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Summary

• What we have done

◦ Found a flaw in an algorithm for achieving Interactive

Consistency under a hybrid fault model

◦ Corrected it

◦ Formally verified it

• Why we think it is interesting

◦ Interactive consistency is an important problem

◦ The hybrid fault model is very attractive

◦ The algorithm is practical and useful

◦ Illustrates fallibility of informal proofs

◦ Demonstrates feasibility of mechanically-checked verification
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Overview

• Context

• Interactive Consistency and Byzantine Agreement

• The classical Oral Messages (OM) algorithm for Byzantine

Agreement

• The hybrid fault model

• The flawed algorithm

• The repaired algorithm

• The formal specification and verification

• Conclusions
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Context: Fault-Tolerant Architectures for Flight Control

There are two main ways to organize the redundant computing

channels of a fault-tolerant flight-control system

Asynchronous: run the channels fairly independently and use

averaging and threshold voting to mask faults—difficult to

predict behavior under all combinations of clock drift, sensor

noise, channel failure

Synchronous: run the channels in lock-step, distribute sensor data

to all channels, and use exact-match voting—behavior is

predictable, but basic algorithms are difficult

Our interest: use of formal methods to develop and analyze

algorithms and architectures for synchronous fault-tolerant systems
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The Problem of Interactive Consistency

(aka. Source Congruence)
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The Byzantine Generals Problem

• The real problem is interactive consistency (IC): every channel

has a (set of) values that must be communicated reliably to

every other channel

• The Byzantine Generals (BG) version is a little easier to

describe: a Commanding General has an order that must be

conveyed to a set of Lieutenant Generals

(Interactive consistency is just iterated Byzantine Generals)
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The Byzantine Generals Problem: Requirements

There are n generals, of whom as many as m can be faulty

(including the Commander)

BG1: nonfaulty lieutenants agree on the value received from the

Commander

BG2: if the Commander is nonfaulty, the value received by every

nonfaulty lieutenant is the value he sent

Make no assumptions at all about the behavior of faulty generals
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The Oral Messages Algorithm for BG

• Requires n > 3m

• And m+1 rounds of message exchange

• So need four channels and two rounds to withstand a single

fault
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The Oral Messages Algorithm

• The Commander sends value to each lieutenant

• If m = 0, each lieutenant accepts the value he receives

Otherwise, each lieutenant takes the part of the general in

OM(m− 1) to send value received to all other lieutenants

• Each lieutenant takes majority vote of the values received

directly from Commander and via the other lieutenants
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Example: Oral Messages With Faulty Commander
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Example: Oral Messages With A Faulty Lieutenant
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Properties of the Oral Messages Algorithm

• Optimal in number of processors required (n = 3m+1) to

withstand given number (m) of faults

• Suboptimal in terms of number of rounds (no early stopping)

and number of messages exchanged (exponential in m)

Adequate for cases of practical interest (m ≤ 2, n ≤ 7)

• But treats all faults as “worst case”: makes no special

provision for “simple” faults

Withstands fewer simple faults than less sophisticated

algorithms

5 and 6 channels provide no benefit compared to 4
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Example: Oral Messages With Two Crashed Lieutenants
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Fault Models: Extreme positions

• Byzantine approach: components are either working correctly

or have failed in some unknown manner

◦ Cannot be defeated by unanticipated fault mode

◦ But can be defeated by moderate number of “simple” faults

• FMEA approach: components can fail in (many) known ways;

design countermeasures for each one (and their combinations)

◦ May be defeated by unanticipated fault mode

◦ But can be optimized to maximize resilience to certain faults
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Hybrid Fault Models

• Goal is to maximize both the modes of fault that can be

tolerated, and the number

• Include the arbitrary (Byzantine) mode

◦ So cannot be defeated by unanticipated kind of fault

• Plus a couple of common, simpler fault modes

◦ To maximize the number of faults (of those kinds) that can

be tolerated
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A Hybrid Fault Model

• Thambidurai and Park (then of Allied Signal) introduced a

hybrid fault model with three fault classes:

◦ Arbitrary (Byzantine) (asymmetric malicious)

◦ Symmetric (symmetric malicious)

◦ Manifest (crash) (benign)

• They exhibited an m-round Interactive Consistency Algorithm

that can tolerate a arbitrary, s symmetric and c manifest faults

simultaneously, provided a ≤ m and

n > 2a+2s+ c+m

(classically, a = m, and s = c = 0, so n > 3m as usual)
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Benefits of Hybrid Algorithm

• Consider 6 channels,

• OM(1) can withstand a single Byzantine fault

• Hybrid algorithm can withstand the following combinations

Number of Faults

Arbitrary (a) Symmetric (s) Manifest (c)

1 1 0

1 0 2

0 2 0

0 1 2

0 0 4

FTCS ’93 17



Hybrid Version of OM Algorithm (Algorithm Z)

• Whenever a detectably bad (or no) value is received, replace it

by distinguished value E (for error)

• Ignore E when constructing majority vote

• Published in SRDS 1988, with detailed proof of correctness

• Has a bug

• Found by us while preparing to formally specify and verify the

algorithm
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The Flaw in Algorithm Z
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Repaired Hybrid Version of OM

• Need two distinguished values: E and RE (reported error)

• Detectably bad or missing values from the Commander are

noted and passed on as RE

• Only E ignored in majority vote; if RE wins vote, reported as E

• Verified by hand (by us)

• Also has a bug (though correct for m = 1)
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The Repaired (Though Still Incorrect) Algorithm
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Correct Hybrid Version of OM (Algorithm OMH)

Found flaw in “repaired” algorithm while attempting formal

verification

Discipline of formal methods eventually led us to discover a correct

algorithm:

• Need m levels of reported error: RE, R2E etc.

(and let E be R0E for consistency)

• If receive RiE from (recursive) Commander, pass on as Ri+1E

• Ignore E in majority vote

• If vote yields RjE, selected value is Rj−1E

• It doesn’t matter if RiE, i ≥ 1 is an ordinary value!

(But E must be distinct)
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Formal Methods

Formal Specification: Use of notations derived from formal logic

to describe

• Assumptions about the world in which a system will operate

• Requirements that the system is to achieve

• A design to accomplish those requirements

Formal Verification: Use of methods from formal logic to

• Analyze specifications for certain forms of consistency, and

completeness

• Test specifications by posing challenges

• Prove that the design will satisfy the requirements, given

the assumptions

• Prove that a more detailed design implements a more

abstract one
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Formal Specification and Verification of OMH

• Formally specified OMH (as a recursive function)

• And formally specified the requirements BG1 and BG2

(modified for the hybrid case)

• Developed a mechanically-checked proof that OMH satisfies

those requirements

• Performed by Pat Lincoln using PVS

• Took about two weeks to develop correct algorithm and

attendant formalization and mechanically-checked proofs

• Interactive construction and checking of the proof takes about

two hours (and a few minutes to rerun)

• Details of the formal verification described elsewhere (CAV93)

• Seriously doubt could get this right without mechanized

assistance
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