
HACMS kickoff meeting: TA2



Technical Area 2: System Software

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, CA

John Rushby, SR I System Software 1



Introduction

• We are teamed with Prof. Grigore Rosu of University of

Illinois at Urbana Champaign on this task

• I’ll describe our part

• Then hand over to Grigore

John Rushby, SR I System Software 2



Background

• All incidents and accidents in commercial aircraft in which

software was a contributory factor implicate the gap between

system requirements and software requirements

• None implicate design or coding errors

• Level A software for commercial aircraft costs a lot

• Vulnerabilities in other kinds of vehicles may be different

• FM may reduce costs for aircraft and raise quality elsewehere

• But the gap may still be there

• That’s what we (SRI) are focused on

John Rushby, SR I System Software 3



A Conundrum

• Top-level safety requirements are probabilistic (e.g., 10−9)

• But software assurance is all about correctness

• JUst do more of it for higher assurance levels

◦ 28 objectives at DO178B Level D (10−3)

◦ 57 objectives at DO178B Level C (10−5)

◦ 65 objectives at DO178B Level B (10−7)

◦ 66 objectives at DO178B Level A (10−9)

• What’s the connection?

John Rushby, SR I System Software 4



A Simple Theorem

• Software assurance establishes a possibility of perfection

◦ Will never suffer a failure, wrt. system requirements

• Quantify that as (subjective) probability of (im)perfection

◦ An idea due to Bev Littlewood and Lorenzo Strigini

• pnp probability the software is imperfect

• pfnp probability that it fails, if it is imperfect

• Then P (software fails) ≤ pnp × pfnp

• Traditionally, nuclear protection assumes pnp is 1, measures

pfnp by massive random testing

• And aircraft certification assumes pfnp is 1, try to justify

small pnp by massive assurance

John Rushby, SR I System Software 5



A Second Theorem

• Many safety-critical systems have two (or more) diverse

“channels” arranged as primary/monitor architectures

• Cannot simply multiply the pfds (probabilities of failure) of

the two channels to get pfd for the system

◦ Failures are unlikely to be independent

◦ E.g., failure of one channel suggests this is a difficult

case, so failure of the other is more likely

◦ Infeasible to measure amount of dependence

• But the probability of imperfection of one channel is

conditionally independent of the pfd of the other

• So you can multiply these together to get system pfd

John Rushby, SR I System Software 6



Putting It Together

• Formally synthesize or verify monitors for system

requirements

• Monitors can be simple, as well as formally assured

• Thus, feasible to claim small probability of imperfection

• Hence, multiplicative increase in system reliability

• Though you do need to account for Type 2 monitor failures

• Monitored architecture risk per unit time

≤ c1 × (M1 + FA × PB1) + c2 × (M2 + FB2|np × PB2)

where the Ms are due to mechanism shared between channels

John Rushby, SR I System Software 7



Mechanization

• Biggest breakthrough in FM over last 20 years was

development of high-performance SMT solvers

• These solve Forall (UNSAT) and Exists (SAT) problems

• They automate verification problems very effectively

• But for synthesis need to solve Exists-Forall (EF) problems

• Example: template based invariant synthesis

◦ ∃A,B,C : ∀x, y : A× x+B × y < C

◦ Many template- or sketch-driven approaches to synthesis

can be cast in this form

• So we plan to synthesize monitors with an EF-SMT solver

John Rushby, SR I System Software 8



EF SMT Solver Architecture

John Rushby, SR I System Software 9



Plan

• Develop EF-SMT solver

◦ Bruno Dutertre

• Use to synthesize monitors and wrappers for systems software

• Share languages, methods, tools with Grigore Rosu of UIUC

◦ Who develops complementary approaches to monitoring

John Rushby, SR I System Software 10


