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Introduction

• Increasing Autonomy (IA) is US airplane language for systems

that employ machine learning (ML) and advanced/General AI

(GAI) for flight assistance short of full autonomy

• Like driver assistance in cars below Level 5

• Cars and planes have different challenges, but also similarities

• I’ll mostly use airplane examples because that’s what I know

• Typical scenario for IA airplanes is single-pilot operation

◦ e.g., Long flights with two pilots: one can sleep

◦ While the other flies with assistance from “the box”

◦ “The box” has to be more like a human copilot than

conventional flight management or autopilot

◦ So there’s more to it than just automation
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Basic Challenges

• Integration and autonomy

• Crew Resource Management

• Never Give Up

• Unconventional implementations (ML etc.)

I will focus on the last of these but I want to touch on the first

three because they also have large impact on the structure of

safety-critical flight systems and on their assurance

And they are consequences of IA

(Recall early history of Airbus A320)
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Integration and Autonomy (Do More)

• If the IA box is like a copilot, it has to do the things that

human pilots do

• Not just simple control, and sequencing tasks like A/P, FMS

• But things like: radio communications, interpreting weather

data and making route adjustments, pilot monitoring (PM)

tasks, shared tasks (flaps, gear), ground taxi, communication

with cabin-crew (emergency evacuation)

• Currently, automation just does local things, and the pilot

integrates them all to accomplish safe flight

• An IA system must be able to do the integration

• And have overall situation assessment

• Overall, it needs to do a lot more that current systems

• Same in cars

(was just brakes and engine, now driver assistance)
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Crew Resource Management (CRM)

• Since UA 173 Portland crash in 1978

• At all times, and especially in emergencies, tasks must be

shared appropriately, clear coordination, listen to all opinions

• And someone must always be flying the plane

◦ “I’ll hold it straight and level while you trouble shoot”

◦ “You’ve shut down the wrong engine” (cf. social distance)

• The box needs to participate in this

• Field of Explainable AI (EAI) contributes here, but. . .

• EAI typically assumes human is neutral, just needs to hear

reasons, but in emergencies, human often fixed on wrong idea

◦ cf. AI 855, Mumbai 1978

• So the box needs a theory of mind (model of other’s beliefs)

◦ Does fault diagnosis on it to find effective explanation

• Sometimes the human is right! So box needs to take advice

◦ cf. QF 32, Singapore 2010
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Never Give Up (NGU)

• Current automation gives up when things get difficult

• Dumps a difficult situation in the pilot’s lap, without warning

• Human pilots do a structured handover:

◦ “your airplane,” “my airplane”

• Should do this at least, but then cannot give up

• So the standard automation must now cope with real difficulties

◦ Inconsistencies, authority limits, unforeseen situations

• In the case of AF 447, there was no truly safe way to fly

◦ Human pilots are told to maintain pitch and thrust

◦ Automation could do this, or better (cf. UA 232 Sioux City)

• But it is outside standard certification concepts

◦ Must not become a getout

◦ Nor a trap (inadvertent activation)

• Maybe a notion of ethics for the worst case (cf. trolley problems)
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Unconventional Implementations

• Machine learning, neural nets, GAI etc.

• No explicit requirements (just training data),

opaque implementation

• Why this matters: you cannot guarantee safety critical

systems by testing alone

◦ Nor even by extensive prior experience

◦ The required reliabilities are just too great

• AC 25.1309: “No catastrophic failure condition in the entire

operational life of all airplanes of one type”

• Operational life is about 109 hours, we can test 105

• Suppose 105 hours without failure, probability of another 105?

◦ About 50%, probability of 109? Negligible!

◦ Even high-fidelity simulations won’t get us there

• Need some prior belief: that’s what assurance gives us
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What Assurance Does (Step 1)

• Extreme scrutiny of development, artifacts, code provides

confidence software is fault-free

• Can express this confidence as a subjective probability that

the software is fault-free or nonfaulty: pnf

◦ Frequentist interpretation possible

◦ There’s also quasi fault-free (any faults have tiny pfd)

• Define pF |f as the probability that it Fails, if faulty

• Then probability psrv (n) of surviving n independent demands

(e.g., flight hours) without failure is given by

psrv (n) = pnf + (1− pnf )× (1− pF |f )
n (1)

A suitably large n can represent “entire operational life of all

airplanes of one type”

• First term gives lower bound for psrv (n), independent of n
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What Assurance Does (Step 2)

• If assurance gives us the confidence to assess, say, pnf > 0.9

• Then it looks like we are there

• But suppose we do this for 10 airplane types

◦ Can expect 1 of them to have faults

◦ So the second term needs to be well above zero

◦ Want confidence in this, despite exponential decay

• Confidence could come from prior failure-free operation

• Calculating overall psrv (n) is a problem in Bayesian inference

◦ We have assessed a value for pnf

◦ Have observed some number r of failure-free demands

◦ Want to predict prob. of n− r future failure-free demands

• Need a prior distribution for pF |f

◦ Difficult to obtain, and difficult to justify for certification

◦ However, there is a provably worst-case distribution
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What Assurance Does (Step 3)

• So can make predictions that are guaranteed conservative,

given only pnf , r, and n

◦ For values of pnf above 0.9

◦ The second term in (1) is well above zero

◦ Provided r > n
10

• So it looks like we need to fly 108 hours to certify 109

• Maybe not!

• Entering service, we have only a few planes, need confidence

for only, say, first six months of operation, so a small n

• Flight tests are enough for this

• Next six months, have more planes, but can base prediction

on first six months (or ground the fleet, fix things, like 787)

• Theory due to Strigini, Povyakalo, Littlewood, Zhao at City U
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What Assurance Does (Summary)

• We want confidence that failures are (very) rare

• Cannot get it by looking at failures alone

• Also need confidence there are no faults

• That’s what assurance is about

• But to do it, you need requirements, visible design,

development artifacts, etc.

• None of these are present in ML: just the training data

• Could rely on that

• Or look for a different approach

• I’ll sketch ideas for both
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Training Data: Trust but Verify

• We could choose to believe that our ML system generalizes

correctly from the training data

◦ This is arguable, but let’s go with it

• Next, need some measure that the training data is

adequately comprehensive (i.e., no missing scenarios)

◦ Don’t really know how to do this, but let’s go with it

• Can be “comfortable” provided current inputs are “close” to

examples seen in training data (i.e., not a missing scenario)

• And we are not facing adversarial inputs

• Can use a second, trustworthy ML system for these
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Checking We’ve Seen This Before

• Use unsupervised learning to construct compact

representation of the set of inputs seen in training data

• There are related techniques in control, learn “moded”

representation, guaranteed sound

• Similarly for adversarial inputs: want space to be smooth

• Also, want smooth evolution in time
◦ stop sign, stop sign, stop sign, birdcage, stop sign
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Another Approach

• Observe the idea just presented is a kind of runtime monitor

• I’ve no evidence that it works, plan to try it

• But lets consider another kind of runtime monitor

• Idea is you have

◦ An operational system responsible for doing things

◦ And a second, monitor system, that checks behavior is

“safe” according to high level safety requirements

(not the local requirements of the (sub)system concerned)

◦ Take some alternative safe action if monitor trips

• Theory says reliability of resulting compound system is

product of reliability of operational system and pnf of monitor

• Monitor can be simple, has explicit requirements

◦ So pnf could be high

• Aha! (Theory due to Littlewood and me, others at City U)
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Pervasive Monitoring

• Code up the rules for safe flight, driving etc.

◦ FAA “Aviation Handbooks & Manuals”

◦ California driving code, UK Highway code etc.

• Could be a collaborative effort across each industry

• Possibly with regulatory approval like DO-178C, ISO 26262 etc.

• Need a suitable logic

◦ Clear and easy to write, and easy to read

◦ Decent automation, small distance from rules to code

◦ Answerset programming?

• Could have general sections: rules of the air

◦ And specialized: GenAv, big jets, 777-300 etc.

• Speculate that much of it is (de)composable

◦ Cruise, approach, landing gear, radios, collision avoidance etc.

• But beware the experience of expert systems 20 years ago
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Feasibility of High-Assurance Pervasive monitoring

• Checking is much easier than doing

• We have requirements, for one thing

◦ E.g., when should wheels be up/down

• But still need to do situation/state assessment

◦ And it needs to be unequivocal (cf. EK 521 crash)

◦ And integrated (e.g., 87/101 sign cannot be 105 mph ’cos. . . )

• Might use the same sensors, but different/simpler/no ML

◦ E.g., lane-keeping in cars: have to find the lane

◦ Monitor just makes sure no obstacles, nothing coming at you

• Consider fatal self-driving car crashes (Level 2 used as Level 4)

◦ Tesla May 2017: didn’t see a truck crossing its path

◦ Tesla March 2018: swerved(?) into median

◦ Uber March 2018: didn’t see lady crossing with a bike

• Pervasive monitors would surely have prevented these

• False alarms are a challenge: danger as well as nuisance
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Summary

• Challenge is not just ML and GAI systems themselves

• But the architecture and HCI changes they require/enable

◦ Do more, NGU, CRM

• Specific problem with ML and GAI is not just

(un)predictability and opacity of systems themselves

◦ Those might be be controlled by monitoring inputs

against training data, and for smooth evolution

• But lack of requirements

◦ Critical failures are judged wrt. safety requirements

• Cannot achieve confidence in safety-critical systems by

observing failures: too few of them, want none

◦ Need assurance for absence of faults

• So monitor the safety requirements: that’s pervasive monitoring
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Summary: Pervasive Monitoring

• Monitor the safety requirements

◦ Need suitable logic and automation

◦ Several small simple independent monitors (speculation)

◦ Industry and regulatory collaboration to construct

definitive safety requirements in logical form

◦ Update following any incidents

• There’s a plausible statistical theory that it can work

• But needs research and practical investigation

• Not just requirements specification and monitoring

• But system architecture for trustworthy situation assessment

◦ Shared sensors, independent interpretation?

• Introspection suggests it’s how humans work

• Let’s try it!
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