
On Emergent Misbehavior

John Rushby

With help from Hermann Kopetz

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Emergent Misbehavior 1

The Basic Idea

• We build systems from components, but systems have

properties not possessed by their individual components

• Emergence is the idea that complex systems may possess

qualities that are different in kind than those of their

components: described by different languages (ontologies)

◦ e.g., velocities of atoms vs. temperature of gas

◦ e.g., neural activity in the brain vs. thoughts in the mind

Quality is used as a generic term for the result of emergence:

behavior, structure, patterns, etc.

• Systems where macro qualities are straightforward

consequences of the micro level are called resultant

John Rushby, SR I Emergent Misbehavior 2

Overview

• There’s good emergence and bad

• In particular, complex systems can have failures not predicted

from their components, interactions, or design

• Call this Emergent Misbehavior

• I’m interested in emergent misbehavior and how to control it

• I suspect “emergence” here is more glitter than substance

• But I’ll start by outlining traditional emergence

• Then get on to misbehavior

• And a Crazy Idea

John Rushby, SR I Emergent Misbehavior 3

Emergence

Two key ideas

• Downward Causation: interactions at the macro level

propagate back to the micro level

◦ e.g., flock flowing around an obstruction: individuals

respond to actions of neighbors

◦ Micro behavior seems stochastic

◦ Macro behavior is systemic

• Supervenience: there can be no difference at the macro level

without a difference at the micro level

◦ If I have a new idea, my neural state must change

◦ But different micro states may correspond to the same

macro state

i.e., macro states are a surjective function of micro states

John Rushby, SR I Emergent Misbehavior 4

Strong and Weak Emergence

• What I just described is sometimes called strong emergence

◦ Not obvious you can compute macro behavior from micro

• In contrast to weak emergence

◦ Asserts you can compute macro behavior from micro,

but only by simulation

◦ i.e., there’s no accurate description of the system simpler

than the system itself

• Weak emergence is an attempt to eliminate downward

causation

◦ Because it looks like something from nothing

◦ Because it is epiphenomenal (sterile side-effect)

• But then weak emergence just looks like another name for

behavior that is unexplained (by our current theories)

John Rushby, SR I Emergent Misbehavior 5

Is Emergence Relative?

• Emergence is relative to our models or theories for how

macro qualities derive from the micro level

• So weak emergence is just a reflection of ignorance

◦ i.e., of the weakness of our current theories and models

• Note that we can have theories for emergent qualities without

being able to explain their emergence from the micro level

◦ e.g., chemistry prior to quantum mechanics

• Even when we can predict macro qualities from micro

models, that’s not always the best way to proceed

◦ We have statistical thermodynamics, but we still use

Boyle’s Law

John Rushby, SR I Emergent Misbehavior 6

Is Emergence Relative? (ctd.)

• Even strong emergence can be “explained” by adding new

details to models of micro behavior

• e.g., traffic jams, which look emergent

◦ New rule: in heavy traffic, faster cars cannot overtake

slower ones, so they have to brake

⋆ This reflects/encodes downward causation

◦ More sophisticated models predict phantom traffic jams

(standing waves, or solitons)

• So, qualities are emergent until we learn how to explain then,

then they become resultant

• cf. Quantum Mechanics and downfall of British Emergentism

• Emergent qualities are ontologically novel (at least, in this

domain), so revision to micro-level theory may be substantial

• So. . . ?

John Rushby, SR I Emergent Misbehavior 7

Emergent Misbehavior

• There’s good emergence and bad

• In particular, complex systems can have failures not predicted

from their components, interactions, or design

• Emergent or just unexpected?

• Probably the latter, but in sufficiently complicated contexts it

may be useful to consider these failures as different in kind

than the usual ones

• Maybe some are due to downward causation

• In any case, possibly a useful new way to look at failures

John Rushby, SR I Emergent Misbehavior 8

Examples

• Jeff Mogul’s paper:

◦ Mostly OS and network examples concerning performance

and fairness degradation rather than outright failure

◦ e.g., router synchronization

◦ Note that these properties are expressed in the language

of the emergent system, not the components

◦ Like phantom traffic jams

• Feature interaction in telephone systems

• West/East coast phone and power blackouts

• 1993 shootdown of US helicopters by US planes in Iraq

• Überlingen mid-air collision

John Rushby, SR I Emergent Misbehavior 9

Even “Correct” Systems

Can Exhibit Emergent Misbehavior

• We have components with verified properties, we put them

together in a design for which we require properties P, Q, R,

etc. and we verify those, but the system fails in

operation. . . how?

• There’s a property S we didn’t think about

◦ Maybe because it is ontologically novel: needs to be

expressed in a new language of the emergent system, not

in the language of the components

◦ If we’d tried to verify it, we’d have found the failure

◦ But it’s hard to anticipate all the things we care about in

a complicated system

• Call these unanticipated requirements

• Note that S could be negated (i.e., a property we don’t want)

John Rushby, SR I Emergent Misbehavior 10

Even “Correct” Systems

Can Exhibit Emergent Misbehavior (ctd.)

• We verified that interactions of components A and B deliver

property P and that A and C deliver Q, taking care of

failures appropriately: A||B ⊢ P , A||C ⊢ Q

• But there’s an interaction we didn’t think about

◦ We didn’t anticipate that some behaviors of C (e.g.,

failures) could affect the interactions of A and B, hence P

is violated even though A and B are behaving correctly

(and so is C, wrt. the property Q): A||B||C 6⊢ P

• That’s why FAA certifies only complete airplanes and engines

• Call these unanticipated interactions

(or overlooked assumptions)

John Rushby, SR I Emergent Misbehavior 11

Causes of Emergent Misbehavior

• I think they all come down to ignorance

◦ Or epistemic uncertainty

• There are no accurate descriptions of some complex systems

simpler than the system itself (recall weak emergence)

• But all our analysis and verification are with respect to

abstractions and simplifications, hence we are ignorant about

the full set of system qualities

• More particularly, we may be ignorant about

◦ The complete set of requirements we will care about in

the composed system

◦ The complete set of behaviors of each component

◦ The complete set of interactions among the components

John Rushby, SR I Emergent Misbehavior 12

How to Eliminate or Control Emergent Misbehavior

• Identify and reduce ignorance

• Eliminate or control unanticipated behaviors and interactions

◦ i.e., deal with the manifestations of ignorance

• Engineer resilience

◦ i.e., adapt to the consequences of ignorance

John Rushby, SR I Emergent Misbehavior 13

Identify and Reduce Ignorance

Vinerbi, Bondavalli, and Lollini propose tracking ignorance as

part of requirements engineering

• Quantify it (qualitatively, e.g., low, medium, high)

• Have rules how it propagates though AND and OR etc.

• If it gets too large, consider replacing a source of high

ignorance (e.g., COTS, or another system) by a

better-understood and more limited component

John Rushby, SR I Emergent Misbehavior 14

Identify and Reduce Ignorance (ctd. 1)

• There are other fields where epistemic uncertainty plays a

central rôle: particularly, safety

◦ Have to try and think of everything

◦ And deal with it

• Everything raises epistemic uncertainty

• Hazard analysis is about systematic ways to explore

everything

• But I think it can be put on a more formal footing

◦ And that automated support is needed and feasible

• There are some promising avenues for doing this

◦ e.g., model checking very abstract designs

◦ Using SMT solvers for infinite bounded model checking

with uninterpreted functions

• Distinguish the (formal) verification and the safety case

◦ Safety case addresses epistemic uncertainty in verification

John Rushby, SR I Emergent Misbehavior 15

Identify and Reduce Ignorance (ctd. 2)

• Black and Koopman observe that safety goals are often

emergent to the system components

• e.g., the concept (no) “collision” might feature in the

top-level safety goal for an autonomous automobile

• But “collision” has no meaning for the brake, steering, and

acceleration components

• They suggest identifying local goals for each component

whose conjunction is equivalent to the system safety goal,

recognizing that some unknown additional element X may be

needed (because of emergence) to complete the equivalence

• An objective is then to minimize X

• Seems based on an impoverished view of how local goals

compose when components interact

John Rushby, SR I Emergent Misbehavior 16

Eliminate Unanticipated Behaviors and Interactions

• Behaviors and interactions due to superfluous functionality

◦ e.g., use of a COTS component where only a subset of

its capabilities is required

◦ Or functions with many options where only some required

These can be eliminated by wrapping or partial evaluation

Being explored in the previrtualization project

• Interactions that use unintended pathways

◦ E.g., A writes into B’s memory

◦ Or tramples on its bus transmissions

◦ Or monopolizes the CPU

These can be eliminated by strong partitioning of resources

But we remain vulnerable to pathways through the plant

(e.g., Concorde’s tires and tanks

John Rushby, SR I Emergent Misbehavior 17

Control Unanticipated Behaviors and Interactions

• Unanticipated behaviors on intended interaction pathways

◦ e.g., unclean failures

◦ Local malfunctions

These can be controlled by strong monitoring

◦ Monitor component behavior against system

requirements; shutdown on failure

◦ Monitor assumptions; treat source component (or self?)

as failed when violated

◦ Use interface automata to monitor interactions

◦ Use inline reference monitors (IRMs) to monitor security

John Rushby, SR I Emergent Misbehavior 18

Engineer for Resilience

• Our diagnosis is very similar to Perrow’s Normal Accidents

• In his terms, we aim to reduce interactive complexity and

tight coupling

• One way to do both is to increase the autonomy of

components

◦ i.e., they function as goal-directed agents

◦ e.g., substitute runtime synthesis for design-time analysis

(both use formal methods, but in different ways)

• But then may be more difficult to design the overall system

◦ Actions of intelligent components frustrate system goals

◦ e.g., pilot actions on AF 447

• Overall system should become adaptive or autonomic

Using AI and machine learning

John Rushby, SR I Emergent Misbehavior 19

Summary

• Reductionist approaches to system design and understanding

may no longer be appropriate

◦ Systems are built from incompletely understood

components, and other systems

◦ System goals far removed from component functions

• Widespread emergent misbehavior seems inevitable

◦ In some cases, can attempt to reduce emergence and

restore validity of reductionism

◦ In other cases, should embrace emergence and aim for

adaptation and resilience

• In no cases will it be business as usual

• Datum: safety critical code size in aircraft and spacecraft

doubles every two years (Holzmann)

John Rushby, SR I Emergent Misbehavior 20

Crazy Idea

• We’d like to compose system-level properties from local ones

• We actually know how to do this in the small

◦ The last 20 years of formal methods

• But it doesn’t scale

◦ Systems, properties are too big

◦ Too much other stuff: harbingers of emergent misbehavior

◦ Especially for system-level properties like safety & security

• So build/verify/synthesize and use/assume the defenses I

described against emergent misbehavior

• To create an environment in which local properties may

safely compose (well, reasonably safely)

• Composability (PPP), Compositionality, Monotonicity

• Then focus on the automated verification/synthesis of local

components, their assurance, and their composition

• Assurance case rests on these two verified/synthesized pillars

John Rushby, SR I Emergent Misbehavior 21

