
SMT Solvers:

A Disruptive Technology

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I SMT Solvers: 1

SMT Solvers

• SMT stands for Satisfiability Modulo Theories

• SMT solvers generalize SAT solving by adding the ability to

handle arithmetic and other decidable theories

• SAT solvers are used for

◦ Bounded model checking, and

◦ AI planning,

among other things

• Anything a SAT solver can do, an SMT solver can do better

• I’ll describe these from the informed consumer’s point of view

John Rushby, SR I SMT Solvers: 2

Overview

• SAT solving

• SMT solvers

• Application to verification

◦ Via bounded model checking and k-induction

◦ With a demo

• Application to AI planning and scheduling

◦ With a demo

• Extensions to MaxSMT and OptSMT

• Conclusions

John Rushby, SR I SMT Solvers: 3

SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula can be represented as a set of clauses

◦ In CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

◦ Literal: an atomic proposition A or its negation Ā

• Example: given following 4 clauses

◦ A,B

◦ C ,D

◦ E

◦ Ā, D̄, Ē

One solution is A, C, E, D̄

(A, D, E is not and cannot be extended to be one)

• Do this when there are 1,000,000s of variables and clauses

John Rushby, SR I SMT Solvers: 4

SAT Solvers

• SAT solving is the quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

◦ Sustained improvements, honed by competition

• Has become a commodity technology

◦ MiniSAT is 700 SLOC

• Can think of it as massively effective search

◦ So use it when your problem can be formulated as SAT

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states

John Rushby, SR I SMT Solvers: 5

SAT Plus Theories

• SAT can encode operations and relations on bounded

integers

◦ Using bitvector representation

◦ With adders etc. represented as Boolean circuits

And other finite data types and structures

• But cannot do not unbounded types (e.g., reals),

or infinite structures (e.g., queues, lists)

• And even bounded arithmetic can be slow when large

• There are fast decision procedures for these theories

• But they work only on conjunctions

• General propositional structure requires case analysis

◦ Should use efficient search strategies of SAT solvers

That’s what an SMT solver does

John Rushby, SR I SMT Solvers: 6

Decision Procedures

• Decision procedures are specific to a given theory

• Tell whether a formula is inconsistent, satisfiable, or valid

• Can decide conjunctions of formulas

• Or whether one formula is a consequence of others

◦ E.g., does 4 × x = 2 follow from x ≤ y, x ≤ 1 − y, and

2 × x ≥ 1 when the variables range over the reals?

• Decision procedures may use heuristics for speed, but

must always give the correct answer, and terminate

(i.e., must be sound and complete)

John Rushby, SR I SMT Solvers: 7

Decidable Theories

• Many useful theories are decidable

(at least in their unquantified forms)

◦ Equality with uninterpreted function symbols

x = y ∧ f(f(f(x))) = f(x) ⊃ f(f(f(f(f(y))))) = f(x)

◦ Function, record, and tuple updates

f with [(x) := y](z)
def
= if z = x then y else f(z)

◦ Linear arithmetic (over integers and rationals)

x ≤ y ∧ x ≤ 1 − y ∧ 2 × x ≥ 1 ⊃ 4 × x = 2

◦ Special (fast) case: difference logic

x − y < c

• Combinations of decidable theories are (usually) decidable

e.g., 2 × car(x) − 3 × cdr(x) = f(cdr(x)) ⊃

f(cons(4 × car(x) − 2 × f(cdr(x)), y)) = f(cons(6 × cdr(x), y))

Uses equality, uninterpreted functions, linear arithmetic, lists

John Rushby, SR I SMT Solvers: 8

SMT Solving

• Individual and combined decision procedures decide

conjunctions of formulas in their decided theories

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

◦ i.e., (A ∨ B) ∧ (C ∨ D) ∧ E

• Get a solution from a SAT solver (if none, we are done)

◦ e.g., A, D, E

• Restore the interpretation of variables and send the

conjunction to the core decision procedure

◦ i.e., x ≤ y ∧ y ≤ x ∧ x 6= y

John Rushby, SR I SMT Solvers: 9

SMT Solving by “Lemmas On Demand”

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment

• But isn’t it expensive to keep doing this?

• Yes, so first, do a little bit of work to find fragments that

explain the unsatisfiability, and send these back to the SAT

solver as additional constraints (i.e., lemmas)

◦ A ∧ D ⊃ Ē (equivalently, Ā ∨ D̄ ∨ Ē)

• Iterate to termination

◦ e.g., A, C, E, D̄

◦ i.e., x ≤ y, x < 0, x 6= y, y 6≤ x (simplifies to x < y, x < 0)

◦ A satisfying assignment is x = −3, y = 1

• This is called “lemmas on demand” (de Moura, Ruess,

Sorea) or “DPLL(T)”; it yields effective SMT solvers

John Rushby, SR I SMT Solvers: 10

Fast SMT Solvers

• There are several effective SMT solvers

◦ Ours are ICS (released 2002),

Yices, Simplics (prototypes for next ICS)

◦ European examples: Barcelogic, MathSAT

• SMT solvers are being honed by competition

◦ Provoked by our benchmarking in 2004

◦ Now institutionalized as part of CAV, FLoC

John Rushby, SR I SMT Solvers: 11

SMT Competition

• Various divisions (depending on the theories considered)

◦ Equality and uninterpreted functions

◦ Difference logic (x − y < c)

◦ Full linear arithmetic

? For integers as well as reals

◦ Arrays . . . etc.

• ICS won in 2004

• Yices and Simplics (prototypes for next ICS) won the hard

divisions in 2005, came second to Barcelogic in all the others

◦ Let’s take a look

John Rushby, SR I SMT Solvers: 12

Building Fast(er) SMT Solvers

• Individual decision procedures need to be fast

◦ Especially linear arithmetic (Simplex)

◦ Linear arithmetic procedure should also be effective for

difference logic (not a discrete switch to Bellman-Ford)

• Need fast and effective interaction with the SAT solver

◦ Good, but cheap explanations

◦ Fast backtracking

• SAT solver must be fast, good cache performance

• Equality integrated with SAT for fast propagation

• Choices must be validated by extensive benchmarking

• Look out for the 2006 competition

John Rushby, SR I SMT Solvers: 13

Disruptive Technology

Price/Performance

Time

Disruption is when low-end technology overtakes the price

performance of high-end

John Rushby, SR I SMT Solvers: 14

SMT Solvers as Disruptive Technology

Price/Performance

Time

Verification Systems

Now?

SMT−base
d Model C

heck
ers

John Rushby, SR I SMT Solvers: 15

Verification Systems vs. SMT-Based Model Checkers

PVS SAL

Backends SMT Solver

Actually, both kinds will coexist as part of the evidential tool

bus—the topic for a different talk

John Rushby, SR I SMT Solvers: 16

Evolution of SMT-Based Model Checkers

• Replace the backend decision procedures of a verification

system with an SMT solver, and specialize and shrink the

higher-level proof manager

• Example:

◦ SAL language has a type system similar to PVS, but is

specialized for specification of state machines

(as transition relations)

◦ The SAL infinite-state bounded model checker uses an

SMT solver (ICS), so handles specifications over reals and

integers, uninterpreted functions

◦ Often used as a model checker (i.e., for refutation)

◦ But can perform verification with a single higher level

proof rule: k-induction (with lemmas)

◦ Note that counterexamples help debug invariant

John Rushby, SR I SMT Solvers: 17

Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S

• Is there a counterexample to property P in k steps or less?

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• But if I, T and P use decidable but unbounded types, then

it’s an SMT problem: infinite bounded model checking

• (Infinite) BMC also generates test cases and plans

◦ State the goal as negated property

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ (G(s1) ∨ · · · ∨ G(sk))

John Rushby, SR I SMT Solvers: 18

k-Induction

• BMC extends from refutation to verification via k-induction

• Ordinary inductive invariance (for P):

Basis: I(s0) ⊃ P (s0)

Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k:

Basis: No counterexample of length k or less

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Is complete for some problems (e.g., timed automata)

◦ Fast, too, e.g., Fischer’s mutex with 83 processes

John Rushby, SR I SMT Solvers: 19

Application: Verification of Real Time Programs

• Continuous time excludes automation by finite state methods

• Timed automata methods handle continuous time

◦ But are defeated by the case explosion when (discrete)

faults are considered as well

• SMT solvers can handle both dimensions

◦ With discrete time, can have a clock module that

advances time one tick at a time

? Each module sets a timeout, waits for the the clock to

reach that value, then does its thing, and repeats

◦ Better: move the timeout to the clock module and let it

advance time all the way to the next timeout

? These are Timeout Automata (Dutertre and Sorea):

and they work for continuous time

John Rushby, SR I SMT Solvers: 20

Example: Biphase Mark Protocol

• Biphase Mark is a protocol for asynchronous communication

◦ Clocks at either end may be skewed and have different

rates, and jitter

◦ So have to encode a clock in the data stream

◦ Used in CDs, Ethernet

◦ Verification identifies parameter values for which data is

reliably transmitted

• Verified by human-guided proof in ACL2 by J Moore (1994)

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

◦ Required 37 invariants, 4,000 proof steps, hours of prover

time to check

John Rushby, SR I SMT Solvers: 21

Biphase Mark Protocol (ctd)

• Brown and Pike recently did it with sal-inf-bmc

◦ Used timeout automata to model timed aspects

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Three lemmas proved automatically with 1-induction,

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

◦ Demo:

sal-inf-bmc -v 3 -d 5 -i -l l0 -l l1 -l l2 biphase t0

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Additional lemma proved with 13-induction

◦ Theorem proved with 3-induction (7 disjuncts)

◦ Revealed a bug in published application note

John Rushby, SR I SMT Solvers: 22

Application: AI Planning and Scheduling

• This is speculative: I don’t know much about AI planning

• SAT-based planning is essentially the same technology as

BMC

◦ Uses different languages in front (e.g., PDDL)

◦ And may be able to break into independent subproblems

• SMT-based planning is similar, except we can have metric

quantities like mass, power, and can do scheduling over real

time

◦ Because we can do arithmetic

John Rushby, SR I SMT Solvers: 23

Example: Simple Rover

• Consider a simple planetary rover with three components

◦ Navigator

◦ Instrument

◦ Radio

Each consume power and take time to do their things

• We have flight rules

◦ Must not move while the instrument is unstowed

• And a goal

◦ Go to Rock4, take a sample, and radio it back

◦ Without depleting the battery

John Rushby, SR I SMT Solvers: 24

Rover Navigator

At Going

• Takes at least 10 mins to get anywhere

• Consumes 400 mwh of battery power

John Rushby, SR I SMT Solvers: 25

Rover Instrument

Stowed Unstow Place
Take

Sample

Stow

• Takes between 2 and 6 mins to stow/unstow, uses 20 mwh

• Takes between 3 and 12 mins to place

• Takes between 20 and 25 mins to sample, uses 120 mwh

John Rushby, SR I SMT Solvers: 26

Rover Radio

Phone

Phone

Idle
Sample

Taken

Lander

Home

• Starts transmission within 20 to 25 mins of sample

• Chooses nondeterministically between lander and home

• But home uses 600 mwh, lander uses 20 mwh

• Both take between 2 and 5 mins

John Rushby, SR I SMT Solvers: 27

Rover Flight Rules

• Rover must not move while the instrument is unstowed

• Original spec wove this into the descriptions of Navigator

and Instrument

• Instead, we encode it in a synchronous observer which says

OK as long as flight rules are satisfied

John Rushby, SR I SMT Solvers: 28

Rover Goals

• Go to Rock4, take a sample, and radio it back

• Without depleting the battery (really a flight rule)

• Can state these in the goal property, or use another

synchronous observer

◦ We do both

John Rushby, SR I SMT Solvers: 29

Rover System and Plan Description

• System is asynchronous composition of the components

◦ And the clock

• All synchronously composed with the flight rules and goal

observers

• System: MODULE = (Nav [] Instr [] Radio [] Clock)

|| flight_rules || goals;

• Plan requires satisfaction of properties observed by flight

rules and goals, plus others stated directly

◦ All negated inside an invariant

• sched_sys: THEOREM System |- AG(NOT(

OK AND done

AND measurement_done

AND battery > 0));

John Rushby, SR I SMT Solvers: 30

Plan Output

demo: sal-inf-bmc -v 3 rover sched sys -d 14

time = 0 nav get going

time = 50 nav arrive

time = 50 instr unstow

time = 56 instr place

time = 68 instr take sample

time = 68 radio note samp

time = 91 inst stow

time = 91 radio ready to phone

time = 96 radio phone lander

• Martha Pollack et al have done similar with SMT solver Ario

• Need to benchmark performance against conventional planner

• I certainly prefer our specification

John Rushby, SR I SMT Solvers: 31

Optimization

• We have an automated test case generator sal-atg

• Takes specifications annotated with trap variables for

structural coverage goals

• And incrementally finds long tests that visit many goals in

sequence

• Works by greedily reaching any goal, then extending the test

by restarting the bounded model checker from there

• Implemented as less than 100 lines of Scheme script

(SAL is scriptable)

• Speculate that we can generate long plans for multiple goals

in a similar way

John Rushby, SR I SMT Solvers: 32

Extensions to MaxSMT and OptSMT

• In AI applications, often have inconsistent knowledge

◦ E.g., from different sources, ignorance of true state

• Rather than UNSAT, we want a SAT assignment for some

subset of constraints

• We can weight the knowledge according to “credibility,” then

want a SAT assignment of maximum weight: MaxSAT

◦ May also want to find the source of inconsistency:

unsat core

• These can be implemented by SMT and extended to

MaxSMT

• May also want not just a satisfying assignment to an SMT

problem, but one that maximizes some specific constraint:

OptSMT

John Rushby, SR I SMT Solvers: 33

MaxSAT via SMT

• This is not what we actually do, but gives the idea

• Description is simpler if we interpret weights as penalties for

violating a constraint

• Then want assignment of minimum weight

• For a constraint Ci of weight Wi

• Assert Ci ∨ yi = Wi to SMT solver, where yi is a new

arithmetic variable

◦ Or, equivalently, ¬Ci ⊃ yi = Wi

• In a satisfying assignment, y1 + y2 + · · · yn is the total weight

of violated constraints

• Can obviously find a solution with weight M = W1 + W2 · · ·Wn

John Rushby, SR I SMT Solvers: 34

Implementing MaxSAT via SMT (ctd.)

• So we can check whether a solution with weight at most m

exists by asserting the constraint y1 + y2 + · · · yn ≤ m to SMT

solver and asking whether the resulting set of clauses is

satisfiable

• SMT solver can do this because it handles linear arithmetic

• We want a satisfying assignment of minimum weight

• But we know that all feasible m must lie between 0 and

M = W1 + W2 · · ·Wn

• So do a binary search for the least m in [0 . . .M]

• This requires log M invocations of SMT solver

• Can get anytime solutions (satisfiable but not necessarily

minimal) by starting with a large value for m (e.g., M)

John Rushby, SR I SMT Solvers: 35

MaxSMT

• This is closer what we actually do

• Build the propagation over weights into the SAT core

◦ Rather than delegate to arithmetic procedure of SMT

• Binary search destroys solver context

◦ And repeatedly encounters phase transition region

◦ So creep up to max from one side

◦ Anytime solution is still possible

• Actually does MaxSMT, MaxSAT as special case

• But believed to be the fastest MaxSAT solver

John Rushby, SR I SMT Solvers: 36

Maximal Assignments

• The Simplex linear arithmetic solver decides whether a set of

constraints is satisfiable

◦ And can maximize any expression under those constraints

• Can solve an SMT problem, then maximize target expression

under the satisfying assignment

• Then seek new assignments with larger maximum

◦ Test the maximum periodically, and terminate branches

that do not better current maximum

• Call this OptSMT, can probably extend to OptMaxSMT

• One use is test case generation

◦ SMT covers the control structure

◦ OptSMT allows boundary coverage

John Rushby, SR I SMT Solvers: 37

Conclusions

• SMT makes SAT much more useful

◦ More expressive

◦ More efficient

• Many problems can be cast as SAT, SMT, MaxSMT,

OptSMT

• And can then use these powerful solvers

• ◦ Off the shelf automation, so new areas can be automated

◦ And combination problems can use a single solver

• Specialized solvers may be relegated to niches

◦ This is disruption

◦ Needs to be validated by benchmarking

• Planned extensions to SMT solvers: bitvectors, quantifier

elimination, evidence

John Rushby, SR I SMT Solvers: 38

To Learn More

• Our systems, PVS, SAL, ICS and our papers are all available

from http://fm.csl.sri.com

• Slides available at

http://www.csl.sri.com/users/rushby/slides

• Thanks to Bruno Dutertre, Grégoire Hamon,

Leonardo de Moura, Sam Owre, Harald Rueß, Hassen Säıdi,

N. Shankar, and Maria Sorea

John Rushby, SR I SMT Solvers: 39

