HACMS Kkickoff meeting: TA2

Technical Area 2: System Software

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, CA

John Rushby, SRI System Software 1

Introduction

e We are teamed with Prof. Grigore Rosu of University of
Illinois at Urbana Champaign on this task

e I'll describe our part

e T hen hand over to Grigore

John Rushby, SRI System Software 2

Background

e All incidents and accidents in commercial aircraft in which
software was a contributory factor implicate the gap between
system requirements and software requirements

e None implicate design or coding errors

e Level A software for commercial aircraft costs a lot

e Vulnerabilities in other kinds of vehicles may be different

e FM may reduce costs for aircraft and raise quality elsewehere
e But the gap may still be there

e That's what we (SRI) are focused on

John Rushby, SRI System Software 3

John

A Conundrum

Top-level safety requirements are probabilistic (e.g., 10™?)

But software assurance is all about correctness

JUst do more of it for higher assurance levels
o 28 objectives at DO178B Level D (107?)
o 57 objectives at DO178B Level C (107°)
o 65 objectives at DO178B Level B (1077)
o 66 objectives at DO178B Level A (1077)

What's the connection?

Rushby, SR

System Software 4

John

A Simple Theorem

Software assurance establishes a possibility of perfection

o Will never suffer a failure, wrt. system requirements

Quantify that as (subjective) probability of (im)perfection
o An idea due to Bev Littlewood and Lorenzo Strigini

pnp Probability the software is imperfect
Prnp Probability that it fails, if it is imperfect
Then P(software fails) < ppp, X Py

‘Traditionally, nuclear protection assumes p,, is 1, measures
Pfnp DY mMassive random testing

And aircraft certification assumes p¢,, is 1, try to justify
small p,, by massive assurance

Rushby, SR System Software 5

A Second Theorem

e Many safety-critical systems have two (or more) diverse
“channels” arranged as primary/monitor architectures

e Cannot simply multiply the pfds (probabilities of failure) of
the two channels to get pfd for the system
o Failures are unlikely to be independent

o E.g., failure of one channel suggests this is a difficult
case, so failure of the other is more likely

o Infeasible to measure amount of dependence

e But the probability of imperfection of one channel is
conditionally independent of the pfd of the other

e SO you can multiply these together to get system pfd

John Rushby, SRI System Software 6

John

Putting It Together

Formally synthesize or verify monitors for system
requirements

Monitors can be simple, as well as formally assured

Thus, feasible to claim small probability of imperfection
Hence, multiplicative increase in system reliability

Though you do need to account for Type 2 monitor failures
Monitored architecture risk per unit time

<c1 X (M1 + Fa X Pp1) +ca X (Ma + Fpapnp X Pp2)
where the Ms are due to mechanism shared between channels

Rushby, SR System Software 7

Mechanization

e Biggest breakthrough in FM over last 20 years was
development of high-performance SMT solvers

e These solve Forall (UNSAT) and Exists (SAT) problems
e [hey automate verification problems very effectively
e But for synthesis need to solve Exists-Forall (EF) problems

e Example: template based invariant synthesis
o dA,B,C :Vx,y: Axx+Bxy<C
o Many template- or sketch-driven approaches to synthesis
can be cast in this form

e SO we plan to synthesize monitors with an EF-SMT solver

John Rushby, SRI System Software 8

EF SMT Solver Architecture
Constraint Solving Using Abstraction Refinement

Guided by Learning via Counter Examples
SMT Solver

Exist(x):P(x) no such x0 found return unsastifiable —— »
query SAT solver to select x0 s.t. Q(x0) holds //

where Q = abstrn (P)
found x0

verify if

/ P(x0) is true
no

yes

learn from failure
update abstrn (P)

return sastifiablex0 — »

EF SMT Solver

——»Exist(x)ForAll(y):P(x,y)

nosuch x0found retyrn unsastifiable — »

query SMT solver to select x0 s.t. Q (x0) holds
where Q = abstrn (ForAll (y) :P (x,y)) wi x0

return sastifiablex0 —— »

yes/

query SMT solver to
verify if xO works
forall y

f

learn from failure
update abstrn (ForAll (y) : P)

John Rushby, SRI System Software 9

Plan

e Develop EF-SMT solver

o Bruno Dutertre

e Use to synthesize monitors and wrappers for systems software

e Share languages, methods, tools with Grigore Rosu of UIUC

o Who develops complementary approaches to monitoring

John Rushby, SRI System Software 10

