
Introduction to SMT Solving

And Infinite Bounded Model Checking

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I Introduction to SMT and Infinite BMC: 1

Since The Beginning. . .

• Theorem provers (or, at

least, proof checkers)

have been a central

element in mechanized

verification from the first

systems of King (1969)

and Good (1970)

• They’ve evolved over the

years and become

specialized for this

application

• With decision procedures

and other automation for

arithmetic, data

structures, recursively and

inductively defined

functions and relations

etc.

John Rushby, SR I Introduction to SMT and Infinite BMC: 2

Until. . .

• . . . the present?

• Most significant

verifications were

accomplished with a

theorem prover (ACL2,

HOL, Isabelle, PVS. . .)

John Rushby, SR I Introduction to SMT and Infinite BMC: 3

Then Along Came Model Checking

• Initially, these were just

explicit state reachability

analyzers

• Then BDDs and CTL

• But still finite state

• So ad-hoc downscaling

required

• OK for debugging, not

verification
• Same for static analysis

John Rushby, SR I Introduction to SMT and Infinite BMC: 4

. . . And Automated Abstraction

• Predicate abstraction

provides an automatable

way to construct property

preserving abstractions

• And spurious

counterexamples can be

mined to refine

inadequate abstractions

(CEGAR)

• Model checking starts to

encroach on the space oc-

cupied by theorem proving

John Rushby, SR I Introduction to SMT and Infinite BMC: 5

Disruptive Innovation

Performance

Time

Low-end disruption is when low-end technology overtakes the

performance of high-end (Christensen)

John Rushby, SR I Introduction to SMT and Infinite BMC: 6

SMT Solvers: Disruptive Innovation in Theorem Proving

• SMT stands for Satisfiability Modulo Theories

• SMT solvers extend decision procedures with the ability to

handle arbitrary propositional structure

◦ Traditionally, case analysis is handled heuristically in the

theorem prover front end

? Have to be careful to avoid case explosion

◦ SMT solvers use the brute force of modern SAT solving

• Or, dually, they generalize SAT solving by adding the ability

to handle arithmetic and other decidable theories

• Application to verification

◦ Via bounded model checking and k-induction

John Rushby, SR I Introduction to SMT and Infinite BMC: 7

SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula can be represented as a set of clauses

◦ In CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

◦ Literal: an atomic proposition A or its negation Ā

• Example: given following 4 clauses

◦ A,B

◦ C ,D

◦ E

◦ Ā, D̄, Ē

One solution is A, C, E, D̄

(A, D, E is not and cannot be extended to be one)

• Do this when there are 1,000,000s of variables and clauses

John Rushby, SR I Introduction to SMT and Infinite BMC: 8

SAT Solvers

• SAT solving is the quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

? Building on earlier innovations in SATO, GRASP

◦ Sustained improvements, honed by competition

• Has become a commodity technology

◦ MiniSAT is 700 SLOC

• Can think of it as massively effective search

◦ So use it when your problem can be formulated as SAT

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states

John Rushby, SR I Introduction to SMT and Infinite BMC: 9

SAT Plus Theories

• SAT can encode operations and relations on bounded

integers

◦ Using bitvector representation

◦ With adders etc. represented as Boolean circuits

And other finite data types and structures

• But cannot do not unbounded types (e.g., reals),

or infinite structures (e.g., queues, lists)

• And even bounded arithmetic can be slow when large

• There are fast decision procedures for these theories

• But their basic form works only on conjunctions

• General propositional structure requires case analysis

◦ Should use efficient search strategies of SAT solvers

That’s what an SMT solver does

John Rushby, SR I Introduction to SMT and Infinite BMC: 10

Decidable Theories

• Many useful theories are decidable

(at least in their unquantified forms)

◦ Equality with uninterpreted function symbols

x = y ∧ f(f(f(x))) = f(x) ⊃ f(f(f(f(f(y))))) = f(x)

◦ Function, record, and tuple updates

f with [(x) := y](z)
def
= if z = x then y else f(z)

◦ Linear arithmetic (over integers and rationals)

x ≤ y ∧ x ≤ 1 − y ∧ 2 × x ≥ 1 ⊃ 4 × x = 2

◦ Special (fast) case: difference logic

x − y < c

• Combinations of decidable theories are (usually) decidable

e.g., 2 × car(x) − 3 × cdr(x) = f(cdr(x)) ⊃

f(cons(4 × car(x) − 2 × f(cdr(x)), y)) = f(cons(6 × cdr(x), y))

Uses equality, uninterpreted functions, linear arithmetic, lists

John Rushby, SR I Introduction to SMT and Infinite BMC: 11

SMT Solving

• Individual and combined decision procedures decide

conjunctions of formulas in their decided theories

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

◦ i.e., (A ∨ B) ∧ (C ∨ D) ∧ E

• Get a solution from a SAT solver (if none, we are done)

◦ e.g., A, D, E

• Restore the interpretation of variables and send the

conjunction to the core decision procedure

◦ i.e., x ≤ y ∧ y ≤ x ∧ x 6= y

John Rushby, SR I Introduction to SMT and Infinite BMC: 12

SMT Solving by “Lemmas On Demand”

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment

• But isn’t it expensive to keep doing this?

• Yes, so first, do a little bit of work to find fragments that

explain the unsatisfiability, and send these back to the SAT

solver as additional constraints (i.e., lemmas)

◦ A ∧ D ⊃ Ē (equivalently, Ā ∨ D̄ ∨ Ē)

• Iterate to termination

◦ e.g., A, C, E, D̄

◦ i.e., x ≤ y, x < 0, x 6= y, y 6≤ x (simplifies to x < y, x < 0)

◦ A satisfying assignment is x = −3, y = 1

• This is called “lemmas on demand” (de Moura, Ruess,

Sorea) or “DPLL(T)”; it yields effective SMT solvers

John Rushby, SR I Introduction to SMT and Infinite BMC: 13

Fast SMT Solvers

• There are several effective SMT solvers

◦ Our ICS was among the first (released 2002)

? Precursors include CVC, LPSAT, Simplify. . .

◦ Now replaced by Yices (released 2006)

◦ European examples: Barcelogic, MathSAT

• Yices decides formulas in the combined theories of: linear

arithmetic over integers and reals (including mixed forms),

fixed size bitvectors, equality with uninterpreted functions,

recursive datatypes (such as lists and trees), extensional

arrays, dependently typed tuples and records of all these,

lambda expressions, and some quantified formulas

• SMT solvers are being honed by competition

◦ Provoked by our benchmarking in 2004

◦ Now institutionalized as part of CAV, FLoC

John Rushby, SR I Introduction to SMT and Infinite BMC: 14

SMT Competition

• Various divisions (depending on the theories considered)

◦ Equality and uninterpreted functions

◦ Difference logic (x − y < c)

◦ Full linear arithmetic

? For integers as well as reals

◦ Extensional arrays, bitvectors, quantification . . . etc.

• ICS was the most uniformly effective in 2004

• Yices 0.2 and Simplics (prototypes for Yices 1.0) won the

advanced divisions in 2005, came second to Barcelogic in all

the others

• Yices 1.0 won all 11 divisions in 2006

• Yices 1.0.10 won 6 of 12 divisions in 2007

• Yices 2.0 under development

John Rushby, SR I Introduction to SMT and Infinite BMC: 15

Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S

• Is there a counterexample to property P in k steps or less?

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• But if I, T and P use decidable but unbounded types, then

it’s an SMT problem: infinite bounded model checking

• (Infinite) BMC also generates test cases and plans

◦ State the goal as negated property

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ (G(s1) ∨ · · · ∨ G(sk))

John Rushby, SR I Introduction to SMT and Infinite BMC: 16

k-Induction

• BMC extends from refutation to verification via k-induction

◦ Other ways include finding diameter of the statespace,

abstraction/refinement, using interpolants to find fixpoint

• Ordinary inductive invariance (for P):

Basis: I(s0) ⊃ P (s0)

Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k:

Basis: No counterexample of length k or less

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Note that counterexamples help debug invariant

John Rushby, SR I Introduction to SMT and Infinite BMC: 17

Evolution of SMT-Based Model Checkers

• Replace the backend decision procedures of a verification

system with an SMT solver, and specialize and shrink the

higher-level proof manager

• Example:

◦ SAL language has a type system similar to PVS, but is

specialized for specification of state machines

(as finite- or infinite-state transition relations)

◦ The SAL infinite-state bounded model checker uses an

SMT solver (Yices), so handles specifications over reals

and integers, uninterpreted functions, etc.

◦ Often used as a model checker (i.e., for refutation)

◦ But can perform verification with a single higher level

proof rule: k-induction (with lemmas)

John Rushby, SR I Introduction to SMT and Infinite BMC: 18

Verification Systems vs. SMT-Based Model Checkers

PVS SAL

Backends SMT Solver

Actually, both kinds will coexist as part of the evidential tool

bus—another talk

John Rushby, SR I Introduction to SMT and Infinite BMC: 19

Application: Verification of Real Time Programs

• Continuous time excludes automation by finite state methods

• Timed automata methods (e.g., Uppaal)

◦ Handle continuous time

◦ But are defeated by the case explosion when (discrete)

faults are considered as well

• SMT solvers can handle both dimensions

◦ With discrete time, can have a clock module that

advances time one tick at a time

? Each module sets a timeout, waits for the clock to

reach that value, then does its thing, and repeats

◦ Better: move the timeout to the clock module and let it

advance time all the way to the next timeout

? These are Timeout Automata (Dutertre and Sorea):

and they work for continuous time

John Rushby, SR I Introduction to SMT and Infinite BMC: 20

Example: Biphase Mark Protocol

Biphase Mark is a protocol for asynchronous communication

unsynchronized, independent clocks

lots of 1’s how many 1’s?

........

• Clocks at either end may be skewed and have different rates,

and jitter

• So have to encode a clock in the data stream

• Used in CDs, Ethernet

• Verification identifies parameter values for which data is

reliably transmitted

John Rushby, SR I Introduction to SMT and Infinite BMC: 21

Example: Biphase Mark Protocol (ctd)

• Flip the signal at the begining of every bit cell

• For a 1 bit, flip it in the middle, too

• For a 0 bit, leave it constant

BMP encoding

1 1 0 1 0 0 1 1 1 0 1 1

Original bitsream

Prove this works provided the sender and reciever clocks run at

similar rates

John Rushby, SR I Introduction to SMT and Infinite BMC: 22

Biphase Mark Protocol Verification

• Verified by human-guided proof in ACL2 by J Moore (1994)

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

required 37 invariants, 4,000 proof steps, hours of prover

time to check

John Rushby, SR I Introduction to SMT and Infinite BMC: 23

Biphase Mark Protocol Verification (ctd)

• Brown and Pike recently did it with sal-inf-bmc

◦ Used timeout automata to model timed aspects

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Three lemmas proved automatically with 1-induction,

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Automated proofs more reusable than step-by-step ones

◦ Additional lemma proved with 13-induction

◦ Theorem proved with 3-induction (7 disjuncts)

◦ Revealed a bug in published application note

John Rushby, SR I Introduction to SMT and Infinite BMC: 24

Biphase Mark Protocol Verification (demo)

Ideally, use an integrated front end; here we look at raw

model-checker input

This example

Evidential Tool Bus (ETB)

SAL PVS Yices

Integrated front−end development environment

AADL, UML2, Matlab

TOPCASED, SSIV etc.

Ideally

John Rushby, SR I Introduction to SMT and Infinite BMC: 25

SMT Solvers as Disruptive Innovation

Disruptive to:

SAT solvers: anything a SAT solver can do, an SMT solver

does better

Constraint solvers: maybe

Ordinary BMC: Infinite BMC is often faster than (finite)

BMC (SMT solver on the real problem is faster than SAT on

the bit-blasted representation)

CEGAR loops: SMT extends to MaxSMT and, dually,

extraction of unsat cores

Traditional theorem provers: at the very least, they need an

SMT solver for endgame proofs (PVS 4.0 uses Yices), but

hard to rival the perfect adaptation of infinite BMC and

k-induction

John Rushby, SR I Introduction to SMT and Infinite BMC: 26

Summary
• Disruptive innovations are sweeping through our field

• We can both contribute to these and use them

• Contribution to disruption: SMT solvers

◦ In addition to backend solvers and BMC, these can be

used in automated test generation, predicate abstraction,

invariant generation and verif’n, (weighted) Maxsat/

Mincore, extended static checking and extended type

checking, and temporal/metric plan synthesis and verif’n

• Harness disruption: The Evidential Tool Bus

◦ Lightweight decentralized open-ended architecture for

integrating heterogeneous components

◦ We’ll use it to reconstruct Hybrid SAL, construct and

integrate many methods for invariant generation

• The real targets for disruption are traditional methods for

software development, validation, and certification

John Rushby, SR I Introduction to SMT and Infinite BMC: 27

Thank you!

• And thanks to Bruno Dutertre, Grégoire Hamon,

Leonardo de Moura, Sam Owre, Harald Rueß, Hassen Säıdi,

N. Shankar, Maria Sorea, and Ashish Tiwari

• You can get our tools and papers from http://fm.csl.sri.com

• These slides:

http://www.csl.sri.com/~rushby/slides/jaist07.pdf

John Rushby, SR I Introduction to SMT and Infinite BMC: 28

