
The MILS Component Integration Approach
To Secure Information Sharing

Carolyn Boettcher, Raytheon, El Segundo CA

Rance DeLong, LynuxWorks, San Jose CA

John Rushby, SRI International, Menlo Park CA

Wilmar Sifre, AFRL/RITB, Rome NY

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 1



MILS

• Is a security architecture adopted for

◦ F22, F35, FCS, JTRS, DDG-1000, CDS

among others

• We are talking about security as a critical property

• So need to provide strong assurance that it is achieved

• We build systems from components

• And we’d like critical properties and assurance to compose

component-wise as well

• That’s the topic of this talk

• I also want to persuade you the approach might work for

safety (i.e., IMA) as well as security

• And for enterprise (e.g., ground) and commercial systems, as

well as embedded

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 2



The MILS Idea

Traditionally presented as three layers

• Separation kernel, middleware, applications

PCS

(MLS)

File
Sys.

Driver

(MLS)

E-Mail

(MLS)

Full OS /
Run-Time
Libraries

RT CORBA/
DDS/WEB

S

(SL)

Full OS /
Run-Time
Libraries

RT CORBA/
DDS/WEB

TS

(SL)

Minimal
Middleware
Minimum
Run-Time

Library

S, TS

(MLS)

Console
Manager

(MLS)

Physical Display,
Keyboard & Mouse

Trusted Path

Processor

Separation Kernel

Web
Browser

IPv6

(MLS)

Automatic
Reload/Restart

from Secure
File System

Somewhat similar to IMA

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 3



The MILS Idea (ctd)

• Problem is, that doesn’t compose

◦ i.e., it’s not clear how you get a certified MILS system

out of certified MILS components and subsystems

◦ Without opening everything up

◦ IMA has a similar problem

• I’ll present a MILS Component Security Integration approach

based on two levels

• That is compositional

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 4



Component Security Integration

• We build systems from components

• And we’d like security properties and assurance/certification

to compose

◦ That is, assurance for the whole is built on assurance for

the components

• Seldom happens: assurance dives into everything

• The system security assurance argument may not decompose

on architectural lines (Ibrahim Habli & Tim Kelly)

◦ So what is architecture?

◦ A good one simplifies the assurance case

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 5



The MILS Idea (Two-Level Version)

• Construct an architecture so that security assurance does

decompose along structural lines

• Two issues in security:

◦ Enforce the security policy

◦ Manage shared resources securely

• The MILS idea is to handle these separately

• Focus the system architecture on simplifying the argument

that policy is enforced correctly

◦ Hence policy architecture

• The policy architecture becomes the interface between the

two issues

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 6



Policy Architecture

• Intuitively, a boxes and arrows diagram

◦ There is a formal model for this

• Boxes encapsulate data, information, control

◦ Access only local state, incoming communications

◦ i.e., they are state machines

• Arrows are channels for information flow

◦ Strictly unidirectional

◦ Absence of arrows is often crucial

• Some boxes are trusted to enforce local security policies

• Want the trusted boxes to be as simple as possible

• Decompose the policy architecture to achieve this

• Assume boxes and arrows are free

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 7



Crypto Controller Example: Step 1

Policy: no plaintext on black network

dataheader encrypted dataheader

side
red

side
black

encryption

header bypass

operating system

network
stacks utilities

compiler runtime

No architecture, everything trusted

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 8



Crypto Controller Example: Step 2

Good policy architecture: fewer things trusted

red

bypass

black

crypto

operating system operating system

hardware

minimal runtime

Local policies (notice these are intransitive):

Header bypass: low bandwidth, data looks like headers

Crypto: all output encrypted

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 9



Policy Architecture: Compositional Assurance

• Construct assurance for each trusted component individually

◦ i.e., each component enforces its local policy

• Then provide an argument that the local policies

◦ In the context of the policy architecture

Combine to achieve the overall system policy

• Medium robustness: this is done informally

• High robustness: this is done formally

◦ Compositional verification

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 10



Compositional Verification for Policy Integration

• Need to specify what it means for a component to satisfy a

policy under assumptions about its environment

• Then show how these compose (policy of one component

becomes the assumptions of anther)

• Fairly standard Computer Science

• MILS is agnostic on the exact approach used

◦ Policies/assumptions as properties

◦ Or as abstract components

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 11



Resource Sharing

• Next, we need to implement the logical components and the

communications of the policy architecture in an affordable

manner

• Allow different components and communications to share

resources

• Need to be sure the sharing does not violate the policy

architecture

◦ Flaws might add new communications paths

◦ Might blur the separation between components

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 12



Poorly Controlled Resource Sharing

red bypass

crypto black

Naive sharing could allow direct red to black information flow,

or could blur the integrity of the components

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 13



Unintended Communications Paths

red

bypass

black

crypto

operating system operating system

hardware

minimal runtime

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 14



Blurred Separation Between Components

bypass

black

crypto

operating system operating system

hardware

minimal runtime

red

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 15



Secure Resource Sharing

• For broadly useful classes of resources

◦ e.g., file systems, networks, consoles, processors

• Provide implementations that can be shared securely

• Start by defining what it means to partition specific kinds of

resource into separate logical components

• Definition in the form of a protection profile (PP)

◦ e.g., separation kernel protection profile (SKPP)

◦ or network subsystem PP, filesystem PP, etc.

• Then build and evaluate to the appropriate PP

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 16



Crypto Controller Example: Step 3

Separation kernel securely partitions the processor resource

blackred

crypto h/w

device driver

for crypto

separation kernel

runtime or
operating system

runtime or
operating system

bypass

minimal runtime

The integrity of the policy architecture is preserved

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 17



A Generic MILS System

separation kernel

partitioning filesystem

TSE

Care and skill needed to determine which logical components

share physical resources (performance, faults)

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 18



Resource Sharing: Compositional Assurance

• Construct assurance for each resource sharing component

individually

◦ i.e., each component enforces separation

• Then provide an argument that the individual components

◦ Are additively compositional

◦ e.g., partitioning(kernel) + partitioning(network)

provides partitioning(kernel + network)

And therefore combine to create the policy architecture

• Medium robustness: this is done informally

• High robustness: this is done formally

◦ Compositional verification

• There is an asymmetry: partitioning network stacks and file

systems and so on run as clients of the partitioning kernel

◦ Hence, a link to the three-layer view

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 19



Compositional Verification: Resource Sharing Integration

• We have a formal policy architecture model

• Fairly standard Computer Science

◦ Components are state machines

◦ Communications channels are shared variables

◦ Asynchronous composition

• Definition of well-formed policy architecture

• And of implementation respecting and enforcing a policy

architecture

• Argument that these are additively compositional

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 20



MILS Business Model

• DoD moves things forward by supporting development of

protection profiles

◦ Separation kernels, partitioning communications systems,

TCP/IP network stacks, file systems, consoles,

publish-subscribe

• Then vendors create a COTS marketplace of compliant

components

• Currently they are all resource sharing components

• Should be some policy components, too

◦ E.g., filters, downgraders for CDS

? Could be a standardized CDS engine, many rule sets

? Rule sets derived from goals, not hand coded

? e.g., Ontologically-driven purpose and anti-purpose

◦ Or even MLS

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 21



Roadmap Example:

MILS Architecture for Joint Training Exercises

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 22



Protection Profile Development

policies

assumptions

threats

objectives
security

Security
Assurance

Requirements

SAR

Security
Functional

Requirements

SFR

Common Criteria

select

Explicit SFRs

Explicit SARs

select

add
ad

d

scope

depth

rigor

the nature

of the ‘‘thing’’

constraints

from other PPs

rationale

Evaluation

Assurance

Level

EAL

A lot of delicate work

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 23



Protection Profiles Development (ctd.)

• Developing individual PPs is difficult and delicate work

◦ Like developing a program against a big library

◦ With no way to test it, except inspection

• Compositionality means PPs have to be collectively coherent

• We are developing a Common Criteria Authoring

Environment (CCAE) to assist construction of coherent PPs

• Ontological characterization of SFRs and SARs and rules for

their combination

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 24



MILS and IMA

• Certification for MILS is more demanding than for IMA

◦ DO-178B Level A is comparable to EAL 4/5

◦ High Robustness is EAL 6+/7+

• So a separation kernel is more aggressively minimized than a

partitioning IMA RTOS

• But the basic ideas are very similar

• And the MILS approach to compositional assurance might

apply to IMA integration

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 25



MILS In The Enterprise (e.g., Ground Systems)

• Separation kernels are like minimal hypervisors (cf. Xen)

◦ MILS separation kernel (4 KSLOC), EAL7

◦ Avionics partitioning kernel (20 KSLOC),

DO-178B Level A (≈ EAL4)

◦ Hypervisor (60–250 KSLOC), EAL?

• Can expect some convergence of APIs (cf. ARINC 653)

• Different vendors will offer different functionality/assurance

tradeoffs

• Could extend hypervisors from providing isolated virtual hosts

to supporting the policy architecture of a secure service

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 26



Summary

• The MILS approach seems a reasonable approach to

compositional reasoning about secure resource sharing and

functional policies

• Must also consider resource utilization

◦ Need tools to allocate/schedule resources such as

processor time, bus access, IPC, devices

◦ Given adequate specifications

◦ These are fairly simple constraint satisfaction problems

(e.g., CoBaSA)

• And fault propagation

• I think the approach can extend from security to safety

• And from embedded (airborne) to enterprise (ground)

systems

Boettcher, DeLong, Rushby, Sifre Component Security Integration: 27


