John Rushby, SRI

SMT Solvers:
A Disruptive Technology

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, California, USA

SMT Solvers: 1

SMT Solvers
SMT stands for Satisfiability Modulo T heories

SMT solvers generalize SAT solving by adding the ability to
handle arithmetic and other decidable theories

SAT solvers are used for

o Bounded model checking, and
o Al planning,

among other things

Anything a SAT solver can do, an SMT solver can do better

I'll describe these from the informed consumer’s point of view

John Rushby, SRI SMT Solvers: 2

Overview
SAT solving
SMT solvers

Application to verification

o Via bounded model checking and k-induction
o With a demo

Application to Al planning and scheduling
o With a demo

Extensions to MaxSMT and OptSMT

Conclusions

John Rushby, SRI SMT Solvers: 3

SAT Solving

e Find satisfying assignment to a propositional logic formula

e Formula can be represented as a set of clauses
o In CNF: conjunction of disjunctions

o Find an assignment of truth values to variable that makes
at least one literal in each clause TRUE

o Literal: an atomic proposition A or its negation A

e Example: given following 4 clauses

o A,B

o C,D

o F

o A,D,E

One solution is A,C,E, D

(A, D, E is not and cannot be extended to be one)

e Do this when there are 1,000,000s of variables and clauses

John Rushby, SRI SMT Solvers: 4

SAT Solvers

SAT solving is the quintessential NP-complete problem

But now amazingly fast in practice (most of the time)

o Breakthroughs (starting with Chaff) since 2001
o Sustained improvements, honed by competition

Has become a commodity technology
o MIiniSAT is 700 SLOC

Can think of it as massively effective search

o SO use it when your problem can be formulated as SAT

Used in bounded model checking and in Al planning

o Routine to handle 1039 states

John Rushby, SRI SMT Solvers: 5

SAT Plus Theories
SAT can encode operations and relations on bounded
integers

o Using bitvector representation
o With adders etc. represented as Boolean circuits

And other finite data types and structures

But cannot do not unbounded types (e.g., reals),

or infinite structures (e.g., queues, lists)

And even bounded arithmetic can be slow when large
There are fast decision procedures for these theories
But they work only on conjunctions
General propositional structure requires case analysis

o Should use efficient search strategies of SAT solvers
That’'s what an SMT solver does

John Rushby, SRI SMT Solvers: 6

Decision Procedures
Decision procedures are specific to a given theory
Tell whether a formula is inconsistent, satisfiable, or valid
Can decide conjunctions of formulas

Or whether one formula is a consequence of others

o E.g., does 4 x z =2 follow from z <y, <1 —y, and
2 x x> 1 when the variables range over the reals?

Decision procedures may use heuristics for speed, but
must always give the correct answer, and terminate
(i.e., must be sound and complete)

John Rushby, SRI SMT Solvers: 7

Decidable Theories
Many useful theories are decidable
(at least in their unquantified forms)

o Equality with uninterpreted function symbols

z=yNf(f(f(2)=fz) D FULFW))) = fz)

o Function, record, and tuple updates
f with [(z) := y|(2) Lif 2 = 2 then y else f(z)
o Linear arithmetic (over integers and rationals)
r<yNz<l—yA2xzx>1D4dxzx=2
o Special (fast) case: difference logic
r—y<c
e Combinations of decidable theories are (usually) decidable

e.g.,2 x car(x) — 3 X cdr(zx) = f(edr(z)) D
f(cons(4 x car(z) —2 x f(cdr(x)),y)) = f(cons(6 x cdr(x),y))

Uses equality, uninterpreted functions, linear arithmetic, lists

John Rushby, SRI SMT Solvers: 8

SMT Solving
Individual and combined decision procedures decide
conjunctions of formulas in their decided theories
SMT allows general propositional structure
o ed., (z<yVy=5)A(z<0Vy<z)Az#y
... possibly continued for 1000s of terms

Should exploit search strategies of modern SAT solvers

So replace the terms by propositional variables
o ie., (AVB)AN(CVD)ANE

Get a solution from a SAT solver (if none, we are done)
o eg., A D FE

Restore the interpretation of variables and send the
conjunction to the core decision procedure

oie, zr<yNy<zAzx#y

John Rushby, SRI SMT Solvers: 9

SMT Solving by “Lemmas On Demand”
If satisfiable, we are done
If not, ask SAT solver for a new assignment
But isn't it expensive to keep doing this?

Yes, so first, do a little bit of work to find fragments that
explain the unsatisfiability, and send these back to the SAT
solver as additional constraints (i.e., lemmas)

o AAND D FE (equivalently, AV DV E)

Iterate to termination
o eg., A, C,E,D
o ie,x<y,z<0,x#y,y <z (simplifies to z < y,z < 0)
o A satisfying assignment is z = -3,y =1

This is called “lemmas on demand” (de Moura, Ruess,
Sorea) or “DPLL(T)"; it vields effective SMT solvers

John Rushby, SRI SMT Solvers: 10

Fast SMT Solvers

e [here are several effective SMT solvers

o Qurs are ICS (released 2002),
Yices, Simplics (prototypes for next ICS)

o European examples: Barcelogic, MathSAT

e SMT solvers are being honed by competition

o Provoked by our benchmarking in 2004
o Now institutionalized as part of CAV, FLoC

John Rushby, SRI SMT Solvers: 11

SMT Competition

e Various divisions (depending on the theories considered)

Equality and uninterpreted functions
Difference logic (z —y < ¢)

Full linear arithmetic

*x For integers as well as reals
Arrays ... etc.

e ICS won in 2004

e Yices and Simplics (prototypes for next ICS) won the hard
divisions in 2005, came second to Barcelogic in all the others

O

John Rushby, SRI SMT Solvers: 12

Building Fast(er) SMT Solvers

Individual decision procedures need to be fast

o Especially linear arithmetic (Simplex)

o Linear arithmetic procedure should also be effective for
difference logic (not a discrete switch to Bellman-Ford)

Need fast and effective interaction with the SAT solver

o Good, but cheap explanations
o Fast backtracking

SAT solver must be fast, good cache performance
Equality integrated with SAT for fast propagation
Choices must be validated by extensive benchmarking

Look out for the 2006 competition

John Rushby, SRI SMT Solvers: 13

Disruptive Technology

A Price/Performance

-

Time

Disruption is when low-end technology overtakes the price
performance of high-end

John Rushby, SRI SMT Solvers: 14

SMT Solvers as Disruptive Technology

A Price/Performance

Verification System

John Rushby, SRI SMT Solvers: 15

Verification Systems vs. SMT-Based Model Checkers

/
\

Backends SMT Solver

Actually, both kinds will coexist as part of the evidential tool
bus—the topic for a different talk

John Rushby, SRI SMT Solvers: 16

Evolution of SMT-Based Model Checkers

e Replace the backend decision procedures of a verification
system with an SMT solver, and specialize and shrink the
higher-level proof manager

e Example:

o SAL language has a type system similar to PVS, but is
specialized for specification of state machines
(as transition relations)
The SAL infinite-state bounded model checker uses an
SMT solver (ICS), so handles specifications over reals and
integers, uninterpreted functions

Often used as a model checker (i.e., for refutation)

But can perform verification with a single higher level
proof rule: k-induction (with lemmas)

Note that counterexamples help debug invariant

John Rushby, SRI SMT Solvers: 17

Bounded Model Checking (BMC)

Given system specified by initiality predicate I and transition
relation T on states S

Is there a counterexample to property P in k steps or less?

Find assignment to states sg,..., s, satisfying

I(sg) NT(sg,81) NT(s1,82) AN+ ANT(Sk—1,5k) N (P(s1) A--- N P(sp))

Given a Boolean encoding of I, T, and P (i.e., circuit), this is
a propositional satisfiability (SAT) problem

But if I, T and P use decidable but unbounded types, then
it's an SMT problem: infinite bounded model checking
(Infinite) BMC also generates test cases and plans

o State the goal as negated property
I(sg) NT(sg,81) NT(s1,82) N+ ANT(sk_1,56) N(G(s1) V-V G(sk))

John Rushby, SRI SMT Solvers: 18

k-Induction

BMC extends from refutation to verification via k-induction

Ordinary inductive invariance (for P):
Basis: I(sg) D P(so)
Step: P(To) /\T(To,rl) D) P(’I“l)

Extend to induction of depth k:

Basis: No counterexample of length k or less
Step: P(ro) AT (ro,m1) AP(ri) A ANP(rie—1) AT (ri—1,71) O P(ry)

These are close relatives of the BMC formulas
Induction for k= 2,3,4... may succeed where k =1 does not

Is complete for some problems (e.g., timed automata)

o Fast, too, e.g., Fischer's mutex with 83 processes

John Rushby, SRI SMT Solvers: 19

Application: Verification of Real Time Programs

e Continuous time excludes automation by finite state methods

e [imed automata methods handle continuous time

o But are defeated by the case explosion when (discrete)
faults are considered as well

e SMT solvers can handle both dimensions
o With discrete time, can have a clock module that
advances time one tick at a time

* Each module sets a timeout, waits for the the clock to
reach that value, then does its thing, and repeats
o Better: move the timeout to the clock module and let it
advance time all the way to the next timeout

* These are Timeout Automata (Dutertre and Sorea):
and they work for continuous time

John Rushby, SRI SMT Solvers: 20

Example: Biphase Mark Protocol

e Biphase Mark is a protocol for asynchronous communication
Clocks at either end may be skewed and have different
rates, and jitter
So have to encode a clock in the data stream
Used in CDs, Ethernet

Verification identifies parameter values for which data is
reliably transmitted

e Verified by human-guided proof in ACL2 by J Moore (1994)

e [hree different verifications used PVS

o One by Groote and VVaandrager used PVS + UPPAAL

o Required 37 invariants, 4,000 proof steps, hours of prover
time to check

John Rushby, SRI SMT Solvers: 21

Biphase Mark Protocol (ctd)

e Brown and Pike recently did it with
Used timeout automata to model timed aspects
Statement of theorem discovered systematically using
disjunctive invariants (7 disjuncts)
Three lemmas proved automatically with 1-induction,
Theorem proved automatically using 5-induction
Verification takes seconds to check

Demo:

e Adapted verification to 8-N-1 protocol (used in UARTS)

o Additional lemma proved with 13-induction
o Theorem proved with 3-induction (7 disjuncts)
o Revealed a bug in published application note

John Rushby, SRI SMT Solvers: 22

Application: AI Planning and Scheduling

This is speculative: T don't know much about AI planning

SAT-based planning is essentially the same technology as
BMC

o Uses different languages in front (e.g., PDDL)

o And may be able to break into independent subproblems

SMT-based planning is similar, except we can have metric
quantities like mass, power, and can do scheduling over real
time

o Because we can do arithmetic

John Rushby, SRI SMT Solvers: 23

Example: Simple Rover

e Consider a simple planetary rover with three components

o Navigator
o Instrument
o Radio

Each consume power and take time to do their things

e \We have flight rules

o Must not move while the instrument is unstowed

e And a goal

o GO to Rock4, take a sample, and radio it back
o Without depleting the battery

John Rushby, SRI SMT Solvers: 24

Rover Navigator

e Takes at least 10 mins to get anywhere

e Consumes 400 mwh of battery power

John Rushby, SRI SMT Solvers: 25

Rover Instrument

Stow

B,

e Takes between 2 and 6 mins to stow/unstow, uses 20 mwh

e [akes between 3 and 12 mins to place

e [akes between 20 and 25 mins to sample, uses 120 mwh

John Rushby, SRI SMT Solvers: 26

Rover Radio

Phone

[
L Home

Starts transmission within 20 to 25 mins of sample
Chooses nondeterministically between lander and home
But home uses 600 mwh, lander uses 20 mwh

Both take between 2 and 5 mins

John Rushby, SRI SMT Solvers: 27

Rover Flight Rules

Rover must not move while the instrument is unstowed

Original spec wove this into the descriptions of Navigator

and Instrument

Instead, we encode it in a synchronous observer which says
OK as long as flight rules are satisfied

John Rushby, SRI SMT Solvers: 28

Rover Goals

e GO to Rock4, take a sample, and radio it back

e Without depleting the battery (really a flight rule)

e Can state these in the goal property, or use another
synchronous observer

o We do both

John Rushby, SRI SMT Solvers: 29

Rover System and Plan Description

System is asynchronous composition of the components
o And the clock

All synchronously composed with the flight rules and goal
observers

System: MODULE = (Nav [] Instr [] Radio [] Clock)
|| flight_rules || goals;

Plan requires satisfaction of properties observed by flight
rules and goals, plus others stated directly

o All negated inside an invariant

sched_sys: THEOREM System |- AG(NOT(
OK AND done

AND measurement_done
AND battery > 0));

John Rushby, SRI SMT Solvers: 30

Plan Output

demo:

time = 0 nav_get_going

time = 50 nav_arrive

time = 50 instr_unstow

time = 56 instr_place

time = 68 instr_take_sample
time = 68 radio_note_samp
time = 91 inst_stow

time = 91 radio_ready_to_phone
time = 96 radio_phone_lander

e Martha Pollack et al have done similar with SMT solver Ario

e Need to benchmark performance against conventional planner

e I certainly prefer our specification

John Rushby, SRI

SMT Solvers: 31

Optimization

We have an automated test case generator sal-atg

Takes specifications annotated with trap variables for
structural coverage goals

And incrementally finds long tests that visit many goals in
sequence

Works by greedily reaching any goal, then extending the test
by restarting the bounded model checker from there

Implemented as less than 100 lines of Scheme script
(SAL is scriptable)

Speculate that we can generate long plans for multiple goals
in a similar way

John Rushby, SRI SMT Solvers: 32

Extensions to MaxSMT and OptSMT

In Al applications, often have inconsistent knowledge

o E.g., from different sources, ignorance of true state

Rather than UNSAT, we want a SAT assignment for some
subset of constraints

We can weight the knowledge according to ‘“credibility,” then
want a SAT assignment of maximum weight: MaxSAT

o May also want to find the source of inconsistency:
unsat core

These can be implemented by SMT and extended to
MaxSMT

May also want not just a satisfying assignment to an SMT
problem, but one that maximizes some specific constraint:
OptSMT

John Rushby, SRI SMT Solvers: 33

MaxSAT via SMT
This is not what we actually do, but gives the idea

Description is simpler if we interpret weights as penalties for
violating a constraint

Then want assignment of minimum weight

For a constraint C; of weight W,

Assert C; Vy; = W; to SMT solver, where y; is a new
arithmetic variable

o Or, equivalently, =C; D vy; = W;

In a satisfying assignment, y; +vy2 + -y, is the total weight
of violated constraints

Can obviously find a solution with weight M =W, + W5 --- W,

John Rushby, SRI SMT Solvers: 34

Implementing MaxSAT via SMT (ctd.)

So we can check whether a solution with weight at most m
exists by asserting the constraint y; +vyo +---y, < m to SMT
solver and asking whether the resulting set of clauses is
satisfiable

SMT solver can do this because it handles linear arithmetic
We want a satisfying assignment of minimum weight

But we know that all feasible m must lie between 0 and
M=W;+Wy---W,

So do a binary search for the least m in [0... M]

This requires log M invocations of SMT solver

Can get anytime solutions (satisfiable but not necessarily
minimal) by starting with a large value for m (e.g., M)

John Rushby, SRI SMT Solvers: 35

MaxSMT
This is closer what we actually do

Build the propagation over weights into the SAT core
o Rather than delegate to arithmetic procedure of SMT

Binary search destroys solver context

o And repeatedly encounters phase transition region

o SO creep up to max from one side
o Anytime solution is still possible

Actually does MaxSMT, MaxSAT as special case

But believed to be the fastest MaxSAT solver

John Rushby, SRI SMT Solvers: 36

Maximal Assignments
The Simplex linear arithmetic solver decides whether a set of
constraints is satisfiable
o And can maximize any expression under those constraints
Can solve an SMT problem, then maximize target expression
under the satisfying assignment

Then seek new assignments with larger maximum

o Test the maximum periodically, and terminate branches
that do not better current maximum

Call this OptSMT, can probably extend to OptMaxSMT

One use is test case generation

o SMT covers the control structure
o OptSMT allows boundary coverage

John Rushby, SRI SMT Solvers: 37

Conclusions

SMT makes SAT much more useful

o More expressive
o More efficient

Many problems can be cast as SAT, SMT, MaxSMT,
OptSMT

And can then use these powerful solvers

o Off the shelf automation, so new areas can be automated
o And combination problems can use a single solver

Specialized solvers may be relegated to niches

o This is disruption
o Needs to be validated by benchmarking

Planned extensions to SMT solvers: bitvectors, quantifier
elimination, evidence

John Rushby, SRI SMT Solvers: 38

To Learn More

e Our systems, PVS, SAL, ICS and our papers are all available
from http://fm.csl.sri.com

e Slides available at

http://www.csl.sri.com/users/rushby/slides

e [hanks to Bruno Dutertre, Grégoire Hamon,
Leonardo de Moura, Sam Owre, Harald Ruel3, Hassen Saidi,
N. Shankar, and Maria Sorea

John Rushby, SRI SMT Solvers: 39

