
IARP, IEEE/RAS and EURON meeting, Nagoya, Japan, 16-18

June 2005

Formal Methods for Dependable Robots

In Human-Centered Environments

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I FM for Robotics: 1

Overview

• Formal methods in general

◦ Refutation as well as verification

◦ A small demo

• Formal methods and robotics

• Formal methods and robots in human-centered environments

◦ A small demo

• Conclusion

John Rushby, SR I FM for Robotics: 2

Formal Methods in General

• Formal methods are about calculating the behavior of

computational systems

• Engineers in traditional disciplines build mathematical models

of their designs

• And use calculation to establish that the design, in the

context of a modeled environment, satisfies its requirements

• Only useful when mechanized (e.g., CFD)

• Used in the design loop: exploration, debugging, testing

◦ Model, calculate, interpret, repeat

• Also used in certification: we no longer march armies over

bridges to check their strength

◦ Instead, verify by calculation that the modeled system

satisfies certain requirements

John Rushby, SR I FM for Robotics: 3

Formal Methods Are the Applied Math of Computation

• Modeling in engineering uses the applied math appropriate to

the discipline concerned

◦ Aerodynamics: partial differential equations

◦ Computation: mathematical logic

? Doesn’t require special notation (although it can help):

just reinterpret C, Stateflow/Simulink, etc. as logical

specifications rather than instructions to a machine or

simulator

• And corresponding efficient methods of calculation

◦ Aerodynamics: Navier-Stokes solvers, CFD

◦ Computation: automated deduction

? Theorem proving, model checking, constraint solving

? Notice these are symbolic methods

John Rushby, SR I FM for Robotics: 4

Benefit of Formal Methods

• A single symbolic calculation subsumes many individual cases

◦ Just as x
2 − y

2 = (x − y) × (x + y)

◦ Subsumes 36 − 16 = 2 × 10 and 49 − 4 = 5 × 9 and . . .

◦ Price paid is computational complexity

? All automated deduction is exponential or worse

• In comparison with simulation, testing etc., a benefit of

formal methods is you can consider all possible behaviors

◦ E.g., examined 259,220,300,300,290 states (1015) for

TTA startup in a few hours

◦ For the modeled system and its environment

• Because formal methods are computationally demanding,

may deliberately use models that over- or under-approximate

the real thing

John Rushby, SR I FM for Robotics: 5

Overapproximate Models

• Modeled system has more behaviors than the real thing

◦ E.g., assume a less constrained environment

• Effective for verification of safety properties

• For sound verification, need to be sure that model faithfully

represents the design, the design is implemented correctly,

the environment is modeled adequately and the formal

calculations are performed without error

◦ These concerns are identical with traditional methods and

are handled similarly

John Rushby, SR I FM for Robotics: 6

Underapproximate Models

• Modeled system has fewer behaviors than the real thing

◦ Downscale data structures

? E.g., Limit queues to length 2

◦ Limit length of runs considered

◦ Constrain the environment

? E.g., types, numbers of faults allowed

• Risky for verification

• But effective for refutational activities

◦ Exploration (experiments to gain understanding)

◦ Counterexample generation and debugging

◦ Test generation

• Experience is that you find more bugs by complete

examination of incomplete models than by partial

examination of the full thing

John Rushby, SR I FM for Robotics: 7

Let’s See An Example

• Given the Matlab/Stateflow description of the shift scheduler

for an automatic transmission

◦ 3.4832187337996 × 1021 reachable states

• Automatically generate efficient test cases to visit every

control state and transition, such that the gear input changes

by exactly one each time (demo just three states for speed)

• Done by automatically translating Stateflow into SAL

◦ SAL is the language of our model checkers

• Then using sal-atg test generator

◦ A Scheme script on the API of our model checkers

◦ Uses both symbolic (BDD) and bounded (SAT) model

checking

John Rushby, SR I FM for Robotics: 8

Stateflow Model for the Shift Scheduler

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
 to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
 to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
 to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
 to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
 to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
 to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

John Rushby, SR I FM for Robotics: 9

There is Whole Spectrum of Formal Methods

From invisible (i.e., fully automatic, such as test generation) to

full verification by interactive theorem proving

theorem
 proving

interactive

m
odel

checking

Reward (assurance)

PVSICSSAL

automated

theorem proving

and abstraction

invisible

formal methods

Effort

Conjecture: reward/effort climbs steeply in the invisible region

John Rushby, SR I FM for Robotics: 10

V&V: Simplified Vee Diagram

system
requirements test

design/code unit/integration
test

time and money

Automated formal methods can tighten the vee

John Rushby, SR I FM for Robotics: 11

Tightened Vee Diagram

system
requirements test

design/code unit/integration
test

time and money

The change to model-based development assists here

John Rushby, SR I FM for Robotics: 12

Safety and Formal Methods

• Ability to examine all modeled behaviors is useful when these

are numerous or complex

◦ Nondeterministic systems

◦ Distributed systems

◦ Real-time systems

• And can be valuable in safety analysis

• Can be used to automate FMECA and FTA

• And possibly hazard analysis (research topic)

• Also very effective in analyzing fault tolerance

John Rushby, SR I FM for Robotics: 13

Progress

• Massive recent improvements in automated deduction

◦ Competitions: BDDs, SAT, planners, decision procedures

• And in their use in formal methods

◦ Infinite bounded model checking

◦ Predicate abstraction

◦ Abstraction-refinement

◦ Software model checking

◦ Runtime verification

• E.g., Microsoft SLAM project

John Rushby, SR I FM for Robotics: 14

Formal Methods and Robotics

Several new issues:

• Discrete computation interacting with continuous physics

◦ Formally, these are hybrid systems

◦ Real-time systems are a special case

• AI elements in the control loop

◦ Heuristics, learning, connectionist etc.

• Sensor interpretation

◦ Vision etc.

John Rushby, SR I FM for Robotics: 15

Hybrid Systems

• State machines plus differential equations

• Control theory can answer questions about stability etc.

• But we are interested in reachability

◦ Can we ever reach a bad state?

• There are several formal methods tools for this

◦ E.g., HyTech, CheckMate

◦ Limited to about 5 continuous variables

• A new method reduces this limitation

◦ Hybrid abstraction by Ashish Tiwari (SRI)

◦ Can often handle as many as 20 continuous variables

◦ Calculates a conservative discrete approximation to the

continuous dynamics (a qualitative abstraction)

◦ Automated by theorem proving over real closed fields

◦ Result is a discrete system that can be model checked

John Rushby, SR I FM for Robotics: 16

Hybrid Abstraction: Examples

• Another Ford powertrain example

• 6 continuous variables (and some defined in terms of these)

• 50 polynomials

• About 300 lines of HybridSAL (hand coded from Matlab file)

• Hybrid abstracter takes around 5 minutes (real time) to

create the abstractions (about 9,000 lines of SAL)

• SAL symbolic model checker takes about 3 minutes to check

abstracted system (1014 reachable states)

• Finds a bug: the controller and the plant disagree on the

current mode (i.e., gear) of the system

• Proved no chattering: for a fixed throttle position and grade,

the transmission does not flip between 1-2-1 or 2-1-2

John Rushby, SR I FM for Robotics: 17

AI in the Control Loop

• Scruffy or neat?

Scruffy: ad hoc methods that seem to work

◦ E.g., rule-based diagnosis and repair

Neat: methods driven by first principles models

◦ E.g., diagnosis from first principles

• To analyze scruffy methods, build suitable models of the

controlled plant and environment, and apply formal methods

to their combination (models are used for generation)

◦ plant + environment + scruffy method |= safety property

This could be used for runtime verification as well

◦ Or Just-In-Time model checking

• Neat methods are correct by construction, relative to the

models used (models are used for interpretation)

◦ Problem is adequate performance with a decent model

John Rushby, SR I FM for Robotics: 18

Controller Synthesis with Formal Methods

• Design of a controller can be seen as a two-player game

between the environment and the controller

◦ Environment tries to inject disturbances that will take the

plant to a bad state

◦ Controller tries to prevent the environment having a

winning strategy

• Can use formal methods to synthesize controllers

◦ Calculate all possible environment moves to find states

from which environment can win

◦ Calculate a controller strategy that always avoids those

states

• Feasible with the power of modern formal methods

◦ Use hybrid abstraction for continuous variables

• E.g., SAL plays good endgames in chess, and chess variants

John Rushby, SR I FM for Robotics: 19

Sensor Interpretation

• Formal V&V for sophisticated sensor interpretation such as

vision seems very difficult: neural systems with learning

• May be able to apply refutational formal methods, and

runtime verification

◦ world + sensor + interpretation |= safety property

• May be more promising to apply formal methods to fusion of

multiple sensors

◦ Consistency under conservative models

• And to issues at system level

◦ E.g., outermost loop as a controller with noisy sensors

• Example: Berkeley detector for falls by elderly people

John Rushby, SR I FM for Robotics: 20

Human-Centered Systems

• Everything is as before, except now the environment includes

humans

• So we just need models for relevant aspects of human

biomechanics, physiology, cognition etc. and we can use the

previous methods!

• Some evidence for plausibility:

◦ Hybrid system models in molecular biology

? Symbolic Systems biology

◦ Hybrid system models of whole-body systems

(e.g., diabetes)

◦ CFD for bloodflow in defective arteries

◦ Matlab models for biomechanics

◦ Formal mental models in cognition

John Rushby, SR I FM for Robotics: 21

Modeling Human Cognition

• Modern psychology regards mental processes as information

processing

• So maybe we can use formal methods to look at these

• Focus on human error, the dominant cause of aircraft

incidents and accidents (70% of accidents)

• Actually, the error is usually bad design, which provokes

automation surprise

• Pilots are surprised by the behavior of the automation

◦ Or confused about what “mode” it is in

◦ “Why did it do that?”

◦ “What is it doing now?”

◦ “What will it do next?”

John Rushby, SR I FM for Robotics: 22

Postulates (from Human Factors)

• Operators use “mental models” to guide their interaction

with automated systems

• Automation surprises arise when the operator’s mental model

does not accurately reflect the behavior of the actual system

• Mode confusion is a just a special case: the mental model is

not an accurate reflection of the actual mode structure

◦ Or loses sync with it

• Mental models can be explicitly formulated as state machines

◦ And we can “capture” them through observation,

interviews, and introspection

◦ Or by studying training manuals

(which are intended to induce specific models)

John Rushby, SR I FM for Robotics: 23

Automation Surprise as a Reachability Question

• Take the design of an automated system

◦ Represented as a state machine

• And that of a (plausible or actual) mental model

◦ Also represented as a state machine

• And ask whether these can ever get out of sync

John Rushby, SR I FM for Robotics: 24

Mental Model for Pitch Modes in MD88

capture altitude

HLD

IAS/VSP

IAS/VSP

CAP
CAP

HLD/arrive

capture

active

holdnot active

Whether capture is active is independent of the pitch mode

John Rushby, SR I FM for Robotics: 25

Actual System, Pitch Modes in MD88

capture

capture

altitude

HLD

IAS/VSP

IAS/VSP

HLD/arrivenear

HLD/arriveIAS/VSP

CAP
CAP

not armed hold

is alt_cap

armed

pitch mode

There is an alt cap pitch mode that flies the final capture

John Rushby, SR I FM for Robotics: 26

Model Check These

• The actual system is (of course) more complex than the

mental model

• But they should agree on the major states

• So model check whether the mental and actual models

always agree on whether capture is active

• They do not

• Automatically finds an “automation surprise” scenario that

had previously be discovered in flight simulations

• small demo: model checking

John Rushby, SR I FM for Robotics: 27

Observed Automation Surprise: An Altitude Bust

• Plane passed through

5,000 feet at vertical

velocity of 4,000 fpm

• “Oops: It didn’t arm”

• Captain took manual

control, halted climb at

5,500 with the

“altitude—altitude”

voice warning sounding

repeatedly

John Rushby, SR I FM for Robotics: 28

Other Examples

• Extended this example to examine forgetful pilot and utility

of cues supplied by the displays

• We have also used this approach to examine a surprise

related to speed protection in A320

• And a known surprise in the pitch modes of the 737 autopilot

• Oishi, Hwang and Tomlin at Stanford has done similar with

777 flap and speed protection management on descent

• Also Ukawa, Ushio and Adachi at Osaka

• Extension: group behavior (multiple pilots, pilots and ATC)

◦ Just run multiple models (research topic)

John Rushby, SR I FM for Robotics: 29

Conclusion

• Whew!

• “The confidence of ignorance will always overcome the

indecision of knowledge”

• Many opportunities for further research

• And interesting collaborations

• SAL, our other formal methods tools, and recent papers

(including our Roadmap), are accessible from

http://fm.csl.sri.com

• My own papers are at

http://www.csl.sri.com/users/rushby/biblio

John Rushby, SR I FM for Robotics: 30

