
HACMS kickoff meeting: TA4



Technical Area 4: Integration

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, CA

John Rushby, SR I Evidential Tool Bus 1



Overview

• There are several parts to our effort under TA4

• Bob Bolles will cover vehicle integration in the breakout

• I’ll mention other parts at the end

• But here I’m going to focus on

The Evidential Tool Bus (ETB)

• Because that is what we use to develop and assemble and

deploy proofs and code in a distributed manner

◦ We use it in the DARPA CASIO project

◦ We and Honeywell use it on a NASA project

◦ But the HACMS applications are much more ambitious

John Rushby, SR I Evidential Tool Bus 2



Integration Opportunities

• Assemble code from various developers, integrate it, get it on

the vehicle, test it

• But this code is formally verified or synthesized

◦ So need a chain of provenance from top-level claims

• And the formal assurance needs to be “assembled” also

◦ Intially, stovepipes and a pile of disparate claims

◦ Later, shared assumptions, mutual assumes/guarantees

◦ Later still, fully compositional

• And the formal tools need to interoperate

◦ Initially, stovepipes, but mutually accessible

◦ Later, integrated workflows

◦ Later still, modular tools built from components

• And may want distinct development and certify modes

John Rushby, SR I Evidential Tool Bus 3



Evidential Tool Bus: Purpose

The Evidential Tool Bus

• A way to assemble the claims made by different tools

◦ And to compose them into an assurance case

• And a way to assemble the code they generate

• In a way that keeps everything consistent

The Evidential Tool Bus

• A distributed, location-transparent way of invoking tools

◦ A way for one tool to invoke services of another

◦ And for scripting workflows

• And for accessing files, specs, etc.

• Cost of attaching tools to the ETB is low

◦ Lightweight wrappers

◦ No mandated logic, format, methodology

John Rushby, SR I Evidential Tool Bus 4



ETB: Picture

Clients

Server Server

Server Server

Clients Clients

Clients

John Rushby, SR I Evidential Tool Bus 5



ETB Architecture: Servers, Tools and Files

• The ETB is a fully connected graph of servers

• Servers are distributed

◦ On a subnet or via SSH tunnels

• Servers can come and go

• Servers can run various tools

◦ Some servers may run no tools

◦ Some may run many

◦ Tools can run on one or more servers

◦ Tools can be scripts

• Servers also store files

John Rushby, SR I Evidential Tool Bus 6



Architecture: Clients

• Humans interact with the ETB via clients

• Which connect to a server using an API (about 20 methods)

• Clients have no ETB state,

• Currently, we provide just a simple shell

• You can also write your own (e.g., for Eclipse)

• We do have a Java-based project-specific graphical client for

CASIO

John Rushby, SR I Evidential Tool Bus 7



Architecture: Mechanisms

• Each server runs a simple daemon (written in Python) that

exchanges messages with the others

◦ When something happens

◦ Or periodic heartbeat

• Underlying protocols use XML-RPC

◦ With data represented in JSON

• Files are stored in a GIT repository on each server

◦ Hence, are global, but consistency is lazy (by need)

◦ Referenced by name (relative to server directory)

and SHA1 hash

◦ Hence, unique

John Rushby, SR I Evidential Tool Bus 8



ETB Predicates

• The unit for computation and for claims is a predicate

◦ Like a (remote) function call that also attests a claim

• An ETB predicate is of the form

◦ name(arg1, arg2, ..., argn)

Where the args are variables, or data

• The name can be interpreted or uninterpreted

◦ interpreted predicates cause invocation of tools

◦ uninterpreted predicates invoke workflows

John Rushby, SR I Evidential Tool Bus 9



Example Interpreted Predicates

• YicesCheck(Fmla, SAT?)

◦ Where Fmla is an SMT formula (or file)

◦ And SAT? is a variable

Is a query (queries can also be ground)

• Can be evaluated by a server that has the Yices SMT solver

◦ Will instantiate the variables

◦ And yield a claim (attested ground predicate)

◦ e.g. YicesCheck(Fmla, "satisfiable") where satisfiable

is a literal that indicates Fmla is satisfiable

• Can then do YicesShowModel(Fmla, MODEL?) to obtain model

• Claims Table keeps detailed log of claims

John Rushby, SR I Evidential Tool Bus 10



Tools, Wrappers, Scripts

• Tools attach to the ETB via wrappers

◦ Typically a dozen lines of Python

◦ Export appropriate predicates for that tool

◦ Possibly of various granularities

? e.g., specific proof vs. all proofs in a file

• A wrapper may include fairly complex scripting

◦ Can issue queries, make claims (including “error claims”)

◦ Can establish sessions, run interactive tools and invoke

external activity (e.g., “ask Sam to prove this”)

• Later, may want to deconstruct tools into shared components

• Claims established by interpreted predicates provide

attestation (e.g., “proved by PVS”, “John says it’s so”)

• But are internally opaque (trust bottoms out here)

◦ i.e., they do not provide an ETB-level proof

◦ That’s what uninterpreted predicates are for

John Rushby, SR I Evidential Tool Bus 11



Support Tools

• Some interpreted tools just check the format of a file

• Others do translations between formats/logics

• Not everything is a specification or a theorem

◦ Also have counterexamples, sets of predicates (for

predicate abstraction), interpolants, etc.

◦ Anticipate evolution of a 2-dimensional ontology

? Kinds of things x logic/representation

• Some tools run a makefile, create code

◦ Code goes in a file, just like other data

• Limited fault tolerance, load balancing, security, job

management at present

John Rushby, SR I Evidential Tool Bus 12



Uninterpreted Predicates

• ETB has a simple logic engine (inspired by Datalog)

• Uninterpreted predicates are defined by Horn-clause rules that

are evaluated directly by the ETB: e.g.,

prove(F,M,P) :- sal file(F),

sal smc(F,P),

sal deadlock check(F,M).

• These define workflows

• Evaluation builds an ETB proof connecting claims

• Workflows can provide different proof modes

◦ e.g., discovery vs. certification

◦ First might call many SMT solvers, use first to complete

? There’s an API query for tool completion

◦ Second might call many, require all to give same answer

◦ Or might call a trusted solver

John Rushby, SR I Evidential Tool Bus 13



ETB: Proof Tree

This is from the query prove(short.sal, main, th1)

using the rule on the previous page

prove(short.sal, main, th1)

sal_file(short.sal), sal_smc(short.sal, th1), sal_deadlock_check(short.sal, main)

sal_smc(short.sal, th1)

sal_smc(short.sal, th1), sal_deadlock_check(short.sal, main) sal_file(short.sal)

sal_deadlock_check(short.sal, main)

John Rushby, SR I Evidential Tool Bus 14



Plan

• Further develop and deploy the ETB

◦ Gregoire Hamon

• With your input

◦ This is our third attempt, also the simplest

◦ Seek early adopters

◦ Technical introductions by Webex, welcome visitors

John Rushby, SR I Evidential Tool Bus 15



Other Parts of TA4

• Trusted tools: Kernel Of Truth (KOT), Shankar

◦ Tower of increasing powerful verifiers and synthesizers

◦ Each formally verified using the ones below

• Compositional Verification: Lazy Composition, Shankar

◦ Assume/Guarantee is sound but not credible for genuine

components

◦ Designed in ignorance, why would my guarantees match

your assumes?

◦ So synthesize weakest assumptions

• Top-Level: Assurance Case, John Rushby

◦ Tradeoff epistemic and logic doubt

John Rushby, SR I Evidential Tool Bus 16


