
An Evidential Tool Bus

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–1

Formal Methods Integration

• No one notation, method, tool, or technology

solves all problems

• Sometimes we need to make a selection

• And sometimes we need to use several in combination

• How to make multiple state of the art tools work together?

◦ Want an architecture for tool integration that can be

deployed today

◦ But that will work with tools of 10, 15 years hence

• Note, I’m focused on tools and analysis

• I’ll describe past and present, and a proposal for the future

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–2

Prehistory: No mechanized Tools

• Can use ad-hoc

combinations of notations

and methods

• Integration is informal,

and best kept that way

• Little point in worrying

about the fine details of

semantic compatibility

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–3

Industrialization: Independent Tools

• Prehistorical notations

and methods become

supported by tools

• Typecheckers, static

analyzers, theorem

provers, model checkers

• Can continue to use

ad-hoc combinations:

e.g., model check before

you prove

• And more integrated

ones: e.g., prove an

abstraction that can be

model checked

• Integration is still informal

• Managed by the human

user

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–4

20th Century: Tools That Integrate Many Components

• A front end

◦ Typically an

interactive theorem

prover

• Manages several backends

◦ Decision procedures

◦ Model checkers

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–5

Simple Backend Architecture

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–6

Two Kinds of Backends

Endgame Integrated

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–7

The Simple Case: Endgame Verifiers

• A higher level proof manager calls components (typically,

decision procedures) to discharge subgoals

• Components return only verified or unverified

◦ Embellishments: proof objects and counterexamples

• But the information returned on failure does not guide the

higher-level proof search

◦ Other than to cause it to try something else

◦ Hence endgame verifiers

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–8

Endgame Verifier Examples

1979: Stanford Pascal Verifier and STP used decision

procedures for combinations of theories including arithmetic

(STP gave rise to Ehdm, then PVS)

1995: PVS used a BDD-based symbolic model checker

1999: PVS used a predicate abstractor

2000: PVS used Mona for WS1S

Not only did theorem provers use model checkers as backends,

some model checkers grew a front-end theorem prover

1998: Cadence SMV had a proof assistant that generated

model checking subproblems by abstraction and composition

And some other systems used an entire interactive theorem

prover for the endgame

1999: VSDITLU: used PVS backend to check side conditions

on Symbolic Definite Integral Table Look-Up in Maple

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–9

Integrating Endgame Verifiers

It’s pretty simple

• Provide higher level proof strategies that decompose proof

goals into subgoals that can be steered towards the

competence of the endgame verifier(s)

• Provide a recognizer for proof goals within the competence

of an endgame verifier

• Provide glue code to translate suitable proof goals into the

input of an endgame verifier and to interpret its output

Many classes of endgame verifiers are being honed through

competition

• Improves performance (be careful)

• Standardizes interfaces

• FO provers, BDD packages, SAT solvers, SMT solvers

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–10

When Endgame Is Not Enough

• When you need interaction across multiple backends

• Or when you need massive interaction between front and

back ends

• Example: fault-tolerant real-time systems

Fault tolerance: case explosion; Needs BDDs or SAT

Real time: continuous time; needs real arithmetic or timed

automata

Need tight interaction between these: loose combination will

not do it

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–11

Recap: Two Kinds of Backends

Endgame Integrated

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–12

A Difficult Case: Tightly Integrated Backends

• Endgame verifiers are easy to integrate because they do not

interact with higher level proof search (nor with each other)

• In fact, they are barely integrated

• Tight integration is much harder

• Classic Boyer-Moore 1986 paper describes tight integration

of linear arithmetic decision procedure with Nqthm

◦ Two pages of code for endgame decision procedure

◦ Became 60 for integrated version

• PVS takes an intermediate path

◦ Decision procedures are integrated with the rewriter

◦ And used in simplification

• A tractable case is the integration of decision procedures

with each other . . .

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–13

The Present Day

Three trends:

• Evolved (internally

integrated) backends

• Scriptable components

• Customized integrations

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–14

Evolution of Endgame Verifiers

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–15

Inside an Evolved Endgame Verifier

SAT

SMT Solver

ARRAYS

EQUALITY

ARITH

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–16

Inside an Evolved Endgame Verifier

• Individual decision procedures decide conjunctions of

formulas in their decided theories

• Combinations of decision procedures (using, e.g.,

Nelson-Oppen or Shostak methods) decide conjunctions over

the combined theories

• What if we have richer propositional structure

◦ E.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

◦ (A ∨ B) ∧ (C ∨ D) ∧ E

• Get a solution from a SAT solver (if none, we are done)

◦ E.g., A, D, E

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–17

Inside an Evolved Endgame Verifier (ctd)

• Restore the interpretation of variables and send the

conjunction to the core decision procedure

◦ E.g., x ≤ y ∧ y ≤ x ∧ x 6= y

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment—but isn’t it

expensive to keep doing this?

• Yes, so first, do a little bit of work to find fragments that

explain the unsatisfiability, and send these back to the SAT

solver as additional constraints (i.e., lemmas)

◦ A ∧ D ⊃ ¬E

• Iterate to termination

• We call this “lemmas on demand” or “lazy theorem proving”

• it works really well

• Yields satisfiability modulo theories (SMT) solvers—e.g., ICS

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–18

Evolution of Endgame Verifiers (ctd.)

• One path grows the endgame verifier and specializes and

shrinks the higher-level proof manager

• Example:

◦ SAL language has a type system similar to PVS, but is

specialized for specification of state machines

(as transition relations)

◦ The SAL infinite-state bounded model checker uses an

SMT solver (ICS), so handles specifications over reals and

integers, uninterpreted functions

◦ Often used as a model checker (i.e., for refutation)

◦ But can perform verification with a single higher level

proof rule: k-induction (with lemmas)

◦ Note that counterexamples help debug invariant

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–19

Bounded Model Checking

• Given a system specified by initiality predicate I and

transition relation T on states S, finding a counterexample of

length k for P (or test case for ¬P) requires a sequence of

states s0, . . . , sk such that

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬P (sk)

• Given a Boolean encoding of I and P (i.e., a circuit), this is

a propositional satisfiability (SAT) problem

• If T and P are defined over infinite types such as reals,

integers, datatypes, or use symbolic functions or constants,

then need to solve the BMC SAT problem over these theories

• That’s what an SMT solver does

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–20

k-Induction

• Ordinary inductive invariance (for P):

Basis: I(s0) ⊃ P (s0)

Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k:

Basis: No counterexample of length k or less

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Is complete for some problems (e.g., timed automata)

• Fast, too, e.g., Fischer with 43 processes

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–21

Performance of Evolved Endgame Verifiers

• Biphase Mark Protocol is an algorithm for asynchronous

communication

◦ Clocks at either end may be skewed and have different

rates, jitter

◦ So have to encode a clock in the data stream

◦ Used in CDs, Ethernet

◦ Verification identifies parameter values for which data is

reliably transmitted

• Verified in ACL2 by J Moore (1994)

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

◦ Required 37 invariants, 4,000 proof steps, hours of prover

time to check

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–22

Biphase Mark Protocol

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–23

Performance of Evolved Endgame Verifiers (ctd.)

• Brown and Pike recently did it with sal-inf-bmc

◦ Used timeout automata to model timed aspects

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Three lemmas proved automatically with 1-induction,

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Additional lemma proved with 13-induction

◦ Theorem proved with 3-induction (7 disjuncts)

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–24

Integrated Decision Procedures and SMT Solvers

• Long line of research on integrating decision procedures for

separate theories so they decide the combined theory

◦ Starts with Nelson-Oppen and Shostak methods

◦ Activity continues today: theory, presentation,

verification, and pragmatics

• Recently extended through integration with SAT solving to

yield SMT solvers

◦ Interactions are intense (millions per verification)

◦ Information from decision procedures must be used

efficiently to prune SAT search

◦ Impacts design of individual decision procedures

◦ Engineering choices explored through benchmarking and

competition

• Homogeneous integration: not quite solved, but on the way

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–25

Scriptable Components

• Many backend components have standardized APIs

• Can often create special instantiations with a wrapper

• Several modern model checkers are scriptable

• Have a core API implemented efficiently (e.g., in C)

• E.g., Bogor, SAL

◦ SAL model checkers are scripts in Scheme over this API

◦ Easy to create new capabilities by writing new scripts

◦ E.g., sal-atg automated test generator

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–26

Core Of The SAL-ATG Test Generation Script

(define (extend-search module goal-list

path scan prune innerslice start step stop)

(let ((new-goal-list (if prune (goal-reduce scan goal-list path)

(minimal-goal-reduce scan goal-list path))))

(cond ((null? new-goal-list) (cons ’() path))

((> start stop) (cons new-goal-list path))

(else

(let* ((goal (list->goal new-goal-list module))

(mod (if innerslice

(sal-module/slice-for module goal) module))

(new-path

(let loop ((depth start))

(cond ((> depth stop) ’())

((sal-bmc/extend-path

path mod goal depth ’ics))

(else (loop (+ depth step)))))))

(if (pair? new-path)

(extend-search mod new-goal-list new-path scan

prune innerslice start step stop)

(cons new-goal-list path)))))))

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–27

Outer Loop Of The SAL-ATG Test Generation Script

(define (iterative-search module goal-list

scan prune slice innerslice bmcinit start step stop)

(let* ((goal (list->goal goal-list module))

(mod (if slice (sal-module/slice-for module goal) module))

(path (if bmcinit

(sal-bmc/find-path-from-initial-state

mod goal bmcinit ’ics)

(sal-smc/find-path-from-initial-state mod goal))))

(if path

(extend-search mod goal-list path scan prune

innerslice start step stop)

#f)))

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–28

Example Shift Scheduler

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
 to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
 to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
 to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
 to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
 to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
 to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–29

Customized Integrations

Static analyzers (e.g., SDV) often integrate many components

For example, software model checkers generally have:

• C front end with CFG analyzer

• Predicate abstractor

◦ Which uses decision procedures

◦ And possibly a model checker

• Model checker and counterexample generator

• Counterexample concretizer and refinement generator

◦ Which uses Craig interpolation

And a control loop around the whole lot

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–30

Customized Integrations (ctd.)

• The components exchange more than just proof judgments

◦ Traces

◦ Counterexamples

◦ Abstractions

◦ Sets of predicates

• And interact in more complex ways than front end/backend

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–31

The Future

• Expect many different

high-performance

components

• And many scripting

options

• And lots of cool ideas for

using them

• We need an architecture!

• That will remain good for

15 years or more

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–32

Integration of Heterogeneous Components

• Modern formal methods tools do more than verification

• They also do refutation (bug finding)

• And test-case generation

• And controller synthesis

• And construction of abstractions and abstract interpretation

• And generation of invariants

• And . . .

• Observe that these tools can return objects other than

verification outcomes

◦ Counterexamples, test cases, abstractions, invariants

Hence, heterogeneous

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–33

Integration of Heterogeneous Components

• LAST (Xia, DiVito, Muñoz) generates MC/DC tests for

avionics code involving nonlinear arithmetic (with floating

point numbers, trigonometric functions etc.)

• Applied it to Boeing autopilot simulator

◦ Modules with upto 1,000 lines of C

◦ 220 decisions

• Generated tests to (almost) full MC/DC coverage in minutes

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–34

Structure of LAST

• It’s built on Blast (Henzinger et al)

◦ A software model checker, itself built of components

◦ Including CIL and CVC-Lite

• But extends it to handle nonlinear arithmetic using RealPaver

(a numerical nonlinear constraint unsatisfiability checker)

◦ Added 1,000 lines to CIL front end for MC/DC

◦ Added 2,000 lines to RealPaver to integrate with

CVC-Lite (Nelson-Oppen style)

◦ Changed 2,000 lines in Blast to tie it all together

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–35

A Tool Bus

• How can we construct these customized combinations and

integrations easily and rapidly?

• The integrations are coarse-grained (hundreds, not millions of

interactions per analysis), so they do not need to share state

• So we could take the outputs of one tool, massage it suitably

and pass it to another and so on

• A combination of XML descriptions, translations, and a

scripting language could probably do it

• Suitably engineered, we could call it a tool bus

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–36

From Backends to Bus

Backends Bus

• Bus is a federation of equals

• Theorem prover is just another component

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–37

But . . .

• But we’d need to know the names and capabilities of the

tools out there and explicitly to script the desired interactions

◦ And we’d be vulnerable to change

• Whereas I would like to exploit whatever is out there

◦ And in 15 years time there may be lots of things out there

• That is, I want the bus to operate declaratively

◦ By implicit invocation

• And I want evidence that supports the overall analysis

(i.e., the ingredients for a safety or assurance case)

• That is, I want a semantic integration

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–38

A Formal Tool Bus
• The data manipulated by tools on bus are formulas in logic

• In fact, they can be seen as formulas in a logic

◦ The Formal Tool Bus Logic

◦ Each tool operates on a sublogic

◦ Syntactic differences masked with XML wrappers

• No point in limiting the expressiveness of the tool bus logic

◦ Should be at least as expressive as PVS

? Higher order, with predicate, structural, and dependent

subtypes, abstract data types, recursive and inductive

definitions, parameterized theories, interpretations

◦ With structured representations for important cases

? State machines (as in SAL), counterexamples, process

algebras, temporal logics . . .

? Handled directly by some tools, can be expanded to

underlying semantics for others

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–39

Tool Bus Judgments

The tools on the bus evaluate and construct predicates over

expressions in the logic—we call these judgments

Parser: A is the AST for string S

Prettyprinter: S is the concrete syntax for A

Typechecker: A is a well-typed formula

Finiteness checker: A is a formula over finite types

Abstractor to PL: A is a propositional abstraction for B

Predicate abstractor: A is an abstraction for formula B wrt.

predicates φ

GDP: A is satisfiable

GDP: C is a context (state) representing input G

SMT: ρ is a satisfying assignment for A

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–40

Tool Bus Queries

• Tools publish their capabilities and the bus uses these to

organize answers to queries

Query: well-typed?(A)

Response: PVS-typechecker(...) |- well-typed?(A)

The response includes the exact invocation of the tool

concerned

• Queries can include variables

Query: predicate-abstraction?(a, B, φ)

Response:

SAL-abstractor(...) |- predicate-abstraction?(A, B, φ)

The tool invocation constructs the witness, and returns its

handle A

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–41

Tool Bus Operation

• The tool bus operates like a distributed datalog framework,

chaining on queries and responses

• Similar to SRI AIC’s Open Agent Architecture

◦ And maybe similar to MyGrid, Linda, . . . ?

• Can have hints, preferences etc.

• Tools can be local or remote

• Tools can run in parallel, in competition

• The bus needs to integrate with version management

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–42

Scripting

Three levels of scripting

Tools:

• Tools should be scriptable

• Better functionality, performance than wrappers

• E.g., SAL model checkers are Scheme scripts over an API

• Test generator is another script over the same API

Wrappers:

• Some functionality can be achieved by a little

programming and maybe some tool invocation

Tool Bus:

• Scripts are chains of judgments

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–43

Tool Bus Scripts

• Example

◦ If A is a finite state machine and P a safety property,

then a model checker can verify P for A

◦ If B is a conservative abstraction of B, then verification of

B verifies A

◦ If A is a state machine, and B is predicate abstraction for

A, then B is conservative for A

• How do we know this is sound?

• And that we can trust the computations performed by the

components?

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–44

An Evidential Tool Bus

• Each tool should deliver evidence for its judgments

◦ Could be proof objects (independently checkable trail of

basic deductions)

◦ Could be reputation (“Proved by PVS”)

◦ Could be diversity (“using both ICS and CVC-Lite”)

◦ Could be declaration by user

? “Because I say so”

? “By operational experience”

? “By testing”

• And the tool bus assembles these (on demand)

• And the inferences of its own scripts and operations

• To deliver evidence for overall analysis that can be considered

in a safety or assurance case—hence evidential tool bus

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–45

The Evidential Tool Bus

• There should be only one evidential tool bus

• Just like only one WWW

• How to do it?

◦ Standards committee?

◦ Competition and cooperation!

• Probably not difficult to integrate multiple buses

◦ Need agreement on ontologies

◦ Fairly minimal glue code to link them together

• We’ll be building one

◦ Initially to integrate PVS and SAL

◦ And to reconstruct Hybrid-SAL

• Will appreciate your input, and hope you’ll like to use it, and

to attach your tools

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–46

Thank you!

• And thanks to Bruno Dutertre, Grégoire Hamon,

Leonardo de Moura, Sam Owre, Harald Rueß, Hassen Säıdi,

N. Shankar, Maria Sorea, and Ashish Tiwari

• You can get our tools and papers from http://fm.csl.sri.com

John Rushby, SR I ICFEM’05 An Evidential Tool Bus–47

