## SRI, 8 Feb 2008

# Bayesian Belief Nets: <br> Demo and Introduction to Hugin 

John Rushby<br>Computer Science Laboratory<br>SRI International<br>Menlo Park CA USA

## Overview

- Background and motivation
- Example 1: multi-legged assurance cases
- Example 2: car crash
- Example 3 (develop the model, GUI details): jury fallacy


## Background and Motivation

- Suppose we have test and verification results for a system and want to use these to certify it
- We want to be sure the system is good, i.e., its probability of being correct is very close to 1
- To talk about it being correct, we need specification
- And to test it, we need an oracle
- These also have some probability of being correct
- And there will be relationships among them
- E.g., P(oracle is correct) surely depends on $P$ (specification is correct)
- I.e., the conditional probabilities $P$ (oracle correct \| spec correct) and $P$ (oracle correct $\mid \neg$ spec correct) are of interest


## Bayesian Models

- We can use experience and expert judgement to propose values for these conditional probabilities
- This is a model in this context
- Most natural to use subjective (i.e., Bayesian) interpretation of probabilities
- Then we can feed in known or assumed values for some of the individual probabilities
- E.g., we know the test results
- And let them ripple through
- It's easy to ripple forwards through the conditional probabilities

$$
\text { - } P(B)=P(B \mid A) \times P(A)+P(B \mid \neg A) \times P(\neg A)
$$

- To go backward, we use Bayes' rule
- $P(A \mid B)=P(B \mid A) \times P(A) / P(B)$

John Rushby, SRI

## Bayesian Belief Nets (BBNs)

- Now, we have several variables in our model, so we will have complex conditional probabilities like $P(A|B \wedge C| \neg D \vee E)$
- It is really hard to do Bayes rule over large collections of terms like this
- We simplify things if we can state what variables are unrelated
- A Bayesian Belief Net (BBN) is a graphical way to do this
- Just indicate the direct relationships as a graph


## A BBN Example



Z: System Specification
O: Test Oracle
S: System's true quality
T: Test results
V: Verification outcome
C: Certification decision

## BBN Tools

- A BBN model is a graph, plus conditional probability tables for each variable in terms of its direct ancestors
- E.g., $P(O \mid Z)=0.999, P(O \mid \neg Z)=0.05$
- A BBN tool gives us a GUI to enter these, and a computational engine that lets us do "what if" experiments, like a spreadsheet
- My understanding is that there was some breakthrough a decade or so ago that made the computations feasible
- Hugin is one such tool, Hugin-Lite is the free version (models are limited in size)
- So let's try it


## Multi-Legged Assurance Cases

- Littlewood and Wright analyzed this example analytically
- More sophisticated interpretation of some of the variables
- Testing delivers $\mathrm{X} \%$ confidence system is $Y \%$ correct
- Found paradoxical results for some versions of the model
- E.g., more test success, less system correctness
- Because it raises doubts about the test oracle
- They showed these paradoxes disappear when one of the legs has the characteristic of (idealized) verification
- I.e., $Y=100$ (perfection of the system)
- But the verification itself could still be flawed
- My interest: get a numerical feel for these issues, esp. where verification is against a weak spec (e.g., static analysis)
- And in feasibility of BBNs for real certifications


## Feasibility for Real: Car Crash Example

- Single car accident, hit a tree at 3am (in Holland)
- The female driver was sitting on the ground, next to the car, and stated three times that "he" had pulled the handbrake
- A badly injured male passenger was sitting on the front passenger seat
- The handbrake was in pulled position
- The car had been driven through a curve in the road right before it crashed
- There were tire marks from locked wheels in the curve of the road
- There were tire marks from a skidding car; the marks led to the place of the accident
- Neither driver nor passenger could remember anything

John Rushby, SRI

## Car Crash Example

- Under Dutch Iaw, the driver is assumed responsible in a single-car accident
- But this one was challenged in court
- Driver said passenger caused accident by pulling handbrake
- Passenger said driver caused it by speeding
- Analyzed in Hugin by P. E. M. Huygen (Computer/Law Institute, Amsterdam)
- Quite widely cited
- I thought I'd type it in


## Car Crash Example: Issues

- What I found
- Some of the probability tables make no sense
- Some of the entries are missing
- Cannot reproduce the quoted values
- Might just be a careless author
- Plus, can experiment with different parameters
- But I have doubts about the actual model
- E.g,, the skidmarks that indicate locked wheels should be a child of locking, not speeding
- The more you look at it, the more different, plausible, ways there are for building the model
- There is a nuke in Korea whose certification used a BBN with 80 variables
John Rushby, SRI


## On the Other Hand: Jury Fallacy

- The jury, in a serious crime case, has found the defendant not guilty
- It is subsequently revealed that the defendant had a previous conviction for a similar crime
- Does the subsequent evidence of a previous similar conviction make you less confident that the jury were correct in their verdict?
- Most people think it does


## Jury Fallacy

- Just building a model raises valuable issues
- In particular, to get to trial, the defendant had to be charged
- The prosecutor's decision to press charges is surely influenced by their knowledge of previous convictions ("round up the usual suspects")
- This could be a determining factor
- BBNs allow us to explore it
- If anyone wants to learn how to operate Hugin in more detail, we can build a model for this example

