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MILS

• Is a security architecture adopted for

◦ F22, F35, FCS, JTRS, DDG-1000, CDS

among others

• We are talking about security as a critical property

• So need to provide strong assurance that it is achieved

• We build systems from components

• And we’d like critical properties and assurance to compose

component-wise as well

• That’s the topic of this talk

• I also want to persuade you the approach might work for

safety (i.e., IMA) as well as security

• And for enterprise (e.g., ground) and commercial systems, as

well as embedded
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The MILS Idea

Traditionally presented as three layers

• Separation kernel, middleware, applications
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The MILS Idea (ctd)

• Problem is, that doesn’t compose

◦ i.e., it’s not clear how you get a certified MILS system

out of certified MILS components and subsystems

◦ Without opening everything up

◦ IMA has a similar problem

• I’ll present a MILS Component Security Integration approach

based on two levels

• That is compositional
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Component Security Integration

• We build systems from components

• And we’d like security properties and assurance/certification

to compose

◦ That is, assurance for the whole is built on assurance for

the components

• Seldom happens: assurance dives into everything

• The system security assurance argument may not decompose

on architectural lines (Ibrahim Habli & Tim Kelly)

◦ So what is architecture?

◦ A good one simplifies the assurance case
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The MILS Idea (Two-Level Version)

• Construct an architecture so that security assurance does

decompose along structural lines

• Two issues in security:

◦ Enforce the security policy

◦ Manage shared resources securely

• The MILS idea is to handle these separately

• Focus the system architecture on simplifying the argument

that policy is enforced correctly

◦ Hence policy architecture

• The policy architecture becomes the interface between the

two issues
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Policy Architecture

• Intuitively, a boxes and arrows diagram

◦ There is a formal model for this

• Boxes encapsulate data, information, control

◦ Access only local state, incoming communications

◦ i.e., they are state machines

• Arrows are channels for information flow

◦ Strictly unidirectional

◦ Absence of arrows is often crucial

• Some boxes are trusted to enforce local security policies

• Want the trusted boxes to be as simple as possible

• Decompose the policy architecture to achieve this

• Assume boxes and arrows are free
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Crypto Controller Example: Step 1

Policy: no plaintext on black network
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Crypto Controller Example: Step 2

Good policy architecture: fewer things trusted
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Local policies (notice these are intransitive):

Header bypass: low bandwidth, data looks like headers

Crypto: all output encrypted
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Policy Architecture: Compositional Assurance

• Construct assurance for each trusted component individually

◦ i.e., each component enforces its local policy

• Then provide an argument that the local policies

◦ In the context of the policy architecture

Combine to achieve the overall system policy

• Medium robustness: this is done informally

• High robustness: this is done formally

◦ Compositional verification
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Compositional Verification for Policy Integration

• Need to specify what it means for a component to satisfy a

policy under assumptions about its environment

• Then show how these compose (policy of one component

becomes the assumptions of anther)

• Fairly standard Computer Science

• MILS is agnostic on the exact approach used

◦ Policies/assumptions as properties

◦ Or as abstract components
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Resource Sharing

• Next, we need to implement the logical components and the

communications of the policy architecture in an affordable

manner

• Allow different components and communications to share

resources

• Need to be sure the sharing does not violate the policy

architecture

◦ Flaws might add new communications paths

◦ Might blur the separation between components
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Poorly Controlled Resource Sharing

red bypass

crypto black

Naive sharing could allow direct red to black information flow,

or could blur the integrity of the components
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Unintended Communications Paths
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Blurred Separation Between Components
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Secure Resource Sharing

• For broadly useful classes of resources

◦ e.g., file systems, networks, consoles, processors

• Provide implementations that can be shared securely

• Start by defining what it means to partition specific kinds of

resource into separate logical components

• Definition in the form of a protection profile (PP)

◦ e.g., separation kernel protection profile (SKPP)

◦ or network subsystem PP, filesystem PP, etc.

• Then build and evaluate to the appropriate PP
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Crypto Controller Example: Step 3

Separation kernel securely partitions the processor resource
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The integrity of the policy architecture is preserved
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A Generic MILS System

separation kernel

partitioning filesystem

TSE

Care and skill needed to determine which logical components

share physical resources (performance, faults)
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Resource Sharing: Compositional Assurance

• Construct assurance for each resource sharing component

individually

◦ i.e., each component enforces separation

• Then provide an argument that the individual components

◦ Are additively compositional

◦ e.g., partitioning(kernel) + partitioning(network)

provides partitioning(kernel + network)

And therefore combine to create the policy architecture

• Medium robustness: this is done informally

• High robustness: this is done formally

◦ Compositional verification

• There is an asymmetry: partitioning network stacks and file

systems and so on run as clients of the partitioning kernel

◦ Hence, a link to the three-layer view
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Compositional Verification: Resource Sharing Integration

• We have a formal policy architecture model

• Fairly standard Computer Science

◦ Components are state machines

◦ Communications channels are shared variables

◦ Asynchronous composition

• Definition of well-formed policy architecture

• And of implementation respecting and enforcing a policy

architecture

• Argument that these are additively compositional
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MILS Business Model

• DoD moves things forward by supporting development of

protection profiles

◦ Separation kernels, partitioning communications systems,

TCP/IP network stacks, file systems, consoles,

publish-subscribe

• Then vendors create a COTS marketplace of compliant

components

• Currently they are all resource sharing components

• Should be some policy components, too

◦ E.g., filters, downgraders for CDS

? Could be a standardized CDS engine, many rule sets

? Rule sets derived from goals, not hand coded

? e.g., Ontologically-driven purpose and anti-purpose

◦ Or even MLS
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Roadmap Example:

MILS Architecture for Joint Training Exercises
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Protection Profile Development
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A lot of delicate work
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Protection Profiles Development (ctd.)

• Developing individual PPs is difficult and delicate work

◦ Like developing a program against a big library

◦ With no way to test it, except inspection

• Compositionality means PPs have to be collectively coherent

• We are developing a Common Criteria Authoring

Environment (CCAE) to assist construction of coherent PPs

• Ontological characterization of SFRs and SARs and rules for

their combination
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MILS and IMA

• Certification for MILS is more demanding than for IMA

◦ DO-178B Level A is comparable to EAL 4/5

◦ High Robustness is EAL 6+/7+

• So a separation kernel is more aggressively minimized than a

partitioning IMA RTOS

• But the basic ideas are very similar

• And the MILS approach to compositional assurance might

apply to IMA integration
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MILS In The Enterprise (e.g., Ground Systems)

• Separation kernels are like minimal hypervisors (cf. Xen)

◦ MILS separation kernel (4 KSLOC), EAL7

◦ Avionics partitioning kernel (20 KSLOC),

DO-178B Level A (≈ EAL4)

◦ Hypervisor (60–250 KSLOC), EAL?

• Can expect some convergence of APIs (cf. ARINC 653)

• Different vendors will offer different functionality/assurance

tradeoffs

• Could extend hypervisors from providing isolated virtual hosts

to supporting the policy architecture of a secure service
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Summary

• The MILS approach seems a reasonable approach to

compositional reasoning about secure resource sharing and

functional policies

• Must also consider resource utilization

◦ Need tools to allocate/schedule resources such as

processor time, bus access, IPC, devices

◦ Given adequate specifications

◦ These are fairly simple constraint satisfaction problems

(e.g., CoBaSA)

• And fault propagation

• I think the approach can extend from security to safety

• And from embedded (airborne) to enterprise (ground)

systems
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