
An Overview of

The Time Triggered Architecture (TTA)

And its Formal Verification

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I TTA Overview: 1

The Time-Triggered Architecture: What Is It?

Mechanistically:

• The Time-Triggered Architecture (TTA) is a platform for

safety-critical embedded systems

◦ E.g., aircraft and engine flight control, and “by wire” cars

• Functionally, it is a TDMA (time-triggered) serial bus

• “Bus” understates its criticality and sophistication

◦ It is the safety-critical core of the systems built above it

• Must achieve failure probability below 10−10/hour for 10

hours, maximum outage 10ms

John Rushby, SR I TTA Overview: 2

The Time-Triggered Architecture: What Is It?

Conceptually:

• It’s an instance of an integration framework

◦ An environment for integrating components into a system

◦ Certain properties of the system are guaranteed for the

system by the framework, independently of the

components (partitioning, composability)

◦ The framework is is invisible to the interaction of

compliant components (compositionality)

◦ The framework provides certain services that assist

components to achieve some properties

• Other examples are separation kernels for security

• And Integrated Modular Avionics (IMA)

John Rushby, SR I TTA Overview: 3

TTA: Where Did It Come From?

• Developed by the group of Hermann Kopetz, TU Vienna

• Commercialized by TTTech

• Builds on a lineage of research architectures that developed

principled solutions to the challenges of concurrent,

real-time, distributed, fault-tolerant systems design

◦ SIFT (SRI), FTP, FTPP (Draper), MAFT (Allied

Signal), MARS (TU Vienna)

• TTA is unique in being developed for mass-market for

automobile applications (Audi, PSA etc.) but also used for

aircraft applications (Honeywell)

◦ “Aircraft safety at automobile cost”

John Rushby, SR I TTA Overview: 4

Similar Systems

• There are other safety-critical buses

• Avionics: SAFEbus (Honeywell 777 AIMS), SPIDER (NASA

Langley)

• Automotive: TTA, FlexRay (Daimler/Chrysler et al)

• I’ve written a NASA Tech Report and a paper presented at

EMSOFT ’01 that compare them

• Google my home page, follow link to my papers

John Rushby, SR I TTA Overview: 5

Applications of TTA and Similar Buses

• Safety-critical embedded systems

Avionics “functions”: flight control, autopilot, autoland,

flight management, displays. . .

Aircraft “controls”: engine controls, thrust reversers, cabin

pressurization, brakes, doors and slides, public address,. . .

Automotive: “by wire” brakes, suspension, steering,. . .

• TTA specifically

◦ Engine controller for Aermacchi M-346 (Honeywell

Tucson)

◦ Engine controller for F16 (Honeywell Tucson)

◦ Environmental control for A380 (Hamilton Sundstrand)

◦ GenAv cockpits (Honeywell Olathe)

◦ By wire applications in next generation cars (Audi,

PSA. . .), Snowcats, . . .

John Rushby, SR I TTA Overview: 6

Fault Tolerant Architectures

• Provide fault-tolerant services to a collection of host

computers

◦ Timing, communication

The services must not fail, despite failure of components

• Support construction of fault tolerant applications in the

hosts

◦ E.g., through state machine replication

Consistent message delivery, failure notification, partitioning

John Rushby, SR I TTA Overview: 7

The Rôle of Buses

• There must be some communication system for exchanging

sensor samples, state data, control signals, actuator outputs

• Many possible topologies, but only a serial bus is

economically viable

• The bus is then a critical shared resource

◦ Communication must be assured with guaranteed

bandwidth, low jitter, low end-to-end latency

◦ In the presence of faults

• Bus embodies the fault tolerant architecture

John Rushby, SR I TTA Overview: 8

Basic Characteristics of TTA

• Exists in both bus and star topologies (logically still a bus)

Host

Interface

Host

Interface

Host

Interface

Host

Interface

Bus

Host

Interface

Host

Interface

Host

Interface

Host

Interface

Star

Hub

Bus/hub are replicated

• All functionality implemented in the distributed interfaces

(called TTP/C controllers)

• And in the hub of the star topology (a modified controller)

John Rushby, SR I TTA Overview: 9

Basic Characteristics of TTA (ctd.)

• Creates a synchronous, TDMA ring on a broadcast bus

• Global clock (achieved by synchronizing local clocks)

• Global schedule known at all nodes

John Rushby, SR I TTA Overview: 10

Why Formal Verification?
Safety motivation:

• Need all the assurance possible

• Help move certification from process- to product-basis

• Help develop approach to modular certification

Developer (TTTech) motivation:

• Nowadays, expected to have at least an informal proof

• Formal proof gets into all the corners, may find bugs

• Formal proof exposes assumptions (fault hypotheses)

• Model checking and mechanized proof allow refined

design exploration

Pruning of assumptions, strengthening of claims

Formal methods motivation:

• TTA algorithms are challenging, push the technology of

automated verification

John Rushby, SR I TTA Overview: 11

The TTA Algorithms are Challenging. . .

• TTA comprises several algorithms

• That are individually challenging for formal verification

• Even in their “academic” form

◦ Hard to do at all

◦ Really hard to automate

Further complicated by practical details

• The algorithms interact in interesting ways

• And some of the most important properties are emergent

◦ Consistent message delivery is achieved indirectly, not by

an agreement algorithm

◦ Partitioning is not ensured by any individual algorithm

John Rushby, SR I TTA Overview: 12

The TTA Algorithms are Challenging To. . .

• I’ll sketch formal analyses by several projects and groups

• Projects

◦ SRI, with Honeywell Tucson and NASA

◦ NextTTA: TU Vienna, VERIMAG, Ulm, . . .

◦ RISE: Esterel, Verimag, . . .

• Groups

◦ Liafa, Paris 7

◦ PAX, Kiel

• But I’ll focus on what remains to be done

John Rushby, SR I TTA Overview: 13

Aside: Formal Verification of Fault Tolerant Algorithms

John Rushby, SR I TTA Overview: 14

Fault Hypothesis and Fault Containment Units

• Must identify the fault containment units (FCUs) that faults

can afflict

◦ Faults at different FCUs must be independent

◦ Need design evidence for this

(separate power, physically apart)

• Must state an explicit fault hypothesis

◦ The modes (kinds), number, and arrival rate of faults

that can afflict FCUs

◦ Must be validated by experiment, experience

• Redundancy and suitable algorithms then provide fault

tolerance: this is what we verify

• And should have a never give up (NGU) strategy in case the

fault hypothesis is violated

John Rushby, SR I TTA Overview: 15

Formal Verification and Stochastic Modeling

• Architecture must be shown to satisfy the mission

requirements under its fault hypotheses

• Formal verification establishes theorems of the form

fault hypothesis satisfied ` architecture works correctly

• Stochastic modeling establishes probability of the hypothesis

(hence, ability to satisfy the mission requirement)

System failures that could lead to a catastrophic failure

condition must be “extremely improbable,” which means that

they must be “so unlikely that they are not anticipated to

occur during the entire operational life of all airplanes of one

type” . . . “When using quantitative analyses. . . numerical

probabilities. . . on the order of 10−9 per flight-hour

[FAA Advisory Circular 25.1309-1A]

John Rushby, SR I TTA Overview: 16

SOS and Asymmetric (Byzantine) Faults

• SOS = slightly out of specification

• Weak power supply or faulty line driver may send

intermediate voltages

◦ Neither digital 0 nor 1

Some receivers may see 0, others 1, and others may reject

• Or may send weak (slow rise) edges

◦ May look like 0 or 1, depending when sampled

Some receivers may see 0, others 1, and others may reject

• Or clock drift may put edges at edge of sampling interval

• Or could go metastable

• All these can give rise to asymmetric reception

• Can reduce incidence of these with central hub

• But cannot eliminate at 10−10

John Rushby, SR I TTA Overview: 17

Specific, Arbitrary, and Hybrid Fault Models

Specific: enumerate the possible fault modes, provide defense

for each one

• Need to show no other kind of fault can occur

Arbitrary (aka. Byzantine): no assumptions at all on behavior

of faulty elements

• Requires a lot of redundancy

• Could fail under lots of simple faults

Hybrid: combination of the above

• Originally: arbitrary, symmetric, and manifest node faults

• Improvement: adds omission node fault, plus link faults

• Just right

John Rushby, SR I TTA Overview: 18

Formal Verification With Hybrid Fault Models

• Establish theorems such as

• ICAH (a clock synchronization algorithm) maintains

synchronization provided

n > 3a + 2s + c

Where

• n is total number of clocks

• a is number that are arbitrary faulty

• s is number that are symmetric faulty

• s is number that are manifest faulty

John Rushby, SR I TTA Overview: 19

Return from Aside

John Rushby, SR I TTA Overview: 20

Basic Algorithms of TTA

• Clock synchronization

• Bus guardian window timing

• Group membership

• Clique avoidance

• . . . Consensus (not an algorithm but an emergent property)

• Nonblocking write

• Startup/restart

John Rushby, SR I TTA Overview: 21

TTA Clock Synchronization

• Keeps good clocks close together, in presence of faulty clocks

• Based on the Lundelius-Lynch algorithm

◦ Each node collects clock differences wrt. other nodes

◦ Takes average of 2nd smallest and 2nd largest as its

correction

• Restrict to nodes that have accurate oscillators

• But TTA uses only 4 clock differences

• Tolerates a single arbitrary fault

John Rushby, SR I TTA Overview: 22

Clock Synchronization: Previous Verifications

• Byzantine fault-tolerant clock synchronization algorithms are

a major challenge for formal verification systems

◦ Intricate combination of arithmetic and combinatorial

reasoning

• Friedrich von Henke and I were the first to verify one (called

interactive convergence) using Ehdm (TSE ’93)

◦ Subsequently repeated by Bill Young using Nqthm

• Schneider’s general treatment and Lundelius-Lynch

instantiation formally verified by Shankar (FTRTFT 92) and

improved by Paul Miner (MS Thesis) using Ehdm

• Verification of interactive convergence extended to hybrid

fault model by me (PODC 94)

John Rushby, SR I TTA Overview: 23

Clock Synchronization: TTA Case

• TTA uses only 4 clock differences

• Miner’s treatment was converted to PVS, generalized, and

applied to TTA variant by group at Ulm (DCCA ’97)

• But then lost in a fire

• Need to recreate this, but don’t want merely to repeat the

lost Ulm treatment

• Satisfaction of mission requirements requires a hybrid fault

model

◦ This will allow formulation of properties when less than 4

good clocks remain, or more than a single fault arrives

John Rushby, SR I TTA Overview: 24

Clock Synchronization: Full TTA Case

• Proposal: verify Ulrich Schmid’s treatment of clock synch.

under hybrid fault model with link faults (DSN ’01)

◦ Independently interesting

• Then interpret TTA algorithm in this model with n − 4

“permanent” link faults to each node

• Will be interesting to compare gain in efficiency of PVS over

Ehdm (hope for an order of magnitude)

• But real desire is for fully automated proofs

◦ Feasible with timed/hybrid automata?

John Rushby, SR I TTA Overview: 25

Bus Guardians

• A faulty node could broadcast at the wrong time

• Or all the time (babbling fault mode)

◦ Destroys all good communications

• Must introduce a separate FCU with own clock and

knowledge of schedule that mediates access to the bus

• This is a (logical) bus guardian

• Several design choices

SAFEbus: paired interfaces (and buses): each is a guardian

for the other

TTA-bus, FlexRay: explicit guardians

TTA-star: guardian functionality in central hub

John Rushby, SR I TTA Overview: 26

Explicit Guardian

• One per bus, or shared?

• Fully independent clock

synchronization?
guardian

controller
host/

John Rushby, SR I TTA Overview: 27

Guardian in Central Hub

Host

Interface

Host

Interface

Host

Interface

Host

Interface

Star

Hub

John Rushby, SR I TTA Overview: 28

Bus Window Timing

• Bus guardian allows its node to write to the bus only during

a limited window

• Want the bus guardian window to be as narrow as possible

• But still pass all messages from nonfaulty nodes

• Despite the fact that clocks are only loosely synchronized

• Also, no source or destination addresses are sent with

messages

◦ These are determined by time message sent

◦ Eliminates masquerading, greatly increases bandwidth

• So receivers also maintain a narrow reception window

John Rushby, SR I TTA Overview: 29

Window Timing: Requirements

• Need to consider windows of three (classes of) components

◦ A transmitter

◦ Its bus guardian

◦ The receivers

• Requirements

Validity: If any nonfaulty node transmits a message, then all

nonfaulty nodes will accept the transmission.

Agreement: If any nonfaulty node accepts a transmission,

then all nonfaulty nodes do

• Given that clocks are synchronized only within some

parameter Π

John Rushby, SR I TTA Overview: 30

Window Timing: Design Rules

Each slot has a start time and a maximum duration recorded in

the schedule

1. Transmission begins 2 Π units after the beginning of the slot

and should last no longer than the allotted duration.

2. The bus guardian for a transmitter opens its window Π units

after the beginning of the slot and closes it 3 Π beyond its

allotted duration.

3. The receive window extends from the beginning of the slot

to 4 Π beyond its allotted duration.

John Rushby, SR I TTA Overview: 31

Window Timing: In Pictures

TF

BF

RF

Transmitter

Bus Guardian

Receiver

skew

(2Π)

(Π)

(0)

(2Π)

(3Π)

(4Π)RS

BS

TS

(Π)

John Rushby, SR I TTA Overview: 32

Verification of Window Timing

• Done by me (Tech Report)

• Straightforward and largely automatic (used as tutorial)

John Rushby, SR I TTA Overview: 33

Asynchronous Communication

• An important element in Kopetz’ conception of

time-triggered systems is the distinction between elementary

and composite interfaces

• Control flow must be unidirectional for elementary interfaces

• At the TTA the controller/host interface, we need reliable,

timely communication across an asynchronous interface with

no handshakes or blocking

• In computer science, this is called a wait-free, lock-free,

atomic register construction

• TTA uses algorithm called NBW (nonblocking write)

◦ A combination of Lamport’s lock-free construction

◦ And ideas from Simpson’s wait-free construction

John Rushby, SR I TTA Overview: 34

Safe, Regular, Atomic Registers

What happens when we read memory at the same time it is

being written?

Consider a read that overlaps possibly many writes

Safe: can get any value

regular: gets one of the values written

atomic: a series of reads behaves in a manner that is

consistent with the reads and writes interleaving in some

order (reads never return older values than previous reads)

For atomic registers, want mutual-exclusion on access to the

register

• Lock-free: no blocking

• Wait-free: always get the most recent

John Rushby, SR I TTA Overview: 35

Simpson’s 4-Slot Algorithm

• Patented by BAe in the 80s

• Widely used

• Uses 4 safe slots (buffers)

• And 4 Boolean control registers

• To construct a wait-free, lock-free atomic register

• What are the assumptions on the control registers?

John Rushby, SR I TTA Overview: 36

Analyzing 4-Slot

• I did it by model checking with SALenv

◦ Its first road test

• Found that it achieves mutual exclusion even when the

control registers are merely safe

◦ Finite state, so model checking provides verification

• But does not achieve atomicity

• Even if control registers are written only when changed

◦ This makes them regular, not atomic

• Requires atomic control registers!

• This is discussed in Simpson’s papers, but was interesting to

independently discover it by model checking

• There is a large activity on these algorithms in UK, and

interesting work by Hesselink (ACTA ’02)

John Rushby, SR I TTA Overview: 37

Group Membership

• Similar to fault diagnosis

• Informs good nodes which other nodes are good

• Needed for internal fault-tolerance of TTA

◦ TTA is designed to single fault assumption

◦ Membership excludes faulty nodes, can then tolerate new

faults

◦ Therefore its properties are a strong influence on the

fault hypothesis and arrival rate

• Is also an application-level service

John Rushby, SR I TTA Overview: 38

Applications Need Consistent Knowledge

• Consider a brake-by-wire application

• Separate computers at each wheel adjust braking force

according to inputs from brake pedal, accelerometers,

steering angle, wheel-spin sensors etc.

• Suppose one of these computers fails

• The others need to redistribute the braking force

• So must have consistent opinion about who has failed

John Rushby, SR I TTA Overview: 39

Requirements For Group Membership

Each processor maintains a membership set

Validity: the membership sets of nonfaulty processors contain

all the nonfaulty processors

• And, ideally, nothing else—but this is not possible

because it takes some time to diagnose a faulty processor

• So allow at most one faulty processor in the membership

Agreement: all nonfaulty processors have the same

membership sets

Self-Diagnosis: faulty processors eventually remove

themselves from their own membership sets (and fail silently)

Rejoin: Repaired processors can get back in

Subject to fault hypothesis about possible fault modes, fault

arrival rate, and maximum number of faults

John Rushby, SR I TTA Overview: 40

TTA Group Membership Algorithm

• Each broadcaster acknowledges the previous two

◦ Requires only two bits per message (encoded in CRC)

• Works only under symmetric fault model

• And no more than one fault per two rounds

John Rushby, SR I TTA Overview: 41

Verification of Group Membership

• Lincoln verified MAFT diagnosis algorithms (TSE 95)

• We became interested in verifying membership, which is a

similar problem

• But TTA algorithm was not published at that time

• So Katz, Lincoln, and I invented our own (WDAG ’97)

• Needs only one bit per message

• Verified by hand

John Rushby, SR I TTA Overview: 42

The Published WDAG Proof

• Was a conventional inductive invariance proof

• It is incorrect (incomplete)

◦ And the algorithm has a bug

? Found independently by Shankar (inspection), and

? Sadie Creese and Bill Roscoe (model checking)

• But is fairly easy to correct

• However, it defeated attempts by Pat Lincoln, Shmuel Katz,

and me to formally verify it in PVS

◦ Because of its horrible complexity

John Rushby, SR I TTA Overview: 43

The Published WDAG Invariant

The invariant has the following conjuncts.

1. All nonfaulty processors have the same membership sets.

2. All nonfaulty processors are in their own membership sets.

3. All nonfaulty processors have the same value for ack.

4. For each processor p, ack(p) is true iff in the most recent previous step in

which p expected a broadcast from a processor b, either p was b, or

arrived(b, p) ∧ (ack(b) ∨ ¬ack(p)) in that step.

5. If a processor p became faulty less than n steps ago and q is a nonfaulty

processor, either p is the present broadcaster or the present broadcaster is

in p’s local membership set iff it is in q’s.

6. If a receive fault occurred to processor p less than n steps ago, then

either p is not the broadcaster or ack(p) is false while all nonfaulty q have

ack(q) = true, or p is not in its local membership set.

7. If in the previous step b is broadcaster, p is a nonfaulty processor, and

arrived(b, p) does not hold, then b is faulty in the current step.

8. If the broadcaster b is expected by a nonfaulty processor, then b is either

nonfaulty, or became faulty less than n steps ago.

John Rushby, SR I TTA Overview: 44

Successful Verification of Membership

• I found a method to verify the WDAG algorithm

• Uses disjunctive invariants

• Proof has a natural diagrammatic representation

• And can be constructed systematically

• I described the method using a simplified version of the

WDAG algorithm (CAV ’00)

John Rushby, SR I TTA Overview: 45

There is a Natural Diagrammatic Representation

initial configuration

missed_rcv(x)

fault arrival
x broadcasts

nonfaulty broadcaster

broadcaster

x fails to receive

receive

any

self_diag(x)
x not

already-faulty
broadcaster

x fails to broadcast

x fails to broadcast

x fails to broadcast

excluded(x)

stable

already-faulty
broadcaster

latent(x)

John Rushby, SR I TTA Overview: 46

Verification of TTA Group Membership

• Performed by Holger Pfeifer (Forte/PSTV 00)

• Based on disjunctive invariants method (CAV 00)

• Generates a diagram of possible “configuration” that conveys

a lot of insight into the operation of the algorithm

• Proof is completely systematic, but not highly automated

◦ Well. . . try it in your prover

John Rushby, SR I TTA Overview: 47

Other Verifications of Membership

• Creese and Roscoe verified the WDAG algorithm by manually

abstracting it to a finite configuration, then model checking

• Problem with such approaches is that formal verification of

the abstraction is hard

• An alternative uses theorem proving to construct the

abstraction

◦ E.g., predicate abstraction

◦ Creates the context for failure-tolerant theorem proving

◦ Precision of the abstraction depends on the theorem

proving power deployed

• PAX group at Kiel use WS1S and Mona to perform

automated abstraction

• Handles the CAV algorithm automatically

John Rushby, SR I TTA Overview: 48

Clique Avoidance

• Membership is verified under benign fault hypothesis:

at most one symmetric fault every two rounds

• Beyond this fault hypothesis lie

◦ Asymmetric faults

◦ Multiple faults

◦ Node faults

◦ Arbitrary faults

• Clique avoidance (elimination) algorithm forces agreement on

membership when outside fault hypothesis of membership

algorithm

◦ So part of “never give up” strategy

• May sacrifice validity

John Rushby, SR I TTA Overview: 49

Group Membership and Clique Avoidance

• Group membership and clique avoidance are not separate

algorithms, but intertwined

• Can start from a basic group membership algorithm that

works on the basis of implicit acks from successor and

next-successor

• Then add accept and reject counter

• Replace some of the fault detection by comparison between

these counters

• Still have membership, but also ability to tolerate wider class

of faults—this is clique avoidance

• Can then consider clique avoidance as a self stabilizing

extension to group membership

John Rushby, SR I TTA Overview: 50

Self Stabilization

• Given a network of processes in arbitrary initial states, prove

they converge to some good state

• A good model for recovery from transient faults

◦ Components do silly things, then the faults go away

◦ Leaving just the contaminated state

(Combination with permanent faults is a research topic)

• Previous verifications were tours-de-force

• Detectors and correctors theory of Kulkarni and Arora

provides tractable treatment (formalized in PVS by Kulkarni)

John Rushby, SR I TTA Overview: 51

Detectors and Correctors

• Stripped down version of the theory, with only correctors

• “Base” algorithm B whose purpose is to maintain invariant S

in presence of fault class F (e.g., group membership)

{S} B||F {S}

• Transients take system outside S, “corrector” C brings it

back

C |= 3S

• But B and C actually run concurrently and must not interfere

with each other, so really need

{S} C||B||F {S}, C||B||F |= 3S

• If C is part of B, only need prove B doesn’t interfere with C

• Small complication that C only corrects to S ′

John Rushby, SR I TTA Overview: 52

Weakened Detectors and Correctors

• {S} C||B||F {S}

• {S′} C||B||F {S′ ∨ S}, and S ⊃ S′

• C||B||F |= 3S′

John Rushby, SR I TTA Overview: 53

Interpretation for TTA

• The base algorithm is group membership

• The corrector is clique avoidance

• The benign fault model is at most one symmetric fault every

two rounds

• S is validity

◦ All and only nonfaulty nodes in membership, except one

faulty one is allowed during recovery

and agreement

• S′ sacrifices validity to ensure agreement

◦ May exclude some nonfaulty nodes

John Rushby, SR I TTA Overview: 54

Verification of Clique Avoidance

• Bauer and Paulitsch verify (by hand)

{S′} C||B||F {S′ ∨ S}

where F is a single asymmetric fault (SRDS ’00)

• Bouajjani and Merceron verify (automatically)

C |= 3S′

where the system starts from a state caused by a single

asymmetric fault (multiple faults verified by hand)

• Challenge is to combine and extend these results

John Rushby, SR I TTA Overview: 55

Interaction of Membership and Synchronization

• Each depends on the other

• How to break the circularity?

• There are assume/guarantee methods that do this

• Ken McMillan has a rule that is appropriate here: breaks the

dependency by time

◦ Membership at round t depends on synchronization up to

round t − 1

◦ Synchronization at round t depends on membership up to

round t − 1

John Rushby, SR I TTA Overview: 56

Interaction of Membership and Synchronization (ctd)

• McMillan’s rule: H is a “helper” property, 2 is the “always”

modality of Linear Temporal Logic (LTL), and p � q means

that if p is always true up to time t, then q holds at time t + 1

(i.e., p fails before q)

〈H〉X1〈P2 � P1〉

〈H〉X2〈P1 � P2〉

〈H〉X1||X2〈2(P1 ∧ P2)〉

• I have formally verified McMillans’s rule

• Can be applied to synchronization/membership

◦ Where, X1 is membership, X2 is synchronization

• Holger Pfeifer (Ulm) is working on the same problem from a

different direction

John Rushby, SR I TTA Overview: 57

Startup/Restart

• When a node has heard nothing for a while, sends a wakeup

message

• Other nodes may do same thing at the same time

• Collision detection is unreliable

• Should get clean wakeup after some small interval

• Need to prove this is achieved, in the presence of faults

◦ Previous membership information is lost

• Discrete-time SAL model developed by Steiner

◦ Model checking by sal-smc used in the design loop and to

calculate worst-case startup delay

• Real-time SAL model developed by Dutertre and Sorea

◦ Verified with sal-inf-bmc

John Rushby, SR I TTA Overview: 58

Replica Determinism as a System Service

• Strategies for fault-tolerant applications require that all

nonfaulty replicas have the same state

• That is, have received same sequence of messages

• So need more than “best efforts” message delivery

• Need consensus (aka. Byzantine agreement, interactive

consistency)

• Under weakest fault hypothesis (Byzantine) this sets lower

bounds (to tolerate t simultaneous faults):

◦ 3t + 1 FCUs

◦ 2t + 1 disjoint comms paths, or t + 1 broadcast channels

◦ t + 1 rounds of information exchange

John Rushby, SR I TTA Overview: 59

Consensus

SAFEbus: Honeywell implementation has an extra

communication channel; uses method of Davies and Wakerly

SPIDER: Has redundancy inside central hub; uses variation on

Draper FTP algorithm

TTA:

• Provides Group Membership as basic service

(assumes benign fault modes)

• With Clique Avoidance as NGU backup

(on asymmetric faults)

• Provides Draconian Consensus (resembles Crusader

Agreement) by eliminating receivers that disagree

Need to verify Draconian consensus and explain how it

(apparently) violates known lower bounds

John Rushby, SR I TTA Overview: 60

Top-Level Issues

• The individual algorithms are useful and interesting, but the

real value of TTA is in the top-level properties that it

provides

◦ Partitioning

◦ Time-triggered model of computation

• These are emergent: not found in any single algorithm

John Rushby, SR I TTA Overview: 61

Partitioning

• The main issue for aircraft certification

• It’s what allows several “functions” to be integrated on

single platform (IMA and MAC architectures)

• Important dual attribute: strong composability

• Putative requirement specification for partitioning:

◦ Behavior perceived by nonfaulty components must be

consistent with some behavior of faulty components

interacting with it through specified interfaces

• Need to formalize this

• And verify it for TTA

• The most difficult outstanding challenge?

John Rushby, SR I TTA Overview: 62

The Time-Triggered Model of Computation

• Hermann Kopetz has a whole philosophy for this

◦ Includes Temporal firewalls, composability arguments,

elementary vs. compound interfaces. . .

• Tom Henzinger has Giotto: a time-triggered language, that

provides some additional ideas

• Would like to give a formal account for this

(cf. Paul Caspi’s rational reconstruction for CriSys)

• I have verified that TTA supports the abstraction of

synchronous system (TSE ’99) but more is needed

John Rushby, SR I TTA Overview: 63

Modular Certification

• How to certify components separately?

• And glue the arguments together?

• Certification differs from verification in that you have to take

faults (hazards) seriously

• Exploring assume-guarantee approach, based on normal and

(multiple) abnormal assumptions and guarantees

• Have to consider interactions through the plants

• May help explain Perrow’s concerns, and Kopetz’

recommendation for elementary interfaces

John Rushby, SR I TTA Overview: 64

Utility of These Verifications?

• The completed verifications will have obvious utility in

certification

• But the main benefits are sharpened statements of

assumptions and properties

• And clarification of interactions and interdependencies among

the algorithms

• Stimulates useful dialog with the designers of TTA

• And provides education for potential users of TTA

• Severe test of verification methods and automation

John Rushby, SR I TTA Overview: 65

Next Steps

• Want to support developers of applications to run on TTA

• Should be able to verify their designs

◦ Expressed in e.g., Lustre or Simulink

• And their transformation into fault-tolerant implementations

running on TTA

• Formalization needs to be largely transparent

• And verification must be largely automatic

◦ Need test cases as well as formal proofs

• We cannot do all of this: concentrate on providing basic

toolkits for others

John Rushby, SR I TTA Overview: 66

The Wall of Formal Verification

theorem
proving

Effort

verification
for system
Assurance

John Rushby, SR I TTA Overview: 67

A Smooth Slope of Formal Methods

ICS

PVS

SAL

Effort

refutation

invisible fm

verification

automated

abstraction

Assurance
for system

John Rushby, SR I TTA Overview: 68

Summary

• TTA is the last best hope for introducing rational

fault-tolerance to distributed embedded systems

◦ Displacing homespun solutions

• Analysis of its algorithms is a challenging and interesting

problem for formal verification

◦ But only needs to be done once

• Formalizing the computational model and properties

presented to its client applications is crucial

• Can then bring formalization and verification to those clients

• In the form of “disappearing formal methods”

John Rushby, SR I TTA Overview: 69

Going Forward

• Main criticism of TTA is its use of membership and clique

avoidance as basic mechanisms, rather than application-level

services

• These interact with clock synch

• And their exact fault tolerance is hard to analyze

• Could be better to separate these issues

• But then you depend on fault filtering in the hub to ensure

consensus

• So may need to implement classical oral messages algorithm

for critical data

John Rushby, SR I TTA Overview: 70

Alternative Approaches

• SPIDER, developed by Paul Miner and others at NASA

Langley

◦ Uses sophisticated hybrid-Byzantine fault tolerant

algorithms to provide clock synch, consensus, diagnosis

(cf. membership) and restart

◦ Very complete and systematic formal verification in PVS

◦ See http:

//shemesh.larc.nasa.gov/fm/spider/spider_pubs.html

◦ Does slightly more than TTA

• Braided Ring developed by Kevin Driscoll and others at

Honeywell

◦ Uses filtering to suppress SOS faults

◦ Forthcoming DSN paper

◦ Does slightly less than TTA

John Rushby, SR I TTA Overview: 71

