Formal Methods Introduction and Demo

A Practical Introduction to Formal Methods

John Rushby

http://www.csl.sri.com/ “rushby/slides/fmtutorial.pdf|ps.gz

Computer Science Laboratory
SRI International
Menlo Park, California, USA

John Rushby, SRI FM Introduction: 1

Philosophy
Technology overview

Model checking example: group membership

Theorem proving example: bus guardian window timing

Relevance to dependability

John Rushby, SRI FM Introduction: 2

Formal Methods: Analogy with Engineering Mathematics

e Engineers in traditional disciplines build mathematical models
of their designs

And use calculation to establish that the design, in the
context of the environment, satisfies its requirements

Only useful when mechanized (e.g., CFD)

Used in the design loop (exploration, debugging)

o Model, calculate, interpret, repeat
Also used in certification

o Verify by calculation that the modeled system satisfies
certain requirements

Need to be sure that model faithfully represents the design,
and that the design is implemented correctly

o These concerns are handled separately from verification

John Rushby, SRI FM Introduction: 3

Formal Methods: Analogy with Engineering Math (ctd.)

Same idea
The applied math of Computer Science is formal logic

So the models are formal descriptions in some logical system

o E.g., a program reinterpreted as a mathematical formula
rather than instructions to a machine

And calculation is mechanized by automated deduction:
static analysis, model checking, theorem proving, etc.

Formal calculations cover all modeled behaviors
If the model is accurate, this provides verification

If the model is approximate, still good for debugging
(aka. refutation)

John Rushby, SRI FM Introduction: 4

Comparison with Simulation, Testing etc.

Simulation also considers a model of the system (designed
for execution rather than analysis)

Testing considers the real thing

Both differ from formal methods in that they examine only
some of the possible behaviors

For continuous systems, verification by extrapolation from
partial tests is valid, but for discrete systems, it is not

Can make only statistical projections, and it's expensive
o 114,000 years on test for 107°

Limit to evidence provided by testing is about 104

Heavy duty formal methods can consider all behaviors of an
accurate model (but they are expensive)

John Rushby, SRI FM Introduction: 5

Comparison with Simulation, Testing etc. (ctd)
Debugging by simulation and testing depend on skill in
choosing test cases, luck

Almost impossible when the environment can introduce huge
numbers of different behaviors (fault arrivals, real-time,
asynchronous interactions)

Formal methods consider all behaviors, so certain to find the
bugs
o Provided the model and the properties checked are
sufficiently accurate to manifest them

So depends on skill in modeling, luck

Experience is that you find more bugs (and more high-value

bugs) by exploring all the behaviors of an approximate model
than by exploring some of the behaviors of a more accurate

one

John Rushby, SRI FM Introduction: 6

Formal Methods: In Pictures

Testing/Simulation Formal Analysis

Forma Model

O Partial coverage © Compl ete coverage (of the modeled system)
Accurate model: verification

Approximate model: debugging

John Rushby, SRI FM Introduction: 7

Formal Methods Technologies

Static analysis: works directly off programs; can establish
weak (but important) properties such as absence of
arithmetic overflow, no reference to initialized variables etc.
Automatic. Widely used in French aerospace industry
(Polyspace, esp. since the loss of Ariane V); mandated for
certain UK procurements (Spade/Malpas, esp. since loss of
Chinook); best US system (Prefix) bought up by Microsoft

Model checking: usually works off a special modeling

language; basically brute force enumeration. Mostly
automatic, once the model is built.

Theorem proving: usually works off a special modeling
language; usually requires skilled human guidance

John Rushby, SRI FM Introduction: 8

Model Checking

Imagine a program with only a fixed number of data
locations (i.e., its state is finite)

Simulator runs the program and saves snapshots of its state

At each choice point (e.g., program could do this,
environment could do that), choose one arbitrarily; when
finished, back up and explore different choice

Terminate exploration along a given path when you
encounter a state you’'ve seen before

At each state, check that specified properties hold

o On failure, produce a backtrace or counterexample of the
path that got you here

Done when have explored all the paths from all visited states

This is state exploration, aka. reachability analysis

John Rushby, SRI FM Introduction: 9

State Exploration

e Data structure

o The set of states already seen

o States in the set are marked as explored or not
o The set starts with just the initial state(s), marked as

unexplored

e Method
repeat

find an unexplored state in the set

mark it as explored
calculate all its successors
add any not seen before to the set,

marked as unexplored,

and check the specified properties hold

until done

John Rushby, SRI

FM Introduction: 10

State Exploration: Scaling

If the state is n bits, there are 2™ different states and we
need n/8 x 2™ bytes to store them all

And if there are m interacting components, statespace is
exponential in this, too—state explosion problem

Do not need a very large n, m before size of statespace
exceeds all the matter in the universe

Of course, may have relatively few reachable states

And may detect a bug and stop after exploring relatively few
states
o Breadth first search finds short counterexamples

But practical limit to explicit state exploration is around
100-200 state bits

John Rushby, SRI FM Introduction: 11

State Exploration: Overcoming the Scaling Problem
e Use hashing: sacrifices completeness
e EXxploit symmetry, order insensitivity

e Use symbolic representation of state: e.g., z < y represents
an infinite number of explicit states: (0,1), (0,2), ... (1,2),
(1,3)...

o Standard method uses BDDs (binary decision diagrams)
and variants

o Recent method (bounded model checking) uses SAT
solvers (propositional satisfiability checkers) to find all
counterexamples less than specified length; incomplete,
but very effective for debugging

e Downscale the model

John Rushby, SRI FM Introduction: 12

State Exploration: Properties

Checking assertions only allows examination of safety
properties

o Can also check for deadlock

What about liveness: e.g., “every request is eventually
followed by a grant” 7

Need a language to specify these

Any particular run traces out a linear sequence of states

Linear Temporal Logic (LTL) is a language for expressing
properties of such sequences using always (O) and eventually
(&) modalities

John Rushby, SRI FM Introduction: 13

State Exploration: Properties (ctd)
e Evolution of all different behaviors traces out a tree

e Computation Tree Logic (CTL) is a language (a branching
time temporal logic) for expressing properties of such trees
using four modalities

o AG(p): p is true everywhere along each path (invariant)

o AF(p): p is true somewhere along each path
o EG(p): p is true everywhere along some path
o FEF(p): pis true somewhere along some path
Also “next” and “until” operators, plus “fair’ variants

(include only paths where some specified formula is true
infinitely often)

John Rushby, SRI FM Introduction: 14

Computation Tree LogicC

John Rushby, SRI FM Introduction: 15

State Exploration: Properties (ctd)

Can modify explicit-state and symbolic state exploration
systems to check for LTL or CTL properties

Technically, we are checking whether the system description

is a (Kripke) model for the property expressed in a temporal
logic

That's why it's called model checking

Variants described in terms of w-regular language inclusion,
bisimulation, etc.

Can also do model checking for non finite-state (e.qg., timed,
hybrid) systems: Kronos, HiTech, Uppaal, LCS

John Rushby, SRI FM Introduction: 16

Model Checking Tools
Quite widely used in hardware and protocol verification

Spin (Bell Labs): explicit state, depth-first search, LTL,
partial-order reduction

SMV (CMU): symbolic, CTL
Mur¢ (Stanford): explicit state, breadth-first search

Formal Check (Bell Labs): commercial version of Cospan;
does w-regular language inclusion

Concurrency Workbench (SUNY SB): does bisimulation in
process algebras

FDR (Formal Systems): commercial, does refinement in CSP

Aldebaran (Verimag): explicit state, does static analysis to
prune state space

John Rushby, SRI FM Introduction: 17

Limitations of Model Checking

Usually have to downscale the model to make model
checking tractable

Often good at finding bugs, but what if no bugs detected?

Have we achieved verification, or just got an inadequate
model or property?

Sometimes it's possible to prove that a small model is a
property-preserving abstraction of a large, accurate one

Then not detecting a bug is equivalent to verification

But in general, have to resort to theorem proving if you want
to verify a fully accurate (large or infinite state) model

John Rushby, SRI FM Introduction: 18

Theorem Proving

e Using symbolic representations, can establish an infinite
number of cases at one go
o cf. 5%5-3%3 = (5-3)*(5+3) and z? —y? = (z — y)(z + v)

e Also, we can abstract away irrelevant details
o E.g., in model checking, simulation, or testing, we have to

ascribe a specific incorrect behavior to faulty components
o With theorem proving, we can just say we know nothing
about faulty components

e Use mechanized deduction (theorem proving) to establish
that a formula specifying a required property follows from
formulas specifying behavior of the system and its

environment

John Rushby, SRI FM Introduction: 19

However. ..

Theorem proving

o Is undecidable in general

o And even decidable problems have much greater
computational complexity than mechanizations of
continuous mathematics

So full automation is impossible in general

Must rely on heuristics (guesses) which will sometimes fail

o Heuristic theorem proving
Or rely on human guidance
o Interactive theorem proving

Or trade off accuracy or completeness of the model for
tractability and automation of calculation

o Model checking, ‘“lite” theorem proving

John Rushby, SRI FM Introduction: 20

Model Checking Example: Group Membership

e [his example is based on group membership in TTA

e It's a different algorithm, however (simpler, weaker
properties, smaller statespace)

John Rushby, SRI FM Introduction: 21

Background: The Time-Triggered Architecture (TTA)

Creates a synchronous, TDMA ring on a broadcast bus

John Rushby, SRI FM Introduction: 22

Background: The Time-Triggered Protocol (TTP/C)

TTP/C is the heart of TTA; it provides several services in a
tightly integrated manner

e Clock synchronization
e Time-triggered implementation of synchronous algorithms

e Time Division Multiple Access (TDMA)

o Deterministic mutual exclusion
o Data communication

e Group membership (the example considered here)

Assumes (and enforces) fail silence

John Rushby, SRI FM Introduction: 23

The Need for Group Membership
Consider a brake-by-wire application

Separate computers at each wheel adjust braking force
according to inputs from brake pedal, accelerometers,
steering angle, wheel-spin sensors etc.

Suppose one of these computers fails

’ I

o T

e The others need to redistribute the braking force

e SO must have consistent opinion about who has failed

John Rushby, SRI FM Introduction: 24

Requirements For Group Membership
Each processor maintains a membership set

Validity: the membership sets of nonfaulty processors contain
all the nonfaulty processors

e And, ideally, nothing else—Dbut this is not possible
because it takes some time to diagnose a faulty processor

e SO allow at most one faulty processor in the membership

Agreement: all nonfaulty processors have the same
membership sets

Self-Diagnosis: faulty processors eventually remove
themselves from their own membership sets (and fail silently)

Rejoin: Repaired processors can get back in

Subject to fault hypothesis about possible fault modes, fault
arrival rate, and maximum number of faults

John Rushby, SRI FM Introduction: 25

Here’s a Group membership Algorithm (not TTA)

Broadcaster: Let b =1 mod n.
(a) b € mem(b) — mem(b)’ = mem(d), ack(b)’ = true

otherwise — no change.

Receiver: Consider an arbitrary processor p # b. If b € mem(p) and p € mem(p),
the appropriate guarded command from the following list is executed:

ack(p) A no msg ack(p) = false
ack(p) A ack(b) ack(p) = true
) A

)
)
) ack(p

—ack(p) A no msg

—ack(p) A —ack(b) ack(p)’ = true
—ack(p) A ack(b)

—ack(b) ack(p)’ = true

otherwise no change.

John Rushby, SRI FM Introduction: 26

Fault Hypothesis for Membership
Fault modes: very restrictive assumptions

Send Fault
e A faulty processor might not broadcast (in some rounds)

o Broadcasts are received either by all or none of the
nonfaulty processors (weaker in TTA)

Receive Fault
e A faulty processor might not receive some broadcasts

Fault arrivals: faults must be ‘“rare”

e Roughly, no more than one per round
e More precisely, may arrive only when system is ‘stable”
o And after a fault it returns to a stable state very quickly

Maximum faults: no restriction (different in TTA)

John Rushby, SRI FM Introduction: 27

Model Checking Example: Group Membership

John Rushby, SRI FM Introduction: 28

Theorem Proving Example:
Bus Guardian Window Timing

TTP/C operates according to a global schedule

All controllers have approximately synchronized clocks
So each knows when it's its turn to transmit

And there will be no collisions on the bus

But a faulty controller might misbehave (or simply lose clock
sync) and transmit out of turn—or all the timel—babbling
idiot failure mode

So interpose a bus guardian that fails independently (has its
own clock and copy of the schedule)

Want the bus guardian window to be as narrow as possible

But still pass all messages from nonfaulty controllers

John Rushby, SRI FM Introduction: 29

window Timing: Requirements

Need to consider windows of three (classes of) components

o A transmitter
o Its bus guardian
o T he receivers

Requirements

Validity: If any nonfaulty node transmits a message, then all
nonfaulty nodes will accept the transmission.

Agreement: If any nonfaulty node accepts a transmission,
then all nonfaulty nodes do

Given that clocks are synchronized only within some
parameter 11

John Rushby, SRI FM Introduction: 30

window Timing: In Pictures

skew (M)

TF (2n)

Transmitter

Bus Guardian

l BF (3M)

John Rushby, SRI FM Introduction: 31

Window Timing: Design Rules

e Each slot has a start time and a maximum duration recorded
in the schedule

e 1. Transmission begins 21I units after the beginning of the
slot and should last no longer than the allotted duration.
. T he bus guardian for a transmitter opens its window 11
units after the beginning of the slot and closes it 311
beyond its allotted duration.

. The receive window extends from the beginning of the
slot to 411 beyond its allotted duration.

These are new: not what is documented in the TTP/C
specification

e [T Tech has an informal argument that this works

John Rushby, SRI FM Introduction: 32

window Timing: Verification

e Cannot model check this because it's infinite state—relative
clock skews can be any three real numbers less than II—and

they can change during transmission

e Need to model it in logic

John Rushby, SRI FM Introduction: 33

Theorem Proving Example:
Bus Guardian Window Timing

John Rushby, SRI FM Introduction: 34

Summary: Good Points of Model Checking
Model checking is good for finding bugs
Particularly in highly concurrent systems

And in fault-tolerant systems

o Can “inject” all possible fault scenarios in given class

o Though it can be hard to specify all possible fault classes

Counterexamples are extremely helpful
It's automatic
And similar to simulation and testing

Acceptable to engineers and useful in the design loop

John Rushby, SRI FM Introduction: 35

Summary: Weak Points of Model Checking

e The models (and properties) have to be simplified to make
them tractable to fully automated analysis

e But simplified models may not be fully accurate with respect
to the property of interest

o And that's why they cannot be used for verification

e SO when to stop?

o Lack of refutation is not the same as verification

John Rushby, SRI FM Introduction: 36

Summary: Good Points of Theorem Proving

Can be used for verification

Can model arbitrary faults (because can remain silent about
what faults do)

And can also leave irrelevant details unstated

In some domains, can develop highly efficient specialized
automatic procedures (e.g., processor pipeline logic—can
verify Itanium in fractions of a second)

But usually requires interactive guidance

John Rushby, SRI FM Introduction: 37

Summary: Weak Points of Theorem Proving

e Usually requires interactive human guidance

Focuses on proof, and idiosyncrasies of the prover, not on
the design

Difficult to interpret failure (bug, or bad proof?)

Can prove any true property given enough time, skill,
patience

Or find subtle bugs
But often requires too much time, skill, patience

“Interactive theorem proving is a waste of human talent”
e Also, must strengthen invariants to make them inductive
e And it’s all or nothing

e Probably not acceptable to engineers and best for verification
of truly critical properties

John Rushby, SRI FM Introduction: 38

John

Inductive Invariants @

To establish an invariant or safety property (one true of all
reachable states) by theorem proving, we invent another
property that implies the one of interest and that is inductive

o Includes all the initial states
o Is closed on the transitions

The reachable states are the smallest set that is inductive

Trouble is, naturally stated invariants are seldom inductive

o The second condition is violated

Postulate a new invariant that excludes the states (so far
discovered) that take you outside the desired invariant

Iterate until success or exasperation

Bounded retransmission protocol required 57 such iterations

Rushby, SR1 FM Introduction: 39

T he Wall of Formal Verification

A

Knowledge /

about system

verification

Effort

John Rushby, SRI FM Introduction: 40

Is Softened by Model Checking

/

verification

refutation

Effort

John Rushby, SRI FM Introduction: 41

And Will Be Replaced By A Smooth Ramp

theorem
provers
experimental tools

SAL

model
checking verification
static
anaysis
typechecking
refutation

invisiblefm

John Rushby, SRI FM Introduction: 42

Relevance to Dependability: Design and Certification

Assurance and certification for software is mostly done by
controlling, monitoring, and documenting the process used to
create it

o Different industries have different recommended processes
(e.g., DO-178B/ED-12B for avionics)

This is process-based certification

o Provides no direct evidence about the product

“We cannot show how well we've done, so we'll show
how hard we tried”

Hugely expensive, and a brake on innovation

And little evidence that it really assures 10~°

John Rushby, SRI FM Introduction: 43

Product-Based Certification For Software
Product-based certification

o Is that which concerns properties of the product itself

For continuous systems, can be done by testing and
extrapolation

But for discrete systems, testing cannot provide evidence
beyond 10~4

o Complete testing is infeasible: 114,000 years for 107

o And extrapolation from incomplete tests is unjustified

For 1079, must really consider of all possible behaviors
o This can be achieved using formal methods to calculate
properties of mathematical models of the software

o Validation of models, and consistency between model and
code, by traditional methods (for the time being)

John Rushby, SRI FM Introduction: 44

Product-Based Certification For Software (ctd.)

e Using formal calculations, some activities that are
traditionally performed by reviews

o Processes that depend on human judgment and consensus
can be replaced or supplemented by analyses

o Processes that can be repeated and checked by others,
and potentially so by machine

Language from DO-178B

e DO178B, DO254 (complex hardware), and most other safety
standards allow or encourage such use of formal methods

John Rushby, SRI FM Introduction: 45

A Place for Formal Verification

Replace homespun designs for redundancy management with
middleware or architectural frameworks based on rigorous
design principles, separation of concerns

o That are assured to the highest degree
o Including extensive formal verification

For example, TTA, DEOS, and successors

Leave adoption to market forces (fight COTS with COTS)

Work out the principles of (formal) compositional
product-based assurance

o Based on standardized frameworks
o So that a market for certified components can develop

John Rushby, SRI FM Introduction: 46

A Place for Formal Verification: Longer Term

e Systems are more than collections of components

e At the top, they are mostly specified and designed by
systems and control engineers working with models and
simulations (e.g., Matlab/Simulink)

o Need assurance for these models, and for the
computational math routines employed (which will happily
integrate over a singularity)

o Formal analysis methods can already help here

Develop rigorous intellectual path, and formally-assured
tool-chain, from these models to component-based
implementations running on assured frameworks

Requires that formal methods become accepted by practicing
engineers and integrated in their tools

John Rushby, SRI FM Introduction: 47

A Place For Model Checking

Heavy-duty theorem proving is currently probably too
expensive for anything but major infrastructure (like TTA)

Lite (invisible) theorem proving has great promise but needs
to get inside tools (see later)

But model checking is viable as a superior debugging tool for
any design elements that have a lot of concurrent
activity—either components (redundancy) or between system
and environment (fault arrivals, timing)

Model checking opens the door to more general use of formal
methods

The modeling languages of some formal methods are
excellent notations in their own right, provide superior
documentation

John Rushby, SRI FM Introduction: 48

Making A Place For Formal Methods: Inside Tools

You cannot buy a simple Statecharts tool today

o Can only buy integrated systems that provide desired
capability, plus numerous others of varied quality

Encourage development of standardized “tool bus” driven off
a database

o Like the auto industry is trying to do

So that vendors can develop value-added components

And formal methods capabilities can be inserted “invisibly”
into traditional tools

o E.g., Extended static checking for Simulink

Support the basic research in automated deduction and
formal analysis of software that produces the technology

John Rushby, SRI FM Introduction: 49

Places for Formal Methods: Longer Term
e Beyond single systems

o Develop rational architectures for safety-critical
multi-agent systems such as air-traffic management
(free-flight), automobile convoys, UAV swarms

o And the formal methods to analyze these

e Human factors (the dominant cause of airplane accidents)

o Modern cognitive science views the mind as an
information processor

o Can build formal models of cognitive abilities (e.g.,
mental models) and analyze them in juxtaposition with
automation to find “automation surprises”

e Basic research: support for fundamental technologies (again)

o Formal spec’'n, automated deduct'n, test-generation;
assurance for comput'n math, simul’n, auto code gen

John Rushby, SRI FM Introduction: 50

