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Overview
e T here are several parts to our effort under TA4
e Bob Bolles will cover vehicle integration in the breakout
e I'll mention other parts at the end

e But here I'm going to focus on
The Evidential Tool Bus (ETB)

e Because that is what we use to develop and assemble and
deploy proofs and code in a distributed manner

o We use it in the DARPA CASIO project
o We and Honeywell use it on a NASA project
o But the HACMS applications are much more ambitious
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Integration Opportunities

e Assemble code from various developers, integrate it, get it on
the vehicle, test it

e But this code is formally verified or synthesized

o SO need a chain of provenance from top-level claims

e And the formal assurance needs to be “assembled’ also

o Intially, stovepipes and a pile of disparate claims
o Later, shared assumptions, mutual assumes/guarantees
o Later still, fully compositional

e And the formal tools need to interoperate

o Initially, stovepipes, but mutually accessible
o Later, integrated workflows
o Later still, modular tools built from components

e And may want distinct development and certify modes
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Evidential Tool Bus: Purpose
The Evidential Tool Bus

e A way to assemble the claims made by different tools

o And to compose them into an assurance case
e And a way to assemble the code they generate
e In a way that keeps everything consistent
The Evidential Tool Bus

e A distributed, location-transparent way of invoking tools

o A way for one tool to invoke services of another
o And for scripting workflows

e And for accessing files, specs, etc.

e Cost of attaching tools to the ETB is low
o Lightweight wrappers
o No mandated logic, format, methodology
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ETB: Picture
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ETB Architecture: Servers, Tools and Files

e The ETB is a fully connected graph of servers

e Servers are distributed

o On a subnet or via SSH tunnels

e Servers can come and go

e Servers can run various tools

o Some servers may run no tools

o Some may run many

o Tools can run on one or More servers
o Tools can be scripts

e Servers also store files
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Architecture: Clients

e Humans interact with the ETB via clients

e Which connect to a server using an API (about 20 methods)

e Clients have no ETB state,

e Currently, we provide just a simple shell

e You can also write your own (e.g., for Eclipse)

e \We do have a Java-based project-specific graphical client for
CASIO
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Architecture: Mechanisms

e Each server runs a simple daemon (written in Python) that
exchanges messages with the others

o When something happens
o Or periodic heartbeat

e Underlying protocols use XML-RPC
o With data represented in JSON

e Files are stored in a GIT repository on each server

o Hence, are global, but consistency is lazy (by need)

o Referenced by name (relative to server directory)
and SHA1 hash

o Hence, unique
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ETB Predicates

e [ he unit for computation and for claims is a predicate

o Like a (remote) function call that also attests a claim

e An ETB predicate is of the form
o name(argl, arg2, ..., argn)

Where the args are variables, or data

e [ he name can be interpreted or uninterpreted

o interpreted predicates cause invocation of tools
o uninterpreted predicates invoke workflows
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John

Example Interpreted Predicates

YicesCheck(Fmla, SAT?)

o Where Fmla is an SMT formula (or file)
o And SAT? is a variable

Is a query (queries can also be ground)

Can be evaluated by a server that has the Yices SMT solver
o Will instantiate the variables
o And yield a claim (attested ground predicate)

o e.g. YicesCheck(Fmla, "satisfiable") where satisfiable
is a literal that indicates Fmla is satisfiable

Can then do YicesShowModel (Fmla, MODEL?) to obtain model

Claims Table keeps detailed log of claims
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Tools, Wrappers, Scripts

e [ools attach to the ETB via wrappers

o Typically a dozen lines of Python
o EXport appropriate predicates for that tool
o Possibly of various granularities

* e.g., specific proof vs. all proofs in a file

e A wrapper may include fairly complex scripting

o Can issue queries, make claims (including “error claims’ )

o Can establish sessions, run interactive tools and invoke
external activity (e.g., “ask Sam to prove this")

e Later, may want to deconstruct tools into shared components

e Claims established by interpreted predicates provide
attestation (e.g., “proved by PVS"”, “John says it's so")

e But are internally opaque (trust bottoms out here)
o i.e., they do not provide an ETB-level proof
o That's what uninterpreted predicates are for
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Support Tools
e Some interpreted tools just check the format of a file
e Others do translations between formats/logics

e Not everything is a specification or a theorem

o Also have counterexamples, sets of predicates (for
predicate abstraction), interpolants, etc.

o Anticipate evolution of a 2-dimensional ontology
*x Kinds of things x logic/representation

e Some tools run a makefile, create code

o Code goes in a file, just like other data

e Limited fault tolerance, load balancing, security, job
Mmanagement at present
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Uninterpreted Predicates
e ETB has a simple logic engine (inspired by Datalog)

e Uninterpreted predicates are defined by Horn-clause rules that
are evaluated directly by the ETB: e.qg.,

prove(F,M,P) :- sal file(F),
sal _smc(F,P),
sal_deadlock_check(F,M).

e [ hese define workflows
e Evaluation builds an ETB proof connecting claims

e \Workflows can provide different proof modes
o e.g., discovery vs. certification
o First might call many SMT solvers, use first to complete
* T here's an API query for tool completion
o Second might call many, require all to give same answer
o Or might call a trusted solver
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ETB: Proof Tree

This is from the query prove(short.sal, main, thl)
using the rule on the previous page

sal_smc(short.sal, th1) sal_deadlock_check(short.sal, main)
___________:A____K _________
|
i sal_smc(short.sal, th1), sal_deadlock_check(short.sal, main) | sal_file(short.sal)

prove(short.sal, main, th1)

John Rushby, SRI Evidential Tool Bus 14



Plan

e Further develop and deploy the ETB

o Gregoire Hamon

e With your input
o This is our third attempt, also the simplest

o Seek early adopters
o Technical introductions by Webex, welcome visitors

John Rushby, SRI Evidential Tool Bus 15



Other Parts of TA4

e Trusted tools: Kernel Of Truth (KOT), Shankar

o Tower of increasing powerful verifiers and synthesizers
o Each formally verified using the ones below

e Compositional Verification: Lazy Composition, Shankar

o Assume/Guarantee is sound but not credible for genuine
components

o Designed in ignorance, why would my guarantees match
your assumes?

o S0 synthesize weakest assumptions

e [op-Level: Assurance Case, John Rushby

o Tradeoff epistemic and logic doubt
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