
Just-In-Time Certification

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I Just-In-Time Certification: 1

Certification

• Provides assurance that deploying a given system does not

pose an unacceptable risk of adverse consequences

• Certification methods should be effective (i.e., they work)

and credible (i.e., they work for the reason we think they do)

• Current methods have been effective, but are they credible?

• Current methods of assurance explicitly depend on

◦ Standards and regulations

◦ Rigorous examination of the whole, finished system

And implicitly on

◦ Conservative practices

◦ Safety culture

• All of these are changing

John Rushby, SR I Just-In-Time Certification: 2

Overview

• Scientific certification

• Compositional certification

• Just-in-time certification

John Rushby, SR I Just-In-Time Certification: 3

A Recent Incident

• Fuel emergency on Airbus A340-642, G-VATL, on 8 February

2005 (AAIB SPECIAL Bulletin S1/2005)

• Toward the end of a flight from Hong Kong to London: two

engines shut down, crew discovered they were critically low

on fuel, declared an emergency, landed at Amsterdam

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; they cross-compare and the “healthiest” one

drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• Further backup systems were not invoked because the

FCMCs indicated they were not both failed

John Rushby, SR I Just-In-Time Certification: 4

Implicit and Explicit Factors

• See also ATSB incident report for in-flight upset of Boeing

777, 9M-MRG (Malaysian Airlines, near Perth Australia)

• Maybe effectiveness of current certification methods depends

on implicit factors such as safety culture, conservatism

• Current business models are leading to a loss of these

◦ Outsourcing, COTS, complacency, innovation

• Surely, a credible certification regime should be effective on

the basis of its explicit practices

• All assurance is based on arguments that purport to justify

certain claims, based on documented evidence

• There are two approaches to assurance: standards-based,

and goal-based

John Rushby, SR I Just-In-Time Certification: 5

The Standards-Based Approach to Software Certification

• E.g., airborne s/w (DO-178B), security (Common Criteria)

• Applicant follows a prescribed method (or processes)

◦ Delivers prescribed outputs

? e.g., documented requirements, designs, analyses, tests

and outcomes, traceability among these

• Standard usually defines only the evidence to be produced

• The claims and arguments are implicit

• Hence, hard to tell whether given evidence meets the intent

• Works well in fields that are stable or change slowly

◦ Can institutionalize lessons learned, best practice

? e.g. evolution of DO-178 from A to B to C

• But less suitable with novel problems, solutions, methods

John Rushby, SR I Just-In-Time Certification: 6

The Goal-Based Approach to Software Certification

• E.g., air traffic management (CAP670 SW01), UK aircraft

• Applicant develops an assurance case

◦ Whose outline form may be specified by standards or

regulation (e.g., MOD DefStan 00-56)

◦ Makes an explicit set of goals or claims

◦ Provides supporting evidence for the claims

◦ And arguments that link the evidence to the claims

? Make clear the underlying assumptions and judgments

? Should allow different viewpoints and levels of detail

• The case is evaluated by independent assessors

◦ Explicit claims, evidence, argument

John Rushby, SR I Just-In-Time Certification: 7

Multiple Forms of Evidence

• More evidence is required at higher Levels/EALs/SILs

• What’s the argument that these deliver increased assurance?

• Generally an implicit appeal to diversity

◦ And belief that diverse methods fail independently

◦ Not true in n-version software, should be viewed with

suspicion here too

• Need to know the arguments supported by each item of

evidence, and how they compose

• Want to distinguish rational multi-legged cases from nervous

demands for more and more and . . .

◦ Bayesian Belief Networks (BBNs) can formalize these

John Rushby, SR I Just-In-Time Certification: 8

A Science of Certification

• Certification is ultimately a judgment

• But the judgment should be based on rational argument

supported by adequate explicit and credible evidence

• A Science of Certification would be about ways to develop

that argument and evidence

• Favor goal-based over standards-based approaches

◦ At the very least, expose and examine the claims,

arguments and assumptions implicit in standards

• Be wary of demands for more and more evidence, with

implicit appeal to diversity and independence

◦ Instead favor explicit multi-legged cases

• Use formal (“machinable”) design descriptions

◦ Can then use automated analysis methods

John Rushby, SR I Just-In-Time Certification: 9

Systems and Components

• The FAA certifies airplanes, engines and propellers

• Components are certified only as part of an airplane or engine

• That’s because it’s the interactions that matter and it’s not

known how to certify these compositionally

• So no alternative to looking at the whole system

• But modern engineering and business practices use massive

subcontracting and component-based development that

provide little visibility into subsystem designs

• Strong case for “pre-certification” of components

Business case: Component vendors want it (cf. IMA)

Certification case: simple extensions to current approach

are too onerous or lack credibility (cf. DO-297)

John Rushby, SR I Just-In-Time Certification: 10

Compositional Analysis

• Computer scientists have ways to do compositional

verification of programs—e.g., prove

◦ Program A guarantees P if environment ensures Q

◦ Program B guarantees Q if environment ensures P

Conclude that A ||B guarantees P and Q

• Assumes programs interact only through explicit

computational mechanisms (e.g., shared variables)

• Software and systems can interact through other mechanisms

◦ Computational context: shared resources

◦ Noncomputational mechanisms: the controlled plant

• So compositional certification is harder than verification

John Rushby, SR I Just-In-Time Certification: 11

Unintended Interaction Through Shared Resources

• This must not happen

• Need an integration framework (i.e., an architecture) that

guarantees composability and compositionality

Composability: properties of a component are preserved

when it is used within a larger system

Compositionality: properties of a system can be derived

from those of its components

• This is what partitioning is about

• Or separation in a MILS security context

John Rushby, SR I Just-In-Time Certification: 12

Composability

Partitioning ensures composability of components

• Properties of a collection of interacting components are

preserved when they are placed (suitably) in the environment

provided by a collection of partitioning mechanisms

• Hence partitioning does not get in the way

• And the combination is itself composable

• Hence components cannot interfere with each other nor with

the partitioning mechanisms

John Rushby, SR I Just-In-Time Certification: 13

Additivity

Partitioning mechanisms compose with each other additively

• e.g., partitioning(kernel) + partitioning(network) provides

partitioning(kernel + network)

• There is an asymmetry: partitioning network stacks and file

systems and so on run as clients of the partitioning kernel

Partitioning (composability and additivity) make the world safe

for compositional reasoning

John Rushby, SR I Just-In-Time Certification: 14

Unintended Interaction Through The Plant

• The notion of interface must be expanded to include

assumptions about the noncomputational environment

(i.e., the plant)

◦ Cf. Ariane V failure (due to differences from Ariane IV)

• Compositional reasoning must extend to take the plant into

account (i.e., composition of hybrid systems)

• Control engineers do this, computer scientists are less

familiar with it

◦ Assumption generation is attractive

• Must also consider response to failures

◦ Avoid domino effect

◦ Control number of cases (otherwise exponential)

John Rushby, SR I Just-In-Time Certification: 15

Compositional Certification

• This is a big research challenge

• It demands clarification of the difference between verification

and certification, and the role of partitioning

• And explication of what constitutes an interface to a certified

component

◦ e.g., the notion of interface automata

◦ The certification data is in terms of the interface only

◦ You cannot look inside when analysing compositions

• Compositional certification should extend to incremental

certification, reuse, and modification

• It’s also the big challenge for regulatory agencies

◦ A completely different way of doing business

John Rushby, SR I Just-In-Time Certification: 16

Late(r) Binding

• More and more functionality is being determined later than

the time at which certification is performed

• E.g., kernel configuration determined at load time

◦ 15 KSLOC in certified kernel

◦ 50 KSLOC of XML for configuration

• SOA and self-assembly

• AI planning

• Runtime adaptation and learning

• How can these be certified?

John Rushby, SR I Just-In-Time Certification: 17

Monitoring and Synthesis

• Certification rests on consideration of reachable states

• Scientific certification uses formal methods to calculate and

analyze these at design time

• Instead, we could use these methods to construct monitors

that check behavior at runtime

◦ www.runtime-verification.org

• Or to synthesize controllers to generate safe behavior

◦ Ramage and Wonham: controller synthesis

John Rushby, SR I Just-In-Time Certification: 18

Runtime Assurance

• Instead of design-time analysis of implementation

• Use run-time monitoring or synthesis of behavior from models

◦ Typically with a receding horizon (bounded lookahead)

◦ Fewer possibilities to examine, known current state

• Each component makes its model available to others,

pursues its own goals while ensuring that possible moves by

others cannot trap it into following a bad path, or cause

violation of safety

◦ Analyzed as a game: guarantee a winning strategy

• Instead of using model checking and other formal methods

for analysis, we use them for monitoring and synthesis

John Rushby, SR I Just-In-Time Certification: 19

Just-In-Time Certification

• Some of the verification and certification activity is moved

from design-time to run-time

• We trust automated verification methods for analysis, so why

not trust them for monitoring and synthesis?

◦ Certification examines the models, trusts the synthesis

• Will need to consider time-constrained synthesis

◦ Anytime algorithms

◦ Seek improvements on safe default

• Some analysis methods can deliver a certificate (e.g., a

proof), used for synthesis that would truly be just-in-time

certification!

John Rushby, SR I Just-In-Time Certification: 20

A Research Agenda

• A Science of Certification

◦ Or the science for certification

• Specification and verification of integration frameworks

◦ Partitioning, separation, buses, kernels

• High-performance automated verification for strong

properties of model-based designs

◦ Mostly infinite state and hybrid systems

And automation of related processes (test generation, FTA)

• Compositional certification

◦ Composition of hybrid systems

• Tool qualification

◦ Evidence management

• Just-in-time certification and runtime synthesis

John Rushby, SR I Just-In-Time Certification: 21

