
What Is Software Assurance?

John Rushby

Based on joint work with Bev Littlewood (City University UK)

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I What Is S/W Assurance? 1



A Conundrum

• Critical systems are those where failures can have

unacceptable consequences: typically safety or security

• Cannot eliminate failures with certainty (because the

environment is uncertain), so top-level claims about the

system are stated quantitatively

◦ E.g., no catastrophic failure in the lifetime of all airplanes

of one type (“in the life of the fleet”)

• And these lead to probabilistic requirements for

software-intensive subsystems

◦ E.g., probability of failure in flight control < 10−9 per hour

• To assure this, do lots of verification and validation (V&V)

• But V&V is all about showing correctness

• And for stronger claims, we do more V&V

• So how does amount of V&V relate to probability of failure?

John Rushby, SR I What Is S/W Assurance? 2



Background

John Rushby, SR I What Is S/W Assurance? 3



The Basis For Assurance and Certification

• We have claims or goals that we want to substantiate

◦ Typically claims about a critical property such as security

or safety

◦ Or some functional property, or a combination

E.g., no catastrophic failure condition in the life of the fleet

• We produce evidence about the product and its development

process to support the claims

◦ E.g., analysis and testing of the product and its design

◦ And documentation for the process of its development

• And we have an argument that the evidence is sufficient to

support the claims

• Surely, this is the intellectual basis for all certification regimes

John Rushby, SR I What Is S/W Assurance? 4



Standards-Based Approaches to Certification

• Applicant follows a prescribed process

◦ Delivers prescribed outputs

⋆ e.g., documented requirements, designs, analyses, tests

and outcomes; traceability among these

These provide evidence

• The goals and argument are largely implicit

• Common Criteria (security) and DO-178B (civil aircraft) are

like this

• Works well in fields that are stable or change slowly

◦ No ’plane accidents due to software, but several incidents

◦ Can institutionalize lessons learned, best practice

⋆ e.g. evolution of DO-178 from A to B to C

• May be less suitable with novel problems, solutions, methods

John Rushby, SR I What Is S/W Assurance? 5



The Argument-Based Approach to Certification

• E.g., UK air traffic management (CAP670 SW01), defence

(DefStan 00-56), Railways (Yellow Book), EU Nuclear,

growing interest elsewhere (e.g., FDA, NTSB)

• Applicant develops a safety case

◦ Whose outline form may be specified by standards or

regulation (e.g., 00-56)

◦ Makes an explicit set of goals or claims

◦ Provides supporting evidence for the claims

◦ And arguments that link the evidence to the claims

⋆ Make clear the underlying assumptions and judgments

• The case is evaluated by independent assessors

• The main novelty is the explicit argument

• Generalized to security, dependability, assurance cases

John Rushby, SR I What Is S/W Assurance? 6



Software Reliability

• Software contributes to system failures through faults in its

requirements, design, implementation—bugs

• A bug that leads to failure is certain to do so whenever it is

encountered in similar circumstances

◦ There’s nothing probabilistic about it

• Aaah, but the circumstances of the system are a stochastic

process

• So there is a probability of encountering the circumstances

that activate the bug

• Hence, probabilistic statements about software reliability or

failure are perfectly reasonable

• Typically speak of probability of failure on demand (pfd), or

failure rate (per hour, say)

John Rushby, SR I What Is S/W Assurance? 7



Aleatory and Epistemic Uncertainty

• Aleatory or irreducible uncertainty

◦ is “uncertainty in the world”

◦ e.g., if I have a coin with P (heads) = ph, I cannot predict

exactly how many heads will occur in 100 trials because

of randomness in the world

Frequentist interpretation of probability needed here

• Epistemic or reducible uncertainty

◦ is “uncertainty about the world”

◦ e.g., if I give you the coin, you will not know ph; you can

estimate it, and can try to improve your estimate by

doing experiments, learning something about its

manufacture, the historical record of similar coins etc.

Frequentist and subjective interpretations OK here

John Rushby, SR I What Is S/W Assurance? 8



Aleatory and Epistemic Uncertainty in Models

• In much scientific modeling, the aleatory uncertainty is

captured conditionally in a model with parameters

• And the epistemic uncertainty centers upon the values of

these parameters

• As in the coin tossing example: ph is the parameter

John Rushby, SR I What Is S/W Assurance? 9



Back To The Main Thread

John Rushby, SR I What Is S/W Assurance? 10



Measuring/Predicting Software Reliability

• For pfds down to about 10−4, it is feasible to measure

software reliability by statistically valid random testing

• But 10−9 would need 114,000 years on test

• So how do we establish that a piece of software is adequately

reliable for a system that requires, say, 10−6?

• Standards for system security or safety (e.g., Common

Criteria, DO178B) require you to do a lot of V&V

◦ e.g., 57 V&V “objectives” at DO178B Level C (10−5)

• And you have to do more for higher levels

◦ 65 objectives at DO178B Level B (10−7)

◦ 66 objectives at DO178B Level A (10−9)

• What’s the connection between amount of V&V (mostly

focused on correctness) and degree of software reliability?

John Rushby, SR I What Is S/W Assurance? 11



Aleatory and Epistemic Uncertainty for Software

• The amount of correctness-based V&V relates poorly to

reliability

• Maybe it relates better to some other probabilistic property

of the software’s behavior

• We are interested in a property of its dynamic behavior

◦ There is aleatoric uncertainty in this property due to

variability in the circumstances of the software’s operation

• We examine the static attributes of the software to form an

epistemic estimate of the property

◦ More examination refines the estimate

• For what kinds of properties could this work?

John Rushby, SR I What Is S/W Assurance? 12



Perfect Software

• Property cannot be about some executions of the software

◦ Like how many fail

◦ Because the epistemic examination is static (i.e., global)

◦ This is the disconnect with reliability

• Must be a property about all executions, like correctness

• But correctness is relative to specifications, which themselves

may be flawed

• We want correctness relative to the critical claims

◦ Taken directly from the system’s assurance case

• Call that perfection

• Software that will never experience a failure in operation, no

matter how much operational exposure it has

John Rushby, SR I What Is S/W Assurance? 13



Possibly Perfect Software

• You might not believe a given piece of software is perfect

• But you might concede it has a possibility of being perfect

• And the more V&V it has had, the greater that possibility

• So we can speak of a (subjective) probability of perfection

• For a frequentist interpretation: think of all the software that

might have been developed by comparable engineering

processes to solve the same design problem

◦ And that has had the same degree of V&V

◦ The probability of perfection is then the probability that

any software randomly selected from this class is perfect

John Rushby, SR I What Is S/W Assurance? 14



Probabilities of Perfection and Failure

• Probability of perfection relates to correctness-based V&V

• But it also relates to reliability:

By the formula for total probability

P (s/w fails [on a randomly selected demand]) (1)

= P (s/w fails | s/w perfect) × P (s/w perfect)

+ P (s/w fails | s/w imperfect) × P (s/w imperfect).

• The first term in this sum is zero, because the software does

not fail if it is perfect (other properties won’t do)

• Hence, define

◦ pnp probability the software is imperfect

◦ pfnp probability that it fails, if it is imperfect

• Then P (software fails) ≤ pfnp × pnp

• This analysis is aleatoric, with parameters pfnp and pnp

John Rushby, SR I What Is S/W Assurance? 15



Epistemic Estimation

• To apply this result, we need to assess values for pfnp and pnp

• These are most likely subjective probabilities

◦ i.e., degrees of belief

• Beliefs about pfnp and pnp may not be independent

• So will be represented by some joint distribution F (pfnp, pnp)

• Probability of software failure will be given by the

Riemann-Stieltjes integral∫

0≤pfnp≤1

0≤pnp≤1

pfnp × pnp dF (pfnp, pnp). (2)

• If beliefs can be separated F factorizes as F (pfnp) × F (pnp)

• And (2) becomes Pfnp × Pnp

Where these are the means of the posterior distributions

representing the assessor’s beliefs about the two parameters

John Rushby, SR I What Is S/W Assurance? 16



Practical Application—Nuclear

• Traditionally, nuclear protection systems are assured by

statistically valid random testing

• Very expensive to get to pfd of 10−4 this way

• Our analysis says pfd ≤ Pfnp × Pnp

• They are essentially setting Pnp to 1 and doing the work to

assess Pfnp < 10−4

• Any V&V process that could give them Pnp < 1

• Would reduce the amount of testing they need to do

◦ e.g., Pnp < 10−1, which seems very plausible

◦ Would deliver the the same pfd with Pfnp < 10−3

• This could reduce the total cost of assurance

John Rushby, SR I What Is S/W Assurance? 17



Practical Application—Aircraft, Version 1

• No plane crashes due to software, and enough operational

exposure to validate software failure rate < 10−9

• Aircraft software is assured by V&V processes such as

DO-178B Level A

• They do a massive amount of all-up testing but do not take

assurance credit for this

• Our analysis says software failure rate ≤ Pfnp × Pnp

• So they are setting Pfnp = 1 and Pnp < 10−9

• Littlewood and Povyakalo show (under independence

assumption) that large number of failure-free runs shifts

assessment from imperfect but reliable toward perfect

• So flight software might indeed have probabilities of

imperfection < 10−9

• And DO-178B delivers this

John Rushby, SR I What Is S/W Assurance? 18



Practical Application—Aircraft, Version 2

• Although no crashes due to software, there have been several

incidents

• So actual failure rate may be only around 10−7

• Although they don’t take credit for all the testing they do,

this may be where a lot of the assurance is really coming from

• Our analysis says software failure rate ≤ Pfnp × Pnp

• So perhaps testing is implicitly delivering, say, Pfnp < 10−3

• And DO-178B is delivering only Pnp < 10−4

• I do not know which of Version 1 or 2 is true

• But they raise provocative questions

John Rushby, SR I What Is S/W Assurance? 19



Aside: Two Channel Systems

• Many safety-critical systems have two (or more) diverse

“channels” arranged in 1-out-of-2 (1oo2) structure

◦ E.g., nuclear shutdown

• A primary protection system is responsible for plant safety

• A simpler secondary channel provides a backup

• Cannot simply multiply the pfds of the two channels to get

pfd for the system

◦ Failures are unlikely to be independent

◦ E.g., failure of one channel suggests this is a difficult

case, so failure of the other is more likely

◦ Infeasible to measure amount of dependence

So, traditionally, difficult to assess the reliability delivered

John Rushby, SR I What Is S/W Assurance? 20



Two Channel Systems and Possible Perfection

• But if the second channel is simple enough to support a

plausible claim of possible perfection

◦ Its imperfection is conditionally independent of failures in

the first channel at the aleatory level

◦ Hence, system pfd is conservatively bounded by product

of pfd of first channel and probability of imperfection of

the second

◦ P (system fails on randomly selected demand ≤ pfdA × pnpB

• Epistemic assessment similar to previous case

◦ But may be more difficult to separate beliefs

◦ Conservative approximations are available

John Rushby, SR I What Is S/W Assurance? 21



Type 1 and Type 2 Failures in 1oo2 Systems

• So far, considered only failures of omission

◦ Type 1 failure: both channels fail to respond to a demand

• Must also consider failures of commission

◦ Type 2 failure: either channel responds to a nondemand

• Demands are events at a point in time; nondemands are

absence of demands over an interval of time

• So full model must unify these

• Details straightforward but lengthy

John Rushby, SR I What Is S/W Assurance? 22



Monitored Architectures

• One operational channel does the business

• Simpler monitor channel can shut it down if things look bad

• Used in airplanes

• Analysis is a variant of 1oo2:

◦ No Type 2 failures for operational channel

• Monitored architecture risk per unit time

≤ c1 × (M1 + FA × PB1) + c2 × (M2 + FB2|np × PB2)

where the Ms are due to mechanism shared between channels

• May provide justification for some of the architectures

suggested in ARP 4754

◦ e.g., 10−9 system made of Level C operational channel

and Level A monitor

John Rushby, SR I What Is S/W Assurance? 23



Monitors Do Fail

• Fuel emergency on Airbus A340-642, G-VATL,

8 February 2005

◦ Type 1 failure

• EFIS Reboot during spin recovery on Airbus A300 (American

Airlines Flight 903), 12 May 1997

◦ Type 2 failure

• Current proposals are for formally synthesized/verified

monitors for properties in the safety case

John Rushby, SR I What Is S/W Assurance? 24



Back To The Main Thread

John Rushby, SR I What Is S/W Assurance? 25



Application to Formal Verification

• We know DO-178B “works”

◦ 10−9 by Version 1, or 10−4 by Version 2

• But it’s expensive

• Formal verification can be cheaper

◦ Yes it can!

• But is often burdened by belief that it must support a claim

of absolute correctness and must therefore itself be infallible

◦ Leads to inappropriate allocation of resources or choice of

techniques (e.g., no decision procedures)

• We now know it needs to support a claim of possible

perfection

• So let’s see where that goes

John Rushby, SR I What Is S/W Assurance? 26



Formal Verification and the Probability of Perfection

• We want to assess Pnp for something like a monitor

• Context is an assurance case in which claims about a system

are justified by an argument based on evidence about the

system and its development

• Suppose part of the evidence is formal verification

• What is the probability of perfection of formally verified

software?

• Surely a function of the ways in which formal verification can

fail

◦ i.e., the hazards to formal verification

• So let’s enumerate these and look for techniques that can

provide assurance those hazards are eliminated

John Rushby, SR I What Is S/W Assurance? 27



The Basic Requirements For The Software Are Wrong

• This error is made before any formalization

• It seems to be the dominant source of errors in flight software

• But monitoring and backup software are built to

requirements taken directly from the safety case

◦ If these are wrong, we have big problems

• So this concern belongs at a higher level

John Rushby, SR I What Is S/W Assurance? 28



The Requirements etc. are Formalized Incorrectly

• Could also be the assumptions, or the design that are

formalized incorrectly

• Formalization may be inconsistent

◦ i.e., meaningless

Can be eliminated using constructive specifications

◦ In a tool-supported framework

◦ That guarantees conservative extension

But that’s not always appropriate

◦ Prefer to state assumptions as axioms

◦ Consistency can then be guaranteed by exhibiting a

constructive model (interpretation)

◦ PVS can do this

• So we can eliminate concern about inconsistency

John Rushby, SR I What Is S/W Assurance? 29



The Requirements etc. are Formalized Incorrectly (ctd.)

• Formalization may be consistent, but wrong

• Formal specifications that have not been subjected to

analysis are no more likely to be correct than programs that

have never been run

◦ In fact, less so: engineers have better intuitions about

programs than specifications

• Should challenge formal specifications

◦ Prove putative theorems

◦ Get counterexamples for deliberately false conjectures

◦ Directly execute them on test cases

• Social process operates on widely used theories

• In my experience, incorrect formalization is the dominant

source of errors in formal verification

◦ There are papers on errors in my specifications

John Rushby, SR I What Is S/W Assurance? 30



The Requirements etc. are Formalized Incorrectly (ctd. 2)

• Even if a theory or specification is formalized incorrectly, it

does not necessarily invalidate all theorems that use it

• Only if the verification actually exploits the incorrectness will

the validity of the theorem be in doubt

◦ Even then, it could still be true, but unproven

• Some verification systems identify all the axioms and

definitions on which a formally verified conclusion depends

◦ PVS does this

If these are correct, then logical validity of the verified

conclusion follows by soundness of the verification system

◦ Can apply special scrutiny to them

• So concern about incorrect formalization can be managed

John Rushby, SR I What Is S/W Assurance? 31



The Formal Specification and Verification is

Discontinuous or Incomplete

• Discontinuities arise when several analysis tools are applied in

the same specification

◦ e.g., static analyzer, model checker, timing analyzer

Concern is that different tools ascribe different semantics

• Increasing issue as specialized tools outstrip monolithic ones

◦ Need integrating frameworks such as a tool bus

• Most significant incompleteness is generally the gap between

the most detailed model and the real thing

◦ Algorithms vs. code, libraries, OS calls

That’s one reason why we still need testing

◦ Driven from the formal specification

◦ Cf. penetration tests for security: probe the assumptions

• Concerns about incompleteness need to be managed

John Rushby, SR I What Is S/W Assurance? 32



Unsoundness In the Verification System

• All verification systems have had soundness bugs

• But none have been exploited to prove a false theorem

• Many efforts to guarantee soundness are costly

◦ e.g., reduction to elementary steps, proof objects

◦ What does soundness matter if you cannot do the proof?

• A better approach is KOT: the Kernel Of Truth (Shankar)

◦ A ladder of increasingly powerful verified checkers

◦ Untrusted prover leaves a trail, blessed by verified checker

◦ More powerful checkers guaranteed by one-time check of

its verification by the one below

◦ The more powerful the verified checker, the more

economical the trail can be (little more than hints)

• So concern about unsoundness can be reduced

John Rushby, SR I What Is S/W Assurance? 33



Example

• Suppose we can get Pfnp < 10−3 by testing, want Pnp of 10−3

◦ So system will then be < 10−6

• Through sufficiently careful and comprehensive formal

challenges, it is plausible an assessor can assign a subjective

posterior probability of imperfection on the order of 10−3 to

the formal statements on which a formal verification depends

• Through testing and other scrutiny, a similar figure can be

assigned to the probability of imperfection due to

discontinuities and incompleteness in the formal analysis

• By use of a verification system with a trusted or verified

kernel, or trusted, verified, or diverse checkers, assessor can

assign probability of 10−4 or smaller that the theorem prover

incorrectly verified the theorems that attest to perfection

• We’re done!

John Rushby, SR I What Is S/W Assurance? 34



Discussion

• These numbers are feasible and plausible

◦ Really? Why 10−3 and not 10−2 or 10−4?

◦ Need to develop basis for numerical estimates

◦ If you believe my analysis, historical record suggests

DO-178B Level A does justify very strong estimates

• Formal methods and their tools do not need to be held to

(much) higher standards than the systems they assure

• Remember Fetzer’s jeremiad?

• This is the first analysis that supports a measured response

John Rushby, SR I What Is S/W Assurance? 35



Conclusion

• Probability of perfection is a radical and valuable idea

◦ It’s due to Bev Littlewood

• Provides the bridge between correctness-based verification

activities and probabilistic claims needed at the system level

• Relieves formal verification, and its tools, of the burden of

infallibility

◦ Allows rational allocations of resources to hazards

• Could help in rebalancing the assurance activities at higher

EALs of the Common Criteria

• Likely to work well in an assurance case framework

• Explains what sofware assurance is

John Rushby, SR I What Is S/W Assurance? 36


