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Introduction

e Increasing Autonomy (IA) is US airplane language for systems
that employ machine learning (ML) and advanced/General Al
(GAI) for flight assistance short of full autonomy

e Like driver assistance in cars below Level 5
e Cars and planes have different challenges, but also similarities
e I'll mostly use airplane examples because that's what I know

e Typical scenario for IA airplanes is single-pilot operation
o e.g., Long flights with two pilots: one can sleep
o While the other flies with assistance from ‘the box"

o “The box" has to be more like a human copilot than
conventional flight management or autopilot

o So there's more to it than just automation
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Basic Challenges
e Integration and autonomy
e Crew Resource Management
e Never Give Up
e Unconventional implementations (ML etc.)
I will focus on the last of these but I want to touch on the first

three because they also have large impact on the structure of
safety-critical flight systems and on their assurance

And they are consequences of IA

(Recall early history of Airbus A320)
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Integration and Autonomy (Do More)

e If the IA box is like a copilot, it has to do the things that
human pilots do

e Not just simple control, and sequencing tasks like A/P, FMS

e But things like: radio communications, interpreting weather
data and making route adjustments, pilot monitoring (PM)
tasks, shared tasks (flaps, gear), ground taxi, communication
with cabin-crew (emergency evacuation)

e Currently, automation just does local things, and the pilot
integrates them all to accomplish safe flight

e An IA system must be able to do the integration
e And have overall situation assessment
e Overall, it needs to do a lot more that current systems

e Same in cars
(was just brakes and engine, now driver assistance)
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Crew Resource Management (CRM)

e Since UA 173 Portland crash in 1978

e At all times, and especially in emergencies, tasks must be
shared appropriately, clear coordination, listen to all opinions

e And someone must always be flying the plane

o “T'll hold it straight and level while you trouble shoot”
o “You've shut down the wrong engine” (cf. social distance)

e [ he box needs to participate in this
e Field of Explainable AI (EAI) contributes here, but. ..

e EAI typically assumes human is neutral, just needs to hear
reasons, but in emergencies, human often fixed on wrong idea

o cf. Al 855, Mumbai 1978

e So the box needs a theory of mind (model of other's beliefs)
o Does fault diagnhosis on it to find effective explanation

e Sometimes the human is right! So box needs to take advice

o cf. QF 32, Singapore 2010
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Never Give Up (NGU)

e Current automation gives up when things get difficult
e Dumps a difficult situation in the pilot's lap, without warning
e Human pilots do a structured handover:
o ‘your airplane,” “my airplane”
e Should do this at least, but then cannot give up

e SO the standard automation must now cope with real difficulties

o Inconsistencies, authority limits, unforeseen situations

e In the case of AF 447, there was no truly safe way to fly

o Human pilots are told to maintain pitch and thrust

o Automation could do this, or better (cf. UA 232 Sioux City)
e But it is outside standard certification concepts

o Must not become a getout

o Nor a trap (inadvertent activation)

e Maybe a notion of ethics for the worst case (cf. trolley problems)
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Unconventional Implementations
Machine learning, neural nets, GAI etc.

No explicit requirements (just training data),
opaque implementation

Why this matters: you cannot guarantee safety critical
systems by testing alone

o Nor even by extensive prior experience

o T he required reliabilities are just too great

AC 25.1309: “No catastrophic failure condition in the entire
operational life of all airplanes of one type”

Operational life is about 10? hours, we can test 10°

Suppose 10° hours without failure, probability of another 10°7?
o About 50%, probability of 10°? Negligible!
o Even high-fidelity simulations won’t get us there

Need some prior belief: that's what assurance gives us
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What Assurance Does (Step 1)

Extreme scrutiny of development, artifacts, code provides
confidence software is fault-free

Can express this confidence as a subjective probability that
the software is fault-free or nonfaulty: p,

o Frequentist interpretation possible
o There's also quasi fault-free (any faults have tiny pfd)

Define pPr|f @S the probability that it Fails, if faulty

Then probability ps-(n) of surviving n independent demands
(e.qg., flight hours) without failure is given by

psrv(n) — Pnf + (1 _pnf) X (1 _pF|f)n (1)

A suitably large n can represent “entire operational life of all
airplanes of one type”

First term gives lower bound for pg.,(n), independent of n
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What Assurance Does (Step 2)
e If assurance gives us the confidence to assess, say, p,s > 0.9
e Then it looks like we are there

e But suppose we do this for 10 airplane types

o Can expect 1 of them to have faults
o SO the second term needs to be well above zero
o Want confidence in this, despite exponential decay

e Confidence could come from prior failure-free operation

e Calculating overall pg.,(n) is a problem in Bayesian inference
o We have assessed a value for p,
o Have observed some number r of failure-free demands
o Want to predict prob. of n — r future failure-free demands

e Need a prior distribution for pps

o Difficult to obtain, and difficult to justify for certification

o However, there is a provably worst-case distribution
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What Assurance Does (Step 3)

So can make predictions that are guaranteed conservative,
given only p,s, 7, and n

o For values of p,r above 0.9
o The second term in (1) is well above zero
o Provided r > 15

So it looks like we need to fly 10® hours to certify 10°
Maybe not!

Entering service, we have only a few planes, need confidence
for only, say, first six months of operation, so a small n

Flight tests are enough for this

Next six months, have more planes, but can base prediction
on first six months (or ground the fleet, fix things, like 787)

Theory due to Strigini, Povyakalo, Littlewood, Zhao at City U
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What Assurance Does (Summary)
e We want confidence that failures are (very) rare
e Cannot get it by looking at failures alone
e Also need confidence there are no faults
e That's what assurance is about

e But to do it, you need requirements, visible design,
development artifacts, etc.

e None of these are present in ML: just the training data
e Could rely on that
e Or look for a different approach

e I'll sketch ideas for both
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Training Data: Trust but Verify

e We could choose to believe that our ML system generalizes
correctly from the training data

o T his is arguable, but let's go with it

e Next, need some measure that the training data is
adequately comprehensive (i.e., nO missing scenarios)

o Don't really know how to do this, but let's go with it

e Can be "comfortable” provided current inputs are ‘close” to
examples seen in training data (i.e., not a missing scenario)

e And we are not facing adversarial inputs

e Can use a second, trustworthy ML system for these
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Checking We’ve Seen This Before
e Use unsupervised learning to construct compact
representation of the set of inputs seen in training data

e [ here are related techniques in control, learn “moded”
representation, guaranteed sound

e Similarly for adversarial inputs: want space to be smooth

e AIlso, want smooth evolution in time
o stop sign, stop sign, stop sign, birdcage, stop sign
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Another Approach
e Observe the idea just presented is a kind of runtime monitor
e ['ve no evidence that it works, plan to try it
e But lets consider another kind of runtime monitor

e Idea is you have

o An operational system responsible for doing things

o And a second, monitor system, that checks behavior is
“safe” according to high level safety requirements
(not the local requirements of the (sub)system concerned)

o Take some alternative safe action if monitor trips

e [ heory says reliability of resulting compound system is
product of reliability of operational system and p,s of monitor

e Monitor can be simple, has explicit requirements

o SO pys could be high

e Aha! (Theory due to Littlewood and me, others at City U)
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Pervasive Monitoring

e Code up the rules for safe flight, driving etc.

o FAA “Aviation Handbooks & Manuals”
o California driving code, UK Highway code etc.

e Could be a collaborative effort across each industry
e Possibly with regulatory approval like DO-178C, ISO 26262 etc.

e Need a suitable logic

o Clear and easy to write, and easy to read
o Decent automation, small distance from rules to code
o Answerset programming?

e Could have general sections: rules of the air
o And specialized: GenAv, big jets, 777-300 etc.

e Speculate that much of it is (de)composable

o Cruise, approach, landing gear, radios, collision avoidance etc.
e But beware the experience of expert systems 20 years ago
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Feasibility of High-Assurance Pervasive monitoring

Checking is much easier than doing
We have requirements, for one thing
o E.g., when should wheels be up/down
But still need to do situation/state assessment

o And it needs to be unequivocal (cf. EK 521 crash)
o And integrated (e.g., 87/101 sign cannot be 105 mph 'cos...)

Might use the same sensors, but different/simpler/no ML

o E.g., lane-keeping in cars: have to find the lane
o Monitor just makes sure no obstacles, nothing coming at you

Consider fatal self-driving car crashes (Level 2 used as Level 4)
o Tesla May 2017: didn't see a truck crossing its path
o Tesla March 2018: swerved(?) into median
o Uber March 2018: didn't see lady crossing with a bike
Pervasive monitors would surely have prevented these

False alarms are a challenge: danger as well as nuisance
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Summary
Challenge is not just ML and GAI systems themselves

But the architecture and HCI changes they require/enable
o Do more, NGU, CRM

Specific problem with ML and GAI is not just
(un)predictability and opacity of systems themselves

o Those might be be controlled by monitoring inputs
against training data, and for smooth evolution

But lack of requirements

o Critical failures are judged wrt. safety requirements

Cannot achieve confidence in safety-critical systems by
observing failures: too few of them, want none

o Need assurance for absence of faults

So monitor the safety requirements: that's pervasive monitoring
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Summary: Pervasive Monitoring

e Monitor the safety requirements

o Need suitable logic and automation
o Several small simple independent monitors (speculation)

o Industry and regulatory collaboration to construct
definitive safety requirements in logical form

o Update following any incidents
e [ here’s a plausible statistical theory that it can work
e But needs research and practical investigation
e Not just requirements specification and monitoring

e But system architecture for trustworthy situation assessment

o Shared sensors, independent interpretation?
e Introspection suggests it's how humans work

o Let's try it!
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