument 25

Comparison of O&Z and E&R Reconstructions

• Equivalence

PVS fragment
gr_God: CONJECTURE greatest = God?

ne_Ex: CONJECTURE nonempty?(greatest) IFF EXISTS x: God?(x)

These are proved, respectively, by

PVS proof
(apply-extensionality) (grind :polarity? t)

and

PVS proof
(grind :polarity? t)

• So one potential value is in comparing different

reconstructions

• And verification is stronger than eyeballing

John Rushby, SR I Mechanized Ontological Argument 26

Circularity of Greater 1

• The first attempt (with Greater 1) is also in O&Z

• PVS shows it to be directly circular: Greater 1 can be proved

from the conclusion and vice-versa

• I.e., the formulation begs the question

• Not so here, because O&Z use a definite description and

need an additional premise (trichotomy of >) to establish

uniqueness of God?

• However, it is surely plausible to suppose that something

than which there is no greater is also greater than everything

else (i.e., it cannot be unrelated)

• And that is enough for circularity

• I think these kinds of exploration are another potential value

in mechanization

John Rushby, SR I Mechanized Ontological Argument 27

Unintended Models

• The version with Greater 2 uses two axioms (three in O&Z’s

version) and these could introduce inconsistency

• PVS guarantees conservative extension for purely

constructive specifications

• So one way to establish consistency of axioms is to exhibit a

constructively defined model

• Can do this using PVS capabilities for theory interpretations

◦ Interpret beings by the natural numbers nat

◦ And > by < (so the(greatest) is 0)

◦ And really exists by “less than 4”

• PVS generates TCCs (proof obligations) to prove that the

axioms of the source theory are theorems under the

interpretation

John Rushby, SR I Mechanized Ontological Argument 28

The Model

model
interpretation: THEORY

BEGIN

IMPORTING ontological {{
beings := nat,

> := <,

really_exists := LAMBDA (x: nat): x<4

}} AS model

END interpretation

John Rushby, SR I Mechanized Ontological Argument 29

Proof Obligations for Consistency

TCCs

% Mapped-axiom TCC generated (at line 56, column 10) for

% ontological

% beings := nat,

% > := restrict[[real, real], [nat, nat], boolean](<),

% really_exists := LAMBDA (x: nat): x < 4

model_P1_TCC1: OBLIGATION nonempty?[nat](greatest);

% Mapped-axiom TCC generated (at line 56, column 10) for

% ontological

% beings := nat,

% > := restrict[[real, real], [nat, nat], boolean](<),

% really_exists := LAMBDA (x: nat): x < 4

model_someone_TCC1: OBLIGATION EXISTS (x: nat): x < 4;

...continued

John Rushby, SR I Mechanized Ontological Argument 30

Proof Obligations for Consistency (ctd.)

TCCs
...continuation

% Mapped-axiom TCC generated (at line 56, column 10) for

% ontological

% beings := nat,

% > := restrict[[real, real], [nat, nat], boolean](<),

% really_exists := LAMBDA (x: nat): x < 4

model_reality_trumps_TCC1: OBLIGATION

FORALL (x, y: nat): (x < 4 AND NOT y < 4) => x < y;

• These are all easily proved

• So, our formalization of the Ontological Argument is sound

• And the conclusion is valid

• But it does not compel a theological interpretation

John Rushby, SR I Mechanized Ontological Argument 31

Why Verification Systems and not Simple Provers?

• O&Z formalized a version of the Argument that employs a

definite description

◦ Used a Free Logic to deal with definitional concerns

• Then mechanized it with Prover9 first-order theorem prover

◦ No first-order theorem prover automates Free Logic

◦ Nor provides definite descriptions

So these delicate issues are dealt with informally outside the

system, and beyond the reach of automated checking

• Deductions performed by Prover9 actually used very little of

their formalization

• This led them a much reduced formalization that Prover9

still found adequate

John Rushby, SR I Mechanized Ontological Argument 32

Oppenheimer and Zalta’s Simplification (ctd.)

• Believed they had discovered a simplification to the

Argument that

“not only brings out the beauty of the logic inherent in

the argument, but also clearly shows how it constitutes

an early example of a ‘diagonal argument’ used to

establish a positive conclusion rather than a paradox”

• Garbacz refutes this

◦ The simplifications flow from introduction of a constant

(God) that is defined by a definite description

◦ In the absence of definedness checks, this asserts

existence of the definite description and bypasses the

premises otherwise needed to establish that fact

• Lesson: mechanization needs to deal with the whole problem

• See PVS treatment of O&Z’s version for sound

mechanization of definite descriptions

John Rushby, SR I Mechanized Ontological Argument 33

Sophisticated Types: More on Quasi-Id

• There is a lot “packed into” these definitions

• E.g., can prove all Gods have all greater-making properties

PVS fragment
God_all: THEOREM FORALL (a: (P)): God?(x) => a(x)

• And all Gods are quasi-identical

PVS fragment
all_God: THEOREM God?(x) AND God?(y)

=> quasi_id(x, y, emptyset)

• Günter Eder observes it is not intended to use emptyset here

• We can enforce that
PVS fragment

gr_props(D: setof[(P)]): bool = member(re?, D)

strong_quasi_id(x,y: U_beings, D: (gr_props)): bool =

FORALL (F:(P)): NOT D(F) => F(x) = F(y)

strong_all_God: THEOREM God?(x) AND God?(y)

=> strong_quasi_id(x, y, emptyset)

Now strong all God does not typecheck

John Rushby, SR I Mechanized Ontological Argument 34

Sophisticated Types: More on Quasi-Id (ctd.)

• Now strong all God does not typecheck

TCC

% Subtype TCC generated (at line 60, column 69) for emptyset

% expected type (gr_props)

% unfinished

strong_all_God_TCC1: OBLIGATION

FORALL (x, y: U_beings): God?(y) AND God?(x)

IMPLIES gr_props(emptyset[(P)]);

• Predicate subtypes allow much of the specification to be

embedded in the types

• Keeps the formulas uncluttered

• Typechecking generates proof obligations

• Allows richly expressive specification

John Rushby, SR I Mechanized Ontological Argument 35

Possible Concrete Opportunity

Richard Campbell:

• Eder & Ramharter’s paper has proved invaluable. Their two

definitions Quasi-Id and Greater 3 have enabled me to

develop a formalization, mostly in first-order logic, which I

believe accurately represents Anselm’s reasoning

They have made it possible, for the first time, to achieve

that without having to invoke implicit premises or

background assumptions to deduce, from what Anselm

actually asserts as premises, the conclusions he actually

draws (apart from one obvious lacuna in his argumentation)

• But he criticizes realization (says it is false, actually)

• Has a treatment that uses modal operators for the Fool’s

introspection (“possibly thought that”) that avoids this

• Some difficult issues, would be cool to check it mechanically

John Rushby, SR I Mechanized Ontological Argument 36

Modal Reconstructions

• Anselm goes on to establish the necessity of God’s existence

• And his perfection, etc.

• Seems natural to employ a modal logic for necessity

• CS employs temporal logics (interpreted over sequences)

• But combinations of general modal and first- or higher-order

logics are difficult

• Gödel left a modal version of the Argument in his nachlass

• Christoph Benzmüller and Bruno Woltzenlogel-Paleo have

mechanized this (using Coq and Isabelle) and detected and

fixed an inconsistency

◦ “. . . their work has received a media repercussion on a

global scale”

• They first embed higher-order modal logic in Isabelle

• Then represent Scott’s version of Gödel’s proof in that

• They explore consistency, modal collapse, make strong claims

John Rushby, SR I Mechanized Ontological Argument 37

Interim Conclusions (redux)

• Uniform, comprehensive notation facilitates comparisons

◦ Eliminates need for idiosyncratic constructions

• Mechanization further facilitates this

• Recall equivalence of Greater 2 and O&Z’s treatment

• When automated and fast, mechanization enables exploration

of variants, conjectures, etc.

◦ By hand, you can do one or two of these

◦ But hard to maintain discipline for many of them

◦ Mechanization brings same skepticism to 100th as to first

• Example: version with Greater 1 is circular under plausible

additional premise

• Can venture reliably into difficult areas

(e.g., quantified modal logics)

• It’s fun! Students might enjoy it

John Rushby, SR I Mechanized Ontological Argument 38

Opportunities: Collaboration Between CS and Philosophy

• CS has logical tools, and the theories to support them

◦ That may be useful in philosophy

◦ E.g., I speculate that we could demonstrate equivalence,

or sharpen differences, in various formulations of the

Ontological Argument

◦ Are the any other a priori arguments? Proclus? Avicenna?

• Computer Science has problems of a philosophical nature

◦ E.g., an assurance case is an argument that aims to

justify a claim (typically about safety) on the basis of

evidence (premises) about a system

? Not a proof: there are uncertainties, unknowns

? So we encounter topics in epistemology: Bayesian

epistemology, confirmation theory

? And dialectics: resolving contested arguments

? Elsewhere: emergence

◦ Would benefit from dialog with philosophers
John Rushby, SR I Mechanized Ontological Argument 39

Collaboration Between CS and Philosophy (ctd.)

• Fitelson, Zalta et al propose computational metaphysics

◦ Code problems up in logic, let the automation rip

◦ Examine the detritus for insight

• I have a more radical proposal: computationally-informed

philosophy: warning Crazy Idea ahead

◦ Some philosophical topics might benefit from a

computational (i.e., strong AI) perspective

? E.g., free will, consciousness, ethics

? Postulate a robot, not a human

? But this requires suitable interpretations for duality of

computation and humanity

� i.e., not the Chinese Room

◦ Will need combination of CS and philosophical insight

John Rushby, SR I Mechanized Ontological Argument 40

Thank You

Papers:

• Eder and Ramharter’s reconstructions:

http://www.csl.sri.com/users/rushby/abstracts/er-ontarg16

This was written for a general audience

• Oppenheimer and Zalta’s reconstruction:

http://www.csl.sri.com/users/rushby/abstracts/fwfm13

This was written for a Computer Science audience

John Rushby, SR I Mechanized Ontological Argument 41

