HACMS kickoff meeting: TA4

Technical Area 4: Integration

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, CA

John Rushby, SRI Evidential Tool Bus 1

Overview
e T here are several parts to our effort under TA4
e Bob Bolles will cover vehicle integration in the breakout
e I'll mention other parts at the end

e But here I'm going to focus on
The Evidential Tool Bus (ETB)

e Because that is what we use to develop and assemble and
deploy proofs and code in a distributed manner

o We use it in the DARPA CASIO project
o We and Honeywell use it on a NASA project
o But the HACMS applications are much more ambitious

John Rushby, SRI Evidential Tool Bus 2

Integration Opportunities

e Assemble code from various developers, integrate it, get it on
the vehicle, test it

e But this code is formally verified or synthesized

o SO need a chain of provenance from top-level claims

e And the formal assurance needs to be “assembled’ also

o Intially, stovepipes and a pile of disparate claims
o Later, shared assumptions, mutual assumes/guarantees
o Later still, fully compositional

e And the formal tools need to interoperate

o Initially, stovepipes, but mutually accessible
o Later, integrated workflows
o Later still, modular tools built from components

e And may want distinct development and certify modes

John Rushby, SRI Evidential Tool Bus 3

Evidential Tool Bus: Purpose
The Evidential Tool Bus

e A way to assemble the claims made by different tools

o And to compose them into an assurance case
e And a way to assemble the code they generate
e In a way that keeps everything consistent
The Evidential Tool Bus

e A distributed, location-transparent way of invoking tools

o A way for one tool to invoke services of another
o And for scripting workflows

e And for accessing files, specs, etc.

e Cost of attaching tools to the ETB is low
o Lightweight wrappers
o No mandated logic, format, methodology

John Rushby, SRI Evidential Tool Bus 4

ETB: Picture

Clients Clients

O

| |
| |
AN
N -
N -

Q— - -[Server Server Q

S

(O

. 7 Clients
Clients \ f
Q Server Server

O O O

John Rushby, SRI Evidential Tool Bus 5

ETB Architecture: Servers, Tools and Files

e The ETB is a fully connected graph of servers

e Servers are distributed

o On a subnet or via SSH tunnels

e Servers can come and go

e Servers can run various tools

o Some servers may run no tools

o Some may run many

o Tools can run on one or More servers
o Tools can be scripts

e Servers also store files

John Rushby, SRI Evidential Tool Bus 6

Architecture: Clients

e Humans interact with the ETB via clients

e Which connect to a server using an API (about 20 methods)

e Clients have no ETB state,

e Currently, we provide just a simple shell

e You can also write your own (e.g., for Eclipse)

e \We do have a Java-based project-specific graphical client for
CASIO

John Rushby, SRI Evidential Tool Bus 7

Architecture: Mechanisms

e Each server runs a simple daemon (written in Python) that
exchanges messages with the others

o When something happens
o Or periodic heartbeat

e Underlying protocols use XML-RPC
o With data represented in JSON

e Files are stored in a GIT repository on each server

o Hence, are global, but consistency is lazy (by need)

o Referenced by name (relative to server directory)
and SHA1 hash

o Hence, unique

John Rushby, SRI Evidential Tool Bus 8

ETB Predicates

e [he unit for computation and for claims is a predicate

o Like a (remote) function call that also attests a claim

e An ETB predicate is of the form
o name(argl, arg2, ..., argn)

Where the args are variables, or data

e [he name can be interpreted or uninterpreted

o interpreted predicates cause invocation of tools
o uninterpreted predicates invoke workflows

John Rushby, SRI Evidential Tool Bus 9

John

Example Interpreted Predicates

YicesCheck(Fmla, SAT?)

o Where Fmla is an SMT formula (or file)
o And SAT? is a variable

Is a query (queries can also be ground)

Can be evaluated by a server that has the Yices SMT solver
o Will instantiate the variables
o And yield a claim (attested ground predicate)

o e.g. YicesCheck(Fmla, "satisfiable") where satisfiable
is a literal that indicates Fmla is satisfiable

Can then do YicesShowModel (Fmla, MODEL?) to obtain model

Claims Table keeps detailed log of claims

Rushby, SRI Evidential Tool Bus 10

Tools, Wrappers, Scripts

e [ools attach to the ETB via wrappers

o Typically a dozen lines of Python
o EXport appropriate predicates for that tool
o Possibly of various granularities

* e.g., specific proof vs. all proofs in a file

e A wrapper may include fairly complex scripting

o Can issue queries, make claims (including “error claims’)

o Can establish sessions, run interactive tools and invoke
external activity (e.g., “ask Sam to prove this")

e Later, may want to deconstruct tools into shared components

e Claims established by interpreted predicates provide
attestation (e.g., “proved by PVS"”, “John says it's so")

e But are internally opaque (trust bottoms out here)
o i.e., they do not provide an ETB-level proof
o That's what uninterpreted predicates are for

John Rushby, SRI Evidential Tool Bus 11

Support Tools
e Some interpreted tools just check the format of a file
e Others do translations between formats/logics

e Not everything is a specification or a theorem

o Also have counterexamples, sets of predicates (for
predicate abstraction), interpolants, etc.

o Anticipate evolution of a 2-dimensional ontology
*x Kinds of things x logic/representation

e Some tools run a makefile, create code

o Code goes in a file, just like other data

e Limited fault tolerance, load balancing, security, job
Mmanagement at present

John Rushby, SRI Evidential Tool Bus 12

Uninterpreted Predicates
e ETB has a simple logic engine (inspired by Datalog)

e Uninterpreted predicates are defined by Horn-clause rules that
are evaluated directly by the ETB: e.qg.,

prove(F,M,P) :- sal file(F),
sal _smc(F,P),
sal_deadlock_check(F,M).

e [hese define workflows
e Evaluation builds an ETB proof connecting claims

e \Workflows can provide different proof modes
o e.g., discovery vs. certification
o First might call many SMT solvers, use first to complete
* T here's an API query for tool completion
o Second might call many, require all to give same answer
o Or might call a trusted solver

John Rushby, SRI Evidential Tool Bus 13

ETB: Proof Tree

This is from the query prove(short.sal, main, thl)
using the rule on the previous page

sal_smc(short.sal, th1) sal_deadlock_check(short.sal, main)
___________:A____K _________
|
i sal_smc(short.sal, th1), sal_deadlock_check(short.sal, main) | sal_file(short.sal)

prove(short.sal, main, th1)

John Rushby, SRI Evidential Tool Bus 14

Plan

e Further develop and deploy the ETB

o Gregoire Hamon

e With your input
o This is our third attempt, also the simplest

o Seek early adopters
o Technical introductions by Webex, welcome visitors

John Rushby, SRI Evidential Tool Bus 15

Other Parts of TA4

e Trusted tools: Kernel Of Truth (KOT), Shankar

o Tower of increasing powerful verifiers and synthesizers
o Each formally verified using the ones below

e Compositional Verification: Lazy Composition, Shankar

o Assume/Guarantee is sound but not credible for genuine
components

o Designed in ignorance, why would my guarantees match
your assumes?

o S0 synthesize weakest assumptions

e [op-Level: Assurance Case, John Rushby

o Tradeoff epistemic and logic doubt

John Rushby, SRI Evidential Tool Bus 16

