
HCMDSS/MD PnP, Boston, 26 June 2007

Accidental Systems

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Accidental Systems: 1

Normal Accidents

• The title of an influential book by Charles Perrow (1984)

• One of the Three Mile Island investigators

◦ And a member of recent NRC Study “Software for

Dependable Systems: Sufficient Evidence?”

A sociologist, not a computer scientist

• Posits that sufficiently complex systems can produce

accidents without a simple cause

• It’s the system that fails

• Perrow identified interactive complexity and tight coupling as

important factors

John Rushby, SR I Accidental Systems: 2

AFTI F16 Flight Test, Flight 36

• Control law problem led to a departure of three seconds

duration

• Side air data probe blanked by canard at high AOA

• Wide threshold passed error, different channels took different

paths through control laws

• Sideslip exceeded 20◦, normal acceleration exceeded −4g,

then +7g, angle of attack went to −10◦, then +20◦, aircraft

rolled 360◦, vertical tail exceeded design load, failure

indications from canard hydraulics, and air data sensor

• Pilot recovered, but analysis showed this would cause

complete failure of DFCS and reversion to analog backup for

several areas of flight envelope

John Rushby, SR I Accidental Systems: 3

AFTI F16 Flight Test, Flight 44

• Unsynchronized operation, skew, and sensor noise led each

channel to declare the others failed

• Simultaneous failure of two channels not anticipated

So analog backup not selected

• Aircraft flown home on a single digital channel

(not designed for this)

• No hardware failures had occurred

John Rushby, SR I Accidental Systems: 4

Analysis: Dale Mackall, NASA Engineer

AFTI F16 Flight Test

• Nearly all failure indications were not due to actual hardware

failures, but to design oversights concerning unsynchronized

computer operation

• Failures due to lack of understanding of interactions among

◦ Air data system

◦ Redundancy management software

◦ Flight control laws (decision points, thumps, ramp-in/out)

John Rushby, SR I Accidental Systems: 5

You Think Current Commercial Planes Do Better?

• Fuel emergency on Airbus A340-642, G-VATL,

8 February 2005

◦ AAIB SPECIAL Bulletin S1/2005

• In-flight upset event, 240 km north-west of Perth, WA,

Boeing 777-200, 9M-MRG, 1 August 2005

◦ Australian Transport Safety Bureau reference

Mar2007/DOTARS 50165

John Rushby, SR I Accidental Systems: 6

Interactive Complexity and System Failures

• We are pretty good at building and understanding

components

• But systems are about the interactions of components

◦ i.e., their emergent behavior

• We are not so good at understanding this

• Many interactions are unintended and unanticipated

• Some are the result of component faults

◦ Often multiple and latent

◦ And malfunction or unintended function rather than

loss of function

• But others are simply due to . . . complexity

John Rushby, SR I Accidental Systems: 7

Systems and Components

• The FAA certifies airplanes, engines and propellers

• Components are certified only as part of an airplane or engine

• That’s because it is not currently understood how to relate

the behavior of a component in isolation to its possible

behaviors in a system (i.e., in interaction with other

components)

• So you have to look at the whole system

John Rushby, SR I Accidental Systems: 8

Designed and Accidental Systems

• Many systems are created without conscious design

◦ By interconnecting separately designed components

◦ Or separate systems

These are accidental systems

• The interconnects produce desired behaviors

◦ Most of the time

• But may promote unanticipated interactions

◦ Leading to system failures or accidents

• PnP facilitates the construction of accidental systems

◦ E.g., blood pressure sensor connected to bed height

John Rushby, SR I Accidental Systems: 9

The Solution

• Is to discover and control or reduce or eliminate unintended

interactions

• It’s not known how to do that in general

• In designed, let alone in accidental systems

• But I’ll describe some partial techniques

John Rushby, SR I Accidental Systems: 10

Modes of Interactions

• Among computational components

• Through shared resources (e.g., the network)

• Through the controlled plant (the patient)

• Through human operators

• Through the larger environment

John Rushby, SR I Accidental Systems: 11

Interactions Among Computational Components

• Computer scientists know how to predict and verify the

combined behavior of interacting systems (sometimes)

• E.g., assume/guarantee reasoning

◦ If component A guarantees P assuming B ensures Q

◦ and component B guarantees Q assuming A ensures P

◦ Conclude that A ||B guarantees P and Q

Looks circular, but it is sound

• Can extend to many components

◦ Each treats the totality of all the others as its

environment, and ensures its own behavior is a subset of

the common environment

• Can be used informally

• Or formally: that is, using formal methods

John Rushby, SR I Accidental Systems: 12

Aside: Formal Methods

• These are ways of checking whether a property of a

computational system holds for all possible executions

• As opposed to testing or simulation

◦ These just sample the space of behaviors

Cf. x2 − y2 = (x − y)(x + y) vs. 5*5-3*3 = (5-3)*(5+3)

• Formal analysis uses automated theorem proving, model

checking, static analysis

• Exponential complexity: works best when property is simple

◦ E.g., static analysis for runtime errors

Or computational system is small or abstract

◦ E.g., a specification or model rather than C-code

John Rushby, SR I Accidental Systems: 13

Practical Assume-Guarantee Reasoning

• Develop a model or specification of your component

• And of its assumed environment

◦ Cf. controller/plant model in controller design

• The assumed environment can be made part of the

component specification

◦ Cf. interface automata (IA)

• An IA is more than a list of data types, it’s a state machine

• Can automatically synthesize monitors for IAs

• Can formally verify that a collection of components satisfy

each others IAs

• Can synthesize the weakest assumptions for which a

component achieves specified behavior (IA generation)

John Rushby, SR I Accidental Systems: 14

Tips To Reduce Interactive Complexity

• Send sensor samples with use-by date rather than timestamp

• For sensor fusion, send intervals rather than point estimates

• Define data wrt. an ontology, not just basic types

◦ E.g., raw output of blood pressure sensor vs. corrected

for bed height

• Critical things should not depend on less critical

◦ E.g., intervention for low blood pressure depends on

blood pressure which depends on bed height sensor

◦ So now the bed height sensor is as critical as the blood

pressure intervention or alarm

John Rushby, SR I Accidental Systems: 15

Interaction Through Shared Resources

• Cannot get an X-ray to the operating room because the

network is clogged with payroll

• Cannot send commands to the ventilator because the blood

pressure sensor has gone bad and is babbling on the bus

• Byzantine fault causes devices A and B to have inconsistent

estimates of the state of C, so they take inappropriate action

• The user interface gets into a loop and takes all the CPU

cycles, so actual device function stops

• Operator entry overflows its buffer and writes into part of

memory that affects something else

John Rushby, SR I Accidental Systems: 16

Partitioning

• Assume-guarantee reasoning about computational

interactions relies on there being no paths for interaction

other than those intended and considered

• But commodity operating systems and networks provide lots

of additional and unintended paths

• Typically, A and B get disrupted because X has gone bad and

the system did not contain its fault manifestations

• So safety- and security-critical functions in airplanes, cars,

military, nuclear etc. don’t use Windows, Ethernet, CAN etc.

• They use operating systems, buses that ensure partitioning

◦ IMA: Integrated Modular Avionics

◦ MILS: Multiple Independent Levels of Security

These make the world safe for assume-guarantee reasoning

John Rushby, SR I Accidental Systems: 17

Partitioning (ctd)

• Partitioning could become COTS with sufficient demand

• But current solutions are Draconian

◦ Strict time slicing

May be too restrictive for medical devices

• Certified to extraordinary levels

◦ IMA: failure rate of about 10−12/hour for 16 hours

◦ IMA uses DO-178B Level A, which corresponds to CC

EAL4

◦ High robustness security requires EAL6+ or EAL7

May be more than needed for medical devices

• Need an adequate partitioning guarantee for dynamic systems

John Rushby, SR I Accidental Systems: 18

Interaction Through The Controlled Plant

• In medical devices, that’s the patient’s body

• Device developers probably have controller and plant models

◦ Plant model may include only a few physiological

parameters

• Different devices have different plant models

◦ May be ignorant of the others’ parameters

• Yet will interact in actual use

• Obvious perils in normal but unmodeled interactions

• And in the presence of faults

• But also inferior outcomes from lack of beneficial interaction

◦ E.g., harmonic relation between heart and breathing rates

(Buchman)

John Rushby, SR I Accidental Systems: 19

Interaction Through The Controlled Plant

• Should have at least a minimal model of the rest of the

physiological environment

• And appropriate behavior under all its interactions

• Assumption generation would be cool—might be able to

calculate the weakest plant model under which the controller

achieves certain properties

John Rushby, SR I Accidental Systems: 20

Interactions Involving Humans

• As cognitive agents rather than the plant

• Well known that poor human interface design leads to errors

• E.g., Role of Computerized Physician Order Entry Systems

in Facilitating Medication Errors, J AMA Vol 293, No. 10

(March 2005), pp. 1197–1203

• Even safety interlocks can introduce errors if the operator

does not understand why an action is (not) happening

• E.g., automatic speed protection on A320

◦ Causes unexpected mode change, and plane starts

climbing when pilots expect it to descend—force fight

• These kinds of problems suggest we may not be able to rely

on skilled human intervention once we introduce automation

◦ Unless we design it right

John Rushby, SR I Accidental Systems: 21

Modeling Mental Models

• Operators use mental models to guide their interaction with

automated systems

• Many problems are due to divergence between operator’s

mental model and actual behavior

• Can represent plausible mental models as state machines

• E.g., use the training manual, then simplify using insights of

Denis Javaux

• Then compare all behaviors of the mental model against the

actual automation (using model checking)

• Divergences will be likely automation surprises

• Example from MD-88 autopilot

John Rushby, SR I Accidental Systems: 22

MD-88 Altitude Bust Scenario: Mental Model

• The pitch modes determine how the plane climbs

◦ VSPD: climb at so many feet per minute

◦ IAS: climb while maintaining set airspeed

◦ ALT HLD: hold current altitude

• The altitude capture mode determines whether there is a

limit to the climb

◦ If altitude capture is armed

⋆ Plane will climb to set altitude and hold it

⋆ There is also an ALT CAP pitch mode that is used to

end the climb smoothly

◦ Otherwise

⋆ Plane will keep climbing until pilot stops it

John Rushby, SR I Accidental Systems: 23

Mental Model

capture altitude

HLD

IAS/VSP

IAS/VSP

CAP
CAP

HLD/arrive

capture

active

holdnot active

Whether capture is active is independent of the pitch mode

John Rushby, SR I Accidental Systems: 24

Actual System

capture

capture

altitude

HLD

IAS/VSP

IAS/VSP

HLD/arrivenear

HLD/arriveIAS/VSP

CAP
CAP

not armed hold

is alt_cap

armed

pitch mode

There is an alt cap pitch mode that flies the final capture

John Rushby, SR I Accidental Systems: 25

Focus (Abstract) on Whether Capture Is Active

capture

capture

altitude

HLD

IAS/VSP

IAS/VSP

HLD/arrivenear

HLD/arriveIAS/VSP

CAP
CAP

not armed hold

is alt_cap

armed

pitch mode

Capture is active if it is armed or if pitch mode is alt cap

John Rushby, SR I Accidental Systems: 26

Abstracted System

capture altitude

HLD

IAS/VSP

IAS/VSP

CAP
CAP

HLD/arrive

capture

IAS/VSP

not active

active

hold

Can compare this description directly with the mental model

John Rushby, SR I Accidental Systems: 27

Interaction Through The Larger Environment

• The purpose of a system is to change some relationships in

the environment external to the system

• So requirements specification should focus on those changes

• But changing intended relationships may also change

unintended ones

• Requirements engineering should focus on these issues

• E.g., by building models of the environment and exploring

interactions

• Model checking and other formal methods allow exploration

of all possible behaviors

John Rushby, SR I Accidental Systems: 28

Socio-Technical Systems

• These are systems that interact with humans or

organizations performing complex tasks

• E.g., computer Aided Detection (CAD) tool for

interpretation of mammograms

• Improved performance of inexperienced operators with

easy-to-detect cancers

• But reduced that of skilled operators in hard-to-detect cases

• I don’t know how to predict this kind of thing

• But modern human factors rejects simple failure models for

human behavior: there’s a range of performance

• The topic of resilient systems explores some of this

John Rushby, SR I Accidental Systems: 29

Assurance and Certification

• I’ve described various sources of unintended interactions and

suggested some ways to detect and avoid them

• But how do we provide assurance that we’ve done so?

• All assurance is based on arguments that purport to justify

certain claims, based on documented evidence

• There are two approaches to assurance: implicit (standards

based), and explicit (goal-based)

John Rushby, SR I Accidental Systems: 30

The Standards-Based Approach to Software Certification

• E.g., airborne s/w (DO-178B), security (Common Criteria)

• Applicant follows a prescribed method (or processes)

◦ Delivers prescribed outputs

⋆ e.g., documented requirements, designs, analyses, tests

and outcomes, traceability among these

• Standard usually defines only the evidence to be produced

• The claims and arguments are implicit

• Hence, hard to tell whether given evidence meets the intent

• Works well in fields that are stable or change slowly

◦ Can institutionalize lessons learned, best practice

⋆ e.g. evolution of DO-178 from A to B to C

• But less suitable with novel problems, solutions, methods

John Rushby, SR I Accidental Systems: 31

The Goal-Based Approach to Software Certification

• E.g., air traffic management (CAP670 SW01), UK aircraft

• Applicant develops an assurance case

◦ Whose outline form may be specified by standards or

regulation (e.g., MOD DefStan 00-56)

◦ Makes an explicit set of goals or claims

◦ Provides supporting evidence for the claims

◦ And arguments that link the evidence to the claims

⋆ Make clear the underlying assumptions and judgments

⋆ Should allow different viewpoints and levels of detail

• The case is evaluated by independent assessors

◦ Claims, evidence, argument

John Rushby, SR I Accidental Systems: 32

What Should the Evidence Look Like?

• Evidence about the process, organization, people

• Evidence about the product

Reviews: based on human judgment and consensus

◦ e.g., requirements inspections, code walkthroughs

Analysis: can be repeated and checked by others, and

potentially by machine

◦ Formal methods/static analysis

◦ Tests

John Rushby, SR I Accidental Systems: 33

Multiple Forms of Evidence

• More evidence is required at higher Levels/EALs/SILs

• What’s the argument that these deliver increased assurance?

• Generally an implicit appeal to diversity

◦ And belief that diverse methods fail independently

◦ Not true in n-version software, should be viewed with

suspicion here too

• Need to know the arguments supported by each item of

evidence, and how they compose

• Want to distinguish rational multi-legged cases from nervous

demands for more and more and . . .

John Rushby, SR I Accidental Systems: 34

A Science of Certification

• Certification is ultimately a judgment that a system is

adequately safe/secure/whatever for a given application in a

given environment

• But the judgment should be based on as much explicit and

credible evidence as possible

• A Science of Certification would be about ways to develop

that evidence

John Rushby, SR I Accidental Systems: 35

Making Certification “More Scientific”

• Favor explicit over implicit approaches

◦ i.e., goal-based over standards-based

◦ At the very least, expose and examine the claims,

arguments and assumptions implicit in standards-based

approaches

• Be wary of demands for more and more evidence, with

implicit appeal to diversity and independence

◦ Instead favor explicit multi-legged cases

◦ Use BBNs to combine legs

◦ Favor methods that deliver unconditional claims

• Use formal (“machinable”) design descriptions

◦ Automate safety analysis methods

◦ Analyze implementation for preservation of safety

John Rushby, SR I Accidental Systems: 36

The Challenge of HCMDSS and MD PnP

• For the time being, any device interoperability is likely to be

better than none

◦ Cf. consumer grade GPS in GenAv cockpits

• But once the low-hanging fruit is taken, you’ll start to see

system accidents

• So let’s develop some effective methods and tools for

HCMDSS

◦ With a rational goal-based assurance framework

• And an approach to PnP that ensures system properties

◦ That supports compositional certification

John Rushby, SR I Accidental Systems: 37

Further Reading

• You can find these on my web page (just Google me)

• NRC Study Software for Dependable Systems: Sufficient

Evidence?

• Just-In-Time Certification

• What Use Is Verified Software?

• Bus Architectures for Safety-Critical Embedded Systems

(2001)

John Rushby, SR I Accidental Systems: 38

