
Software Verification/Validation Methods and Tools
. . . or Practical Formal Methods

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, CA

John Rushby, SR I Practical Formal Methods: 1



Need: Growing Importance and Cost of Embedded Software

• Most of the innovation in new cars is enabled by embedded software

• There is more software in individual functions

• But the big gains come from integration across functions

• Integrated, distributed systems are hard to get right

◦ Especially if they have to be fault tolerant

◦ Or are safety-critical

• So it is common for more than 75% of embedded softweare development costs to go

into verification and verification

• There is an opportunity to reduce costs and improve quality by applying automation

to verification and verification of embedded systems

John Rushby, SR I Practical Formal Methods: 2



Approach: Formal Methods

• The basic idea is to use symbolic calculation to provide cheaper and better methods

of verification and validation for software and systems

• A single symbolic calculation can subsume many individual numeric cases

◦ Just as x2
− y2 = (x − y) × (x + y)

◦ Subsumes 36 − 16 = 2 × 10 and 49 − 4 = 5 × 9 and . . .

• Can be used to find rare error scenarios as well as to verify their absence

• Symbolic calculation is mechanized using the methods of automated reasoning:

theorem proving, model checking, constraint solving, etc.

• There has been sustained progress in these fields for several decades and they

have recently broken through the barriers to practical application

• SRI has been a leader of this technology throughout its history

John Rushby, SR I Practical Formal Methods: 3



A Spectrum of Formal Methods

Interactive theorem proving: requires great skill and resources

• Can solve very hard problems

• E.g., Verify that Flexray’s clock synchronization withstands any single fault

Model checking: analysis is automatic but must specify the model and property

• Can search huge state spaces (trillions of reachable states) efficiently

• E.g., Find the worst case start up delay for Flexray

• E.g., Check that horizontally integrated functions interact as expected

Invisible formal methods: driven directly off model-based developments

• Uses symbolic calculation to automate traditional work flows

• E.g., Generate unit test cases to provide MC/DC coverage

• E.g., “Find me an input vector that gets me to here with x > 3”

• Check compliance with guidelines (e.g., no 12 o’clock rule in Stateflow)

John Rushby, SR I Practical Formal Methods: 4



Our Tools Cover the Spectrum

automated

invisible

formal methods

abstraction

model

checking
proving

theorem

Assurance

Effort

ICS

SAL
PVS

John Rushby, SR I Practical Formal Methods: 5



Our Tools

• PVS: Industrial strength theorem prover (since 1993)

◦ Probably the most widely used theorem prover in research and education

◦ Used for verification of AAMP5 (Rockwell)

◦ And Time Triggered Architecture (TTTech, NASA, Honeywell)

◦ GM group in Asia has recently applied for a license

◦ Some other commercial users (e.g., Sun)

• SAL: Industrial strength suite of model checkers (since 2003)

◦ Used for analysis of TTA startup

◦ A current application focus is automated test generation

• ICS: Core decision procedures and SAT solver used in PVS and SAL

◦ Designed to be embedded in other tools

• See fm.csl.sri.com for descriptions and our roadmap

John Rushby, SR I Practical Formal Methods: 6



Invisible Formal Methods

• New design practices: model-based development methods provide the artifacts

needed by automated analysis

◦ Models serve as formal specifications

◦ We have a formal semantics and translator for Stateflow

• New technology (in SAL): very fast, scalable model checkers that can handle

arithmetic and other data types

• New ideas: invisible formal methods

• These combine to create new opportunities

• Example: Generate test vectors that will drive an implementation through all the

states and transitions of its model

John Rushby, SR I Practical Formal Methods: 7



Automated Test Case Generation

• Basic approach uses the counterexamples generated by a model checker

• Counterexample to you cannot get here is a test case that gets you there

• There are several technical issues dealing with arithmetic in specifications

◦ Which we have solved (patents pending)

• Existing methods give many short tests with much redundancy

◦ We have new methods that generate fewer deeper tests (patent pending)

◦ E.g., State coverage for a 4-speed shift selector in one test of length 86

• We also have technology (automated analysis of hybrid systems) that could take test

test generation beyond unit tests into integration and system tests

John Rushby, SR I Practical Formal Methods: 8



Benefits: Simplified Vee Diagram

system
requirements test

design/code unit/integration
test

time and money

Automated formal analysis can tighten the vee

John Rushby, SR I Practical Formal Methods: 9



Tightened Vee Diagram

system
requirements test

design/code unit/integration
test

time and money

John Rushby, SR I Practical Formal Methods: 10



Competition

• Test generation for Statemate is automated by Motorola in Veristate

◦ Good integration, relies on user-written “test observers,” weak FM technology

• For Simulink by T-VEC

◦ Good integration and methods, weak FM technology

• For Stateflow by RSI in Reactis

◦ Good integration and methods, weak FM technology

• We have the best FM technology, more powerful test generation methods, the ability

to go beyond test generation, but less integration with commercial products

John Rushby, SR I Practical Formal Methods: 11



Summary

• We are the experts in practical formal methods, and can help others

◦ Evaluate

◦ Apply

◦ Develop

this technology

• Our PVS, SAL, ICS tools are mature (though continually enhanced) and available for

licensing

• We are seeking partners to help us develop and evaluate our technology for

automated unit test generation

◦ And other applications for invisible formal methods

John Rushby, SR I Practical Formal Methods: 12


